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We propose a fragmentation mechanism to interpret in a parton framework the Pomeron contribution

which dominates high-energy low-PT hadronic reactions. We successfully compare our predictions to

experimental data on one-particle inclusive distributions. We derive a pure parton expression of the

Pomeron contribution which clarifies the theoretical understanding of high-energy interactions.

I. INTRODUCTION

In a preceding paper' (hereafter denoted as
CTHKP) we have proposed a new approach to the
confinement problem which consists of looking
for correspondences between quantum chromo-
dynamics (QCD) and the dual topological unitari-
zation scheme (DTU). These correspondences
allow, on one hand, the use of Begge phenomeno-
logical tools to get information on quark structure'
and fragmentation functions and, on the other hand,
the clarification of the parton interpretations of
soft, or low-I'~ hadronic reactions.

In the present paper, we focus on the Pomeron
contribution which dominates high-energy low-P~
hadronic reactions. Whereas we had proposed a
recombination interpretation of this contribution
in CTHKP, we derive now an alternative inter-
pretation, basically a fragmentation mechanism,
in which quark-fragmentation functions are con-
voluted with a dual weight describing the jet con-
figuration.

'The dual weight is derived from a dual multi-
peripheral model. ' We get in this way a model
with no free parameter, which is successfully
compared to experimental data on meson
fragmentation.

Finally, we propose a model-independent par-
ton expression for the dual weight itself, leading
to a pure parton interpretation of the Pomeron con-
tribution. We comment on the important theoret-
ical implications of this scheme.

II. DERIVATION OF THE MODEL

A. Fragmentation and planar cross sections

Dual topological unitarization consists of de-
composing the S-matrix elements into an infinite
series of topological components characterized by
the number of boundaries and handles of the as-
sociated dual diagrams. 'This topological expan-
sion, which is expected to converge rapidly, is
dominated by the first two components: the planar
and the cylindrical ones (see Figs. 1 and 2) corre-

sponding, through unitarity, to Beggeon and
Pomeron exchange.

The parton interpretation of the one-particle
inclusive planar cross section, sketched in Bef. 4
and proposed in the DY'U scheme in the CTHKP
paper, is exhibited in the factorized expression
(see Fig. 3)

do Planar s(~-H) =g —"
x„D.(,„),

dxH g So

where g'(s/s, )™i~"'' is the total planar cross sec-
tion interpreted as the cross section of the quark-
liberating process AB-ab, and D,"(x„)is the
quark-fragmentation function of quark a into
hadron 0 with fraction of momentum xH. How-
ever, this fragmentation interpretation of DTU is
suited only for the planar contribution. In order
to interpret in a parton framework the cylindrical
(dominant at high energy) contribution, a. recom-
bination mechanism was proposed. What we want
to do here is to show that it is actually possible
to generalize Eq. (1) to the Pomeron contribution,
and thus to provide this contribution with a frag-
mentation interpretation.

B. Generalization to the cylindrical contribution

In DTU, the cylindrical contribution is built out
of two planar dual sheets. Since the multipro-
duction in a one-dual-sheet process is interpreted
as the fragmentation of the quarks bordering the
sheet, the fragmentation interpretation of the
cylindrical contribotion implies, for the final
hadronic state, a four-jet structure where the
jets are initiated by the four valence quarks of
the incoming hadrons (supposed to be mesons for
simplicity) and are elongated along the scattering
axl s.

Following the notations of Fig. 4, the fraction of
momentum carried by each quark, x„and (1-x„)
for the quarks of A, xs and (1 —xs) for the quarks
of B, can be intrinsically defined in duality by the
sum of the energy-momenta of all the particles of
each sheet, expressed in the c.m. system:
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FIG. 1. The planar term. FIG. 2. The cylindrical term.

E, =x„&v s+ (1 —x~)—,'v s, k, =x„2v s —(1 —xs) —,'v s,

E, =(l-x~)2v s+xsgv s, k, = (1 —x„)~v s-xgp~s.

