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We investigate correlations in the transverse momenta of secondary particles emitted in inclusive reactions
initiated by high-energy primary particles. The investigation is carried out within the framework of a
statistical model of inclusive reactions originally proposed by Scalapino and Sugar and extended by us in a
previous paper. We find substantial positive correlations between the transverse momenta of secondaries
emitted within any given rapidity cluster. The typical correlation length in transverse momentum is a few

times the mass of the secondaries.

I. INTRODUCTION AND SUMMARY

In a previous paper' we extended a statistical
model originally proposed by Scalapino and Sugar.?
Our principal aim has been an investigation of
inclusive distributions in transverse momentum.
The extension of the Scalapino-Sugar model is
based upon the following observations.

(a) The basic physical assumption of the model
is that all relevant inclusive distributions can be
obtained as moments of a complex random field
& (the “source function”). Hence, in principle,
all inclusive quantities can be computed once a
(physically acceptable) entropy functional® is con-
jectured.

(b) While the authors of Ref. 2 considered @ to
be defined on the longitudinal phase space only,
we pointed out in I that the model can be extended
by considering random fields on the entire three-
dimensional single-particle phase space. Ignoring
kinematical limitations due to the finiteness of
the energy available for particle production, the
latter is a symmetric space isomorphic to the
hyperboloid SO(3, 1)/S0O(3).

For the sake of brevity, and for obvious physical
reasons, the random system characterized by &
on SO(3,1)/S0(3) is referred to as the “Feynman
gas.”

We argued in I that in the spirit of a statistical
model, any anisotropy observed in inclusive dis-
tributions must be a “spontaneous” one; in other
words, it must emerge as a consequence of the
dynamics of the Feynman gas. By using semi-
classical arguments and a crude approximation
based on a technique of “rapidity averaging,” we
made it plausible that this is a real possibility:
The Feynman gas may develop an anisotropic
condensate.

The aim of this work is to explore some of the
consequences of such a model. We are mainly
interested in correlation functions in transverse
momentum. The latter serves the purpose of

exploring further details of the distributions; in
particular, they indicate whether our statistical
model is capable of predicting jets of emitted
secondaries as observed experimentally.* To
this end, the model has to be somewhat refined;
in particular, we have to reconsider the tech-
niques of rapidity averaging. This is done in Sec.
II. We show that once some results® concerning
rapidity clustering are accepted, the effective
dimensionality of the problem can be reduced.
Thus transverse-momentum distributions can be
investigated individually in each rapidity cluster,
while the effect of rapidity correlations is sim-
ulated by an “effective potential” within that
cluster. While the arguments presented in Sec.
II are not rigorous ones, they are physically
plausible; more important, they are independent
of a classical (“mean-field”) approximation to the
entropy. Thus, in contrast to the method used in
I, we are now permitted to go beyond the mean-
field approximation.

In Sec. I, we compute Gaussian fluctuations
around the mean-field results derived in I. Not
surprisingly, we find that the mean-field expres-
sion of the single-particle distribution is modified
by the fluctuations. More interestingly, however,
we also find nonvanishing irreducible correlation
functions in transverse momentum.

In Sec. IV we argue that for our picture to be
valid, the Feynman gas has to be a rather cold
one: Otherwise, it would make no sense to de-
compose the inclusive distributions into contri-
butions coming from a mean field and small fluc-
tuations around it. (Such arguments are standard
in statistical mechanics; however, it is worth
reemphasizing them in the present contest.)
Bearing this in mind, we present the results of
a numerical evaluation of the single-particle
distribution and of the correlation function in
suitably chosen variables, for a very cold Feynman
gas [T =T X10"' m, where » is the mass of a
typical emitted secondary (i.e., of a pion)]. The
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single-particle distribution we find is in reason-
able agreement with observed distributions. In
addition, we predict strong positive correlations
in transverse momentum with a “correlation
length” Ap,2=10m? In qualitative terms, this
means that particles emitted from the same
rapidity cluster tend to have the same transverse
momentum too: they form jets. We comment
on the possible significance of our results at the
end of Sec. IV. '
Some mathematical results used in deriving the

expressions of inclusive distributions are collected.

in an appendix. Throughout this paper, we use

a natural system of units: Z=c=m =1; the metric
on Minkowski space is given by the Cartesian
form g0 =~1, g;,=0,,, with all other components
vanishing.

