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The recently proposed mechanism by Brayshaw is studied quantitatively. The already well-known

subenergy singularities of the triangle diagram are indeed present. However, the proper unitarization of this

diagram leads (in general) to no observable effects in cross sections, suggesting that no dynamical

mechanism for producing three-body resonances can be associated with these singularities.

In recent papers' ' Brayshaw proposed a three-
body mechanism to predict resonances at ener-
gies easily calculable via simple analytic formu-
las. The so-called Brayshaw mechanism is con-
cerned with graphs like Fig. 1 and consists es-
sentially of two statements.

(1) If we define the energy variable E=Ws
-2m, -m~ and the subenergy variable & =Wc

-m, -m„where s and o are the total invariant
squares of the masses of the whole system and
the resonating subsystem R, respectively, then
the graph of Fig. 1 develops a singularity in the
total energy E when the subenergy p is near
threshold q

——0. The position of the singular point
is given by

(e+c~)~ o2~crg
1 —Q

where n = m, ./(m, + m ~) and q z = q s —i T'/2 =M z —m,
—rn, —il'/2. In (1) we have made the nonrelativis-

tic approximation F,, & «m, , m ~ only for reasons
of simplicity (all the arguments also hold in the
relativistic case).

(2) In general, diagrams like Fig. 1(a) are to
be considered as input for some dynamical mech-
anism such as a multiple-scattering series, N/D
equations, unitarity equations, etc. Then the
statement of Brayshaw is that the resulting ampli-
tude, using diagram l(a) as dynamical input, pro-
duces a physical resonance, i.e., it contains a
pole at the resonance position. In Ref. 1 a whole
list of states including mesonic, NN7t, and SSM
systems has been given.

Statement (1) is fully justified. However, many
years ago the same mechanism had already been
noted by Anisovich et al.4 by Valuev, 4 and inde-
pendently by Aitchison and Kacser'. To find on
which Riemann sheets the singularities given in
Eq. (1) actually lie, one may use the following ex-
pression for the amplitude of diagram 1(b):
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FIG. 1. Exchange graphs for three particles, m~, m~,
and m&. R is a resonance formed by a and 5.

FIG. 2. Trajectories of Landau singularities. FuQ and
dashed-dotted curves are on the second sheet, dashed on
the first sheet with respect to the resonance-particle
cut. Numbers indicate values of e in MeV.
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where I =m, (m, +m~)/(2m, +m~) and I' and g are
defined below. The normalization constant Bp is
arbitrary. The positions of the initial points of
the cuts (Landau singularities) in the total ener-
gy plane are shown in Fig. 2. The trajectories
shown by the solid and dashed-dotted lines lie on
the second sheet of the resonance-particle cut.
The trajectory shown by the dashed line lies on
the first sheet with respect to this cut. Not shown
in Fig. 2 are the singularities which lie on the
second sheet of the logarithmic cut in the upper
half-plane (the three-particle unitarity cut). These
singularities lie far from the physical region.
(Their position can be obtained by a reflection
with respect to the real axis of the trajectories
shown in Fig. 2.)

For q & n'(e~ —I'/2) the martial point of the cut
cannot produce any bump in the cross section
since in this case the path from the physical sheet
to that point should round the resonance-particle
branch point E = qR —iI'/2 For. & & a'(q„—I'/2)
the path from the physical region to the Landau
branch point is straightforward and so we see that
the first part of the Brayshaw mecharasm is valid
(as was also shown in a different context by Ani-
sovich et gl. ,

' Valuev, ' and Aitchison and Kacser'.
We finally note the Brayshaw statement' that

for & &0 (m, +m~&m, ,+m~) the singularity is shift-
ed to a position very close to the physical region.
However, from Fig. 2 we can see that for q &0
the singularity moves far away from the physical
sheet. The singularity which moves towards the
real axis lies on a distant Riemann sheet (Fig. 2).
Therefore the statement of Brayshaw' seems to
be incorrect.