Therefore, considering a dual weight (P(x„,xs)

for a given two-sheet configuration (x„,x&), the
one-particle inclusive distribution is obtained by
making the convolution of 6' with the appropriate
quark-fragmentation functions. So, again with the
notations of Fig. 3, we have

dv XH H XH XH H XHx„(A-H)=
~ dx„dx 6'(x„,x ) D, ——e(x„—x„)+ D e(1 —x„—x )

dXH B 4 W XA XA XA 1 XA

C. Derivation of the dual weight P(x&,x&)

The dual weight is related to the total inelastic cross section through

f' 1

o'„„=J J dx„dx~(P(x„, xs) .
0

(2)

In order to give an expression for (P(x„,xs) we use DTU arguments. At the first step of the topological
unitarization o„, is determined, through unitarity, by the dual multiperipheral production mechanism.
Nontwisted diagrams give the planar, Reggeon, contribution whereas the sum of all twisted diagrams gives
the cylindrical, Pomeron, contribution.

The rapidity ordering, which is characteristic of multiperipheral dynamics, is maximal in the planar
case, while the summation over all possible twists leads, for the Pomeron contribution, to a weaker
ordering in the sense that there are now two uncorrelated sets of ordered particles (two dual planar
sheets).

Following Chiu and Matsuda, we write a typical contribution to the inelastic cross section o„„(n,l 2

particles in one sheet, n, in the other)

cr„„=— dy', "dy„'" & v s — (p. coshy', ~'+ p, coshy'„") 6 (p. sinhy', "+ p, sinhy~')
~

e'
l 2 S ''-'' g =l =1

l Pfg

2

x
~

[dy'," dy" &, (g2N )")j
1 -1

(4)

where the rapidity variables y'" are defined in Fig. 5, the index i labels the dual sheet and the lower index
m labels the particle inside each sheet, N& is the number of flavors [for the moment we assume exact
SU(N&)], g' is the universal coupling constant, n the usual Regge intercept, and A is a constant factor
which will disappear in the expression of the density (xlo'„„)(do/dx).

It is now a. matter of algebraic calculations to perform the integrations and resummations. Using the
planar-bootstrap equations

nz = 2o! —1+g'Nz,

n~ = 2o. —1+ 2g'N~,

one fina. lly gets
f' fj.

dx dx e& Ae'I'" "e~ B
A B

4
v..., = g s„„=a (6)

l. 2

where &A, &B, &~ are the rapidity intervals defined in Fig. 5.
'The actual values of n„and n~ depend on the model one uses to solve planar-bootstrap constraints. "Foz

instance, in the one-dimensional model of Huan Lee, ' n„= n and thus Q.p = 1. For our purpose, we shall
use the Reggeon and Pomeron intercepts according to the standard Regge phenomenology, taking into ac-
count the effects of SU(Nz) breaking.
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FIG. 3. The one-particle inclusive planar cross-sec-
tion.

FIG. 4. The two-sheet. configuration. The quark con-
tent of A is (ab). For a meson, a andb are quarks;
for a baryon, they are quark or diquark.

Summing over the four possible configurations which are characterized by the relative magnitudes of
(1 —x„) vs x„, (1 —x») vs x» (see Fig. 6), we straightforwardly get

~N» x„dx„«»
~

x„» 'e(2 —x„)+
~

(1-x„) & 'e(x„- —,)

x
I

x " 'e(» -x )+ I
~

(1-x )'»- e(x, --,)
1 —x~'c cv, t x~ )~gz e 1

9 -x»&

where n,—, is the Regge intercept of the qq trajectory.
We write the dual weight 6'(x„,x») in the factorized form

6(x„,x, ) = ~»»-'V'"'(x„)V"'(xy,

where

(6)

1 x~V'"'(x„)= "
~

x„'e(-,' —x„)+ "
~

(1—x„)»-'e(x„-—,') .

Recollecting Eqs. (2), (3), and (I), we write the one-particle inclusive distribution:

x» do (A-H) — 1

oi~~g «»» fo'dxzv 'Cx~) "~

1 le'

d „v '( „)—"D.'I —'" [e(x„-x»)+
xA Aj xA E xAJ

It is straightforward to verify that Eq. (10) satis-
fies the energy-momentum sum rule

GfO'

xH y

"0 in el

which is a consequence of
~1

xD, x dx=1.
H

III. COMPARISON WITH DATA

Looking for a clean test of the model, we are
led to use data for the nondiffractive part of
hadron-hadron processes which do not contain
planar contributions. A good choice is the in-
clusive process K'- n . In this reaction the s
channel (K'p) and the f channel (K'v') are exotic,
which means no planar contribution and a negligi-
ble diff raction.

