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It is pointed out that, in contrast to the recently discovered large quantum-chromodynamics (QCD)
correction to the Drell-Yan formula, a certain quark-parton-model relation between structure functions for
lepton pair production is not subject to any first-order QCD modification. Both parallelism and contrast to
the Callan-Gross relation in deep-inelastic scattering are spelled out. Implications on the lepton angular

distribution for both low and high q, are discussed, The case is made that this relation provides a unique

opportunity to test the "QCD-improved quark-parton model. "

Recent quantum-chromodynamics (QCD) cal-
culations reveal a large (-100$) order-n, cor-
rection to the Drell-Yan cross-section formula
for lepton pair production (LPP} in hadron col-
lisions. This makes the integrated cross section
a dubious testing ground for the QCD-corrected
parton model, and raises fundamental questions
about the viability of the perturbative QCD ap-
proach. It is, therefore, important to study other
aspects of this approach.

There is much more to the quar~-parton model
and its QCD modifications in LPP than just the
integrated Drell- Yan cross-section formula. The
lepton angular distributions are controlled by
structure functions which obey parton-model re-
lations ' similar to those between Eq and E2 in
deep-inelastic scattering (DIS). How are these
relations affected by perturbative QCD correc-
tions p The answer to this question is quite sur-
prising'. At least one of these relations —the ex-
act counterpart of the Callan-Grosss relations-
is not modified at all by first-order QCD correc-
tions, although individual terms in this relation
may be subject to large corrections. In the rest
of this note, we spell out explicitly the paral-
lelism as well as the contrast between the DIS and
LPP cases in the perturbative QCD approach and
discuss the experimental implications of these
results.

The LPI' process is described by a tensor am-
plitude W„„corresponding to the current corre-
lation function

~„„=S ge'&" Pf,P2 J s J„o I'gP2

similar to that of DIS. Here I'q and P2 are the four
momenta of the colliding hadrons, & = -(P~ +P2},
and q is the momentum of the virtual photon

(hence the lepton pair). The trace of this tensor
is related to the cross section (integrated over
the lepton center-of-mass angles} via the form-
ula '

dg A 1 p

Ma (2~)'
I

wherein ~t/I represents the effective mass of the
lepton pair and e the fine structure constant. '

The tensor S'„„canbe decomposed into four
structure functions in much the same way as in
DIS:

W„„=Wgg„„+ W2P P„—W3(P„p„+P,p~) + W4p p

where g,„=g „-q„q„/q, P=Pq+P2, p=Pq—
P„P„=g„,P"/KS, and p„=g„,p'/v I . These
structure functions can be determined experi-
mentally from Eq. (2) together with lepton angu-
lar distribution measurements. Equation (3)
closely resembles the corresponding formula
defining Wq and W2 in DIS (where the last two
terms are absent).

A basic result of the quark-parton model in DIS
is the Callan-Gross relation. It is usually writ-
ten as

p 2

W =-g + —,—1 8', =0,L (4)

where WI is the helicity structure function for the
longitudinal virtual photon. %e can recast this
result in the not-so-familiar form.

TP' = 2 8't .
In Ref. 4 we showed that the same equation fol
ious as a general consequence of the quark par-
ton model in LPP. In terms of the invariant
structure functions Wq to W4 of LPP, Eq. (5)
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FIG. 1. Lowest-order diagram for LPP cross section.

takes the form
(c)

FIG. 3. Order-o. , "Compton diagrams" for LPP cross
section.
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whereas in terms of the helicity structure func-
tions

W~ =2W~~. (7)

P» a a P»

P~ii i &- P~
4L~ Bl

Pp I ~ Pp

(b)

Here W« is the "double-flip" structure func-
tion. ' These results are to be compared with
Eq. (4) for DIS. Of the three equivalent ver-
sions, Eqs. (5), {6), and (7), only the first one
is form-invariant when going over from LPP to
DIS.

It is known that in perturbative QCD the struc-
ture functions become functions of q'. In addi-
tion:

(i) for DIS, the Callan-Gross relation is mod-
ified by small first-order QCD terms'; and

(ii) for LPP, the Drell-Yan cross-section form-
ula, which is essentially W„[(cf. Eq. (2)] is sub-
ject to very substantial first-order corrections.