Concerning statement (2) we note that the essen-
tial step is the integration over the subenergy
variable q together with some phase-space fac-
tors. Brayshaw only considers the case & —-0,
but this region is usually suppressed by phase
space. To see quantitatively what the consequen-
ces of such an integration are we made a detailed
investigation of diagram 1(b). This diagram may
be considered as a first step in a dynamical itera-
tion process (by means of some integral equation)
with diagram 1(a) as input. Moreover, the cross
section calculated from diagram 1(b) is directly
related to the norm of the kernel of the dynamical
integral equation.

We evaluated expression (2), which is again for
simplicity reasons nonrelativistic, for the Nh
system numerically with the following paramet-
r ization':

1/a
I'(c) = I, —' g'(e),

s( ) g (E )+.Y

q'(~)+~' ' (3)

q'(~) =~"e{~+2m, ),

where we used as the radius for the form factor
y=3m . The cross sections are defined by

de(E E)
~E (E )

~

(E —&)
de ' "

~~ ~„+fI'(e)/2 &"

( )
„do(E,g)

p
(5)
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FIG. 3. Cross sections do~/de for various values of.e
as a function of E (units are arbitrary).

In Fig. 3 we show the shape of do, /dq. It is es-
sentially determined by the position of 2 branch
points: the branch point of the resonance-parti-
cle cut at E~=q~ ii'/-2=(157-57. 5i) MeV and
the starting point E,(q) of the triangle singularity.
For q=q~/100=1. 57 MeV there is a broad bump
in the cross section. In this case E(e„ /I 00)
= (548 —220i) MeV whereas E,(0) = (658 —241i)
MeV. So for small values of q the singular point
moves rather quickly. For & = q„/2 = 78.5 MeV
the triangle singularity lies close to the reso-
nance-particle threshold and we see a pronounced
maximum for E=E„. For e &g~ —I'/2 the cross
section is again a smooth function of the energy
as has been noted above.

The Brayshaw, mechanism' ' predicts a bump in
the cross section o;(E) near E=ReE,(0) = 658
MeV. However, from Fig. 4 we see that there
is no bump at all near this energy. There is only
a weak maximum of the cross section near E=E~
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FIG. 4. The total cross sections 0&(E) in arbitrary
units.

which corresponds to the resonance-particle
threshold (resonance-particle unitarity cut).
Therefore we see that in this case the Brayshaw
mechanism does not work fat least concerning
statement (2)].

Moreover, the contribution of the triangle graph
to the cross section (v, ) is small compared to the
contribution of the graph without rescattering
(vo). The cross sections dao/dq and oo are easily
obtained from Eqs. (4) and (5) by replacing the
amplitude I3,(E, &) by the constant B, In Fi.g. 5
we plot the ratios (do', /dq)/(do;/de+ do, /d&) and

v, /(o, + o;) which are now of course independent
of B,.

We believe the above results will also hold for
a completely relativistic treatment. Explicit cal-
culations have shown that the relativistic trajec-
tories of the Landau singularities lie very close to
the nonrelativistic ones. Also the inclusion of
spins, angular momenta, and isospins will not
alter our conclusions since they cannot change
the positions of the singularities.

Note that apart from the above-mentioned Bray-
shaw mechanism we also have the usually much
stronger singular itic s arising from the nor mal
resonance-particle cut. Detailed investigations
by Badlyan and Simonov" have shown that
the relevant parameter in this case is X= (I'/
c„)fwhere I' and c„are the width and excita-
tion energy of the resonance R and f is a
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FIG. 5. Ratios of cross sections in percent. Solid
curve corresponds to (doq/ds)/(da&/de+dao/de) and
dashed curve to 0,/(00+0&).

smooth function of m„m~ and energy. For X» 1
the strong resonance-particle interaction may
produce bound states and resonances. ' However,
most systems in nature have X«1, for example
the p7t, whereas for the N~ system A. 41.' There-
fore in those cases even the strong resonance-
particle interaction is too weak to produce any
bound states or resonances (see also the work of
Ascoli and Wyld').

Keeping the experience with the resonance-par-
ticle interaction in mind and noticing that the
Brayshaw mechanism refers to an even weaker
process, we feel that this mechanism will turn
out to be unable to account for the proposed reso-
nances in Ref. 1.
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