Owing to its factorization property, formula (10)
does not depend on the target and can be applied
to meson fragmentation on protons. The inputs
are the usual Regge-trajectory intercepts n&=

(10)

I

0.5, @~ =0, and @~=1, and the D-fragmentation
functions taken from the Field and Feynman para-
metrizations. As shown in Fig. 7, our prediction,
with no free parameter, for the density distribu-
tion

xH d0'

ine1

is in good agreement with the experimental data'
in the whole fragmentation region (0.1&x»&l).

For other meson fragmentations, the analysis is
less straightforward. 'Thus, for the reaction
m+

~
w' one has to consider the highest energy data

in order to avoid the planar contributions. In
Fig. 8 we show the comparison of our predictions
with the data" at 100 GeV. 'The difference bet-
ween m and m data gives an idea of the effect of
planar contributions. .In the case of reaction g'
—m' we use the data from Ref. 11 where the dif-
fractive component has been subtracted by means
of a triple-Regge parametrization [see Fig. 9].
In both cases, the agreement with our predictions
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FIG. 5. Definition of rapidity variables.
are the differences of rapidity of the three sections.
= a&+ 4&+ ~& is the total rapidity interval.

10

ls good.
However, it was already noticed by several

authors" that convolution formulas involving
fragmentation functions generally give wrong pre-
dictions and in order to fit data one has to use
only D functions, assuming that the valence quark,
which fragments into hadrons, carries all the
momentum of the incident particle. " This em-
pirical hypothesis implies for the final hadronic
state, in the considered fragmentation region, a
planar (or one-jet} configuration.

Although in our model the two-sheet structure is
explicit, it hardly shows up in actuality. This is
due to the fact that for light quarks, u, s(o.'x);) equal
to &=0. 5, and with &+=1, the function

10

X
I I I I I I I I I I H
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FIG. 7. The density distribution (1/x)(x/z&„) )(ds/
dx)(E+

&
m-), calculated from formula g0), compared

to data taken from Ref. 9, with 0;„~& (X+p) =17 mb.
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has a singularity at x„=0 (x„=1). This implies
that in formula (10) the contributions to inclusive
cross sections will be dominated by the configura-
tions where a (b) takes a small fraction of momen-

tum, while b (a} carries all the rest. In order to
give a quantitative estimate of this effect, we show

in Table I the mean values of the fraction of the
momentum (x)~ carried by the fast quark q,. (the
leading quark}, calculated as

f' U~'( )dxx

d, 'I XB c, XB

FIG. 6. The four configurations of the two dual sheets.
(a) xA&1 —xA, xs&1 —xs, ALA=In[(l —xA)/xA], &B
=In[xA(1 -xs)s/p ], &B =In[xs/(1 —xs)]. (b) xA& 1 —xA,
xs B +A in[( A)/xA] B 1 (xA Bs/) ) +B
=In[(1 —xs)/xB]. (e) xA&l-xA, xs(l —xs,
=ln[xA/(1 —xA)], x)&=in[(1-xA)xss/p ], 4,B=ln[(l-xB)/
xB]. (d) xA&1 —xA, xB&1—xB, nA=ln[xA/(1 —xA)], ez
=In[(1-xA)(1 -xs)s/B ], A B =ln[xB/(1 —xs]. p is the
mass of the outgoing hadrons.

where a, denotes the Regge trajectory built up by
the slow quark (the nonleading one). Further-
more, it is interesting to point out that this mean
value (x)~ does not depend on the quantum numbers
of the fast quark q, but only on those of the slowest
one q&.



PARTO NS AT LOVf I'~ 2708

11 da|i ~ xH
dxH I dg

- &0 dxH

10

z —=x
P

& 1006eV(c

10

~2
10

L.J
I
I
I
I
IIl

-2
10

w3

10

10
XH

I I I I I I I I & I

.2 .4 .5 .8

FIG. 8. The density distribution (I/x){x/o;„~&)(do/
dx)(x+

&
m'), calculated from formula (10), compared

to data for both reactions m+
&

7t and 7t
&

m+, taken

from Ref. 10, with 0'inc( ~"+P) =Oiney t~ P) =21 mb.
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FIG. 9. The nondiffractive part of (1/x)(x/o & )(do/
dx)(m+

&
m+), calculated from formula (10), compared

to data taken from Ref. 11.

IV. PARTON INTERPRETATION OF THE DUAL WEIGHT
AND A NEW THEORETICAL UNDERSTANDING OF THE

POMERON

For a really complete parton interpretation of
inclusive hadronic reactions, it is necessary to
provide the dual weight (P(x„,xs) of Eqs. (8) and (9)
with a parton interpretation.