It is natural, therefore, to ask how Eq. (5) is
affected by QCD effects in LPP.

If we represent the basic parton-parton amp-
litude by Fig. I, then first-order QCD correc-
tions come in three forms: the "annihilation"
diagrams, Fig. 2; the "Compton" diagrams, Fig.
3; and the "vertex correction" diagrams, Fig.
4. The annihilation and Compton diagrams have

been studied by us and others ' in connection
with high-q events for which they should repre-
sent the dominant mechanism. It has been
noticed that the parton-model structure-function
relation, Eq. (5), is also satisfied by these QCD
diagrams. Since this result holds for all values
of q„ it means that these diagrams do not in-
troduce any first-order QCD correction to the
parton relation Eq. (5) even at low q~. We now

point out that the remaining first order-diagrams
Fig. 4, give rise to an amplitude with the same
tensor structure as the zeroth-order amplitude of
Fig. 1—as any anomalous magnetic rnornent term
from the modified vertex drops out upon taking the
trace of the Dirac matrices. It follows then,
even though the overall normalization may be
corrected by some factor, the decomposition into
invariant structure functions is not affected and
Eq. '(5) remains intact.

We conclude, therefore, in LPP the parton-
model relation W~ = 28'& is not modified by first-
order QCD corrections at all —in contrast to both
the Callan-Gross relation (for DIS) and the Drell-
Yan cross-section formula [essentially W"„, cf.
Eq. (2)]. This appears to be a rather remarkable
result; we are not aware of any other parton-
model result which is not affected by QCD cor-
rections. For this reason, we sketch in the
Appendix a derivation of Eq. (5) from the dia-
grams Pigs. 1-4 which is more direct than those
given before. ' It will be interesting to find out
to what extent this result can be extended to
higher-order diagrams.

We now make a few additional remarks about
Eq. (5) and its experimental implications:
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(c)
FIG. 2. Order-a, , "annihilation diagrams" for LPP

cross section.

(o)

FIG. 4. Order-e~ "vertex-correction diagrams" for
LPP cross section.
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Written in the form

do'

dq dO*
~ 1+ n cos 8*+P sin28cosg~

+ y sin 8* cos2$*,

Eq. (7) implies

1-a =4y (10)

independent of the choice of axes.
(iii) For q,

' «M, kinematic constraints re-
quire W« to be small and of order q, /M . The
dynamical relation Eq. (7) restricts W~ to stay
the same as 2R'«, hence it must also be small.
The angular distribution of the leptons should be
close to 1+cos 8~. [W~ is required by kinemat-
ics to be O(q, /M) and small also. ] Now, make the
transition to the large-q~ region. There is no
reason for +'« to stay small: the angular dis-
tribution will be very different from I+ cos 8~,
but Eq. (7) is still in force and W~ must keep
pace with the change in W«as q, increases.
Note, although the rate of high-q, events is of
order n, (M ), the predicted change in angular
distribution from low to high q, is of order 1 and
the relation between W~ and W'~~ remains pre-
cise throughout. In other words, the test of
QCD furnished by this relation does not concern
just small correction effects,' it involves quan-

(i) The relation W„=2' is closely related to
the spin- —', nature of the charged parton (i.e. ,
quark). The fact that this relation is not mod-
ified by first-order QCD effects when both sides
themselves may be subject to corrections of
order 100/o certainly represents a unique signa-
ture of the QCD-quark-parton picture.

(ii) In terms of helicity structure functions, this
relation takes the form W~ = 2W«, Eq. (7). AI-
though for I PP, the helicity structure functions
depend on the choice of coordinate axes (e.g. ,
Gottfried-Jackson, Collins-Soper, etc.), this
relation remains frame indePendent i.e—., if the
QCD-quark-parton model is correct, the two
structure functions W~ and 8'~~ must be related
by Eq. (7), for any choice of axes in the lepton-
pair center-of-mass frame. This strong result
again demonstrates the significance of this re-
lation.

We know the angular distribution of the leptons
in the rest frame of the pair is given by

do' 1 a
d q dQ* 2 (2v) i'MS

&& [Wr(1+cos 8~)+ W~(l -eos 8*)

+ W~sin28*cosg*+ W«sin 8~cos2g*j .

tities of order unity,
For comparison, in DIS, the Callan-Gross re-

lation reads 8"~=0 in the parton limit and ac-
quires a small n, correction when QCD is taken
into account. Since there is no q, variable in
DIS, the transition in angular distribution dis-
cussed above simply does not exist here.

(iv) So far, we have neglected all masses (m, )
and intrinsic transverse momenta (P,,) of the
partons inside the hadron. It is relatively easy
to see that incorporating these effects in the
zeroth-order parton model (Fig. 1) incurs order
m / M' and p, „'/M' corrections to the basic re-
lation Eq. (5). In current QCD jargon, these
represent "higher-twist" effects. In DIS as well
as elsewhere, the higher-twist effects occur
alongside with calculable QCD (twist two) correc-
tion terms, thereby complicating the phenomeno-
logy considerably. Because of the unique situa-
tion here in LPP where first-order QCD correc-
tion is absent, deviations from Eqs. (5)-(7) can
only come from the higher-twist effects. There-
fore, we have a cleaner source of information on
the size of (p;,'), etc.

Incorporating parton intrinsic transverse mo-
menta in first-order QCD diagrams, Figs. 2-4,
is much more complicated. However, here the
effects are of order o.,p„'/M' and represent only
a very small perturbation if M' is large.

(v) One may wonder why Eq. (5) is not subject
to first-order QCD corrections in LPP while the
same relation (i.e. , Callan-Gross relation) in
DIS is—after all, the Feynman diagrams in-
volved in the two cases are identical except for
line reversal. The technical explanation for this
discrepancy lies in the fact that in DIS, correc-
tions to the Callan-Gross relation come from
Figs. 2 and 3 as a result of integration over the
momenta of the two final-state partons, ' by con-
trast, in LPP, there is only one parton in the
final state —the momentum of which is fixed by
conservation, hence, there is no integration in-
volved.

(vi) We mention, for completeness, that in ad-
dition to Eq. (5), there are other parton-model
relations which follow from the Drell-Yan mech-
anism for low q, and from the QCD annihiliation
diagrams, Fig. 2, for high q, . ' Those rela-
tions are interesting in their own right and, in
conjunction with Eq. (5), yield definite predic-
tions on the angular distribution of the leptons.
However, these predictions do depend on the
choice of helicity frames and are subject to QCD
corrections, hence are not as striking as Eq.
(5).
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APPENDIX

In the literature, all structure-function rela-
tions were derived by first calculating the fu11

tensor amplitude. A more direct derivation of
8 ~ = 2R'& is given in this appendix. The Feynman
gauge is used and partons are. assumed to be
massless.

In Figs. 1 and 2(a), the cross-section tensor
8',„are, respectively, proportional to

T',".' =T (y„y. P,y„y ~ P,)=~"'g„.+-"
r'„'„'"'=T (y„y p,y y .p,y y p,y,y p, )

~(2(a))

Using the identities

i 2 2 +i~ 2 i 2 i

r(y.y, y 2
~ ~ ~ y s..sy,ya, ya, ~ ~ ~ ys2 1)

r, y", )+ ~ ",i 2 2n+i 2 fft+1

(A4)

we immediately obtain the relation T„"= 2Ti for
both Fig. 1 and Fig. 2(a) ~ Similarly we can drive
the relation for Figs. 2(b), 8(a), and 8(b).

The derivation for Figs. 2(c), 2(d), 2(c), and
S(d) are more complicated in that the massless
nature of the partons have to be used. We merely
exhibit how this is done for Fig. 2(c) ~ There

~4'„'"'=»(y„y p,y, y p,y„r p,y y p, )

=-2»(y„y p,y p,y„y p,y p, )

2g.-.»(y P,y P.y P,y P.)+

Using Ps =Ps+Ps P4=P1 Ps P1 =Ps =Ps =02 2 2

get

T1 " ——-8(P1' P2P3 ' P4 P1 ' P4P2 ' Ps

+P1 ' Psp2 ' P4)

16p1 ' Ps(P1 ' Ps P2' Ps+P1 ' Ps)

= -16Pi ~ P2P3 ~ P4 = -'&"'"'"
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