%e first remark that the behavior x„« is the
behavior of the valence structure function G„",(x„)
for x„-0, whereas the behavior (1-x„)» is the
one of G„" ~(1 —x„) for x„-1. This observation
suggests the replacement of

ct
e(-, -x„) by G„",( „),

Xg

and

G„",(x„)x„~-'—"D," —"
i+A +A ]

describes H as a fragmentation product of valence
quark a which has interacted with a quark of B
[see Fig. 10(a)] and

X~ Xg ]

describes H as a fragmentation product of valence
quark a which was spectator, while quark b was
interacting with a quark of 8 [see Fig. 10(b)]. The
same applies for fragmentation of quark b. One
has to add the four contributions since, in low-I'~
collisions, spectator jets and interacting quark
jets are all mixed along the incident longitudinal
direction. VVe point out that our parton interpre-
tation of low-P~ inclusive reaction is very similar
to the standard interpretation of large-P~ hadronic

e(x„--.') by G„",(1-x„).1-g„j

TABLE I. Leading-quark effect. q; is the slow quark.

This replacement leads to a straightforward
interpretation of all the convolutions involved in
Eq. (10). For instance,

0.5

0.85 0.75

-1.5
0.62
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collisions which also involves jets of interacting
quarks and spectator jets.

For ap = 1, the expression U~'(x„) in Eq. (9)
takes a very simple and physically meaningful
form

U(rt&(x )
Q ("") (U~'(x )dx

= -'[G~-.(x~)+ G~ ~(1 —x~)I

and the density distribution becomes

(12)

xH dv(A & H) d Gz~(xz ) + A p( xA} H DH~ Hb~e(x x ) DH H ~~e(1 x x )
x~ (x~)

" 1-x„1-x„& (13)

b, 1-XA

G (x~
A- =4

(a)
Cp -]

(xA}

O~ XA

(b)

Cp~]
(1-x~)

FIG. 10. Two of the diagrams occurring in the parton
interpretation of the fragmentation A H, in a low-&z,
process. (a) Quark a interacts with a quark of B and
gives K. (b) Quark b interacts with a quark ofB while
quark a gives H.

We have verified that Eq. (13}leads to a distri-
bution which is very similar to the one obtained
from Eq. (10). We have studied v'- v' fragmenta-
tion, using for the valence structure functions of
the pion,

xG:. „(x)= m,", ;(x)= 0.15M&(1 -x),
1

which is in good agreement with lepton-pair pro-
duction data' and which is compatible with the
expectations of our dual approach. ' For the quark-
fragmentation functions we use the Field-Feynman
parametrizations. The discrepancy with the dis-
tribution obtained with the weight given by Eq. (9)
hardly exceeds I%%uo, i.e., it never exceeds the
thickness of the curves in the drawing of Figs. 8
and 9.

In Eq. (13),. Q, (x) can be interpreted as the pro-

I

bability of finding a constituent quark Q, in A with
a fraction of momentum x„. Indeed, we remark
that since

Qg(1 —xg) = Q. (x~),

Q, (x)dx= 1,
4p

x[Q.(x) + Q, (x)]dx = 1,
Wp

the meson A is just a Q,Q, system.
To our knowledge, it is the first time one has

such a simple expression for the density distri-
bution associated with the bare Pomeron. Usually,
the derivation of the Pomeron properties requires
the solution of planar-bootstrap equations. Since
one does not know yet how to solve exactly these
equations, one is obliged to build simplified
models. This is the reason why the Pomeron one
gets is never completely model-independent.
However, we propose expression (13) as a model-
independent expression of the density distribution
associated with the bare Pomeron.

The fact that the dominant contribution to high-
energy hadronic reactions depends only on free
Parton Probabilities suggests a new theoretical
understanding of hadronic reactions. One usually
expects that low-I'~ hadronic interactions are due
to complicated residual forces in molecular
physics. On the contrary, the picture which emer-
ges from our approach is the simplest one could
imagine: 'The interaction between hadrons results
from the reshuffling of quarks which can be con-
sidered as free partons. That is why the hadronic
scattering amplitudes, at the lowest order in DTU,
can be considered as providing the "zeroth-order"
approximation to @CD."

Wote added. After the completion of this work
we were informed of a work by H. Minakata [Phys.
Rev. D 20, 1656 (1979)]which reaches similar
conclusions.
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