II. APPROXIMATE REDUCTION OF THE
DIMENSIONALITY: THE INDEPENDENT-CLUSTER
APPROXIMATION

Let us work with Cartesian components of the
complex random field &(p). Inawell-knownway,
if ®=®,+i®,, the pair of functions (2, ®,) may
be regarded as components of a two-dimensional
Euclidean vector . In effect we are taking advan-
tage of the local isomorphism,’ U(1) ~SO(2). With
this, the generatirl_g\functional of correlation f@nc-
tions becomes

3=e = nge'ﬂst'b‘}\e"VdV?'a, @.1)

where, obviously, F generates the connected
correlation functions whereas dV is the invariant
volume element of the phase space. Using a Feyn-
man parametrization as in I, the accessible volume
V of the phase space is approximately given by

the inequality

(1 +#)(coshy)?< % (s>1), 2.2)

where s'/2 is the total energy in the center-of-
mass system (c.m.s.). The entropy density is of
the form

S=3g"v,%:v,3+U@-9), (2.3)

where, as computed in I, the nonvanishing com-
ponents of g are

1
+t?

1
g¥= I git=4t1+2), g°“= 7 2.4)
We argued in I that the problem defined by Eqgs.
(2.1)-(2.4) can be considerably simplified by an
effective reduction of dimensionality. - We carry

this out in two steps.

First, we restrict the function space to cylin-
drically symmetric functions; this is permissible
if we are not interested in azimuthal correlations.
With this, the entropy density is reduced to a two-
dimensional one.

Second, a further reduction of the dimensionality
was achieved in I by an approximate rapidity
averaging of the distributions, based on the results
of Scalapino and Sugar (see Ref. 2). These authors
found evidence for clustering in rapidity by examin-
ing a one-dimensional model of the type (2.1). We
argued that the physically interesting distributions
are those which are averaged over one rapidity
cluster. The argument presented in I is acceptable
as long as one is interested in the “classical”
(mean-field) results only; however, in order to be
able to examine fluctuations as well, we have to
improve on it.

Let us observe that, in principle, the problem
can be always reduced to a one-dimensional one
by using a transfer-matrix formalism. In practice,
however, this is difficult: We cannot compute the
transfer matrices exactly. Therefore, we resort
to the following approximate procedure. In order
to simulate the effect of rapidity clustering, we
introduce a weak attractive interaction in rapidity.
Instead of writing (2.3) (with 93 /8¢ =0), we re-
place it by the following effective entropy density:

1 <a$ 3

5sD) 3—y-)2+2t(1 +1) (%—t—>z+v

—v(g(y+%f,t>-$<y-%, )), (2.5)

where Ay is roughly the size of the rapidity clus-
ters. The exact form of v should not matter very
much; we argue, however, that the effective
attraction in rapidity should vary with ¢ at the same
rate as the derivative term does (since y is a
cyclic coordinate in phase space). Therefore, we
take

- X 5= 3 A_y>

v= 1+tt1>(— 2) <I’<— 5 ) (2.6)
where C is some constant. Now we compute a
transfer matrix T in a rapidity interval of length

Ay at a fixed value of £, with the effective Ham-
iltonian in y:

S=

H=31+)P*-v, 2.7

where P is the variable canonically conjugate to
%(y) [see Eq. (2.5)]. If the effective interaction is
weak and Ay is not too large, we have approxi-
mately
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Q

@@ +2a9/2)|T |3 - 2y/2))

1
= 2mBAy(1+7) {exp[

The off-diagonal elements of this transfer
matrix are very rapidly decreasing because of
the presence of the last factor in Eq. (2.8). There-
fore, we do not commit a substantial error if we
replace T by its diagonal part. The second and
third terms in the epxression (2.5) of the entropy
density are local in y, so that their rapidity aver-
ages can be safely approximated with the help of
the mean-value theorem. For instance,

v+dy/ 2 83 ’ t) 2 85 t) 2
Lo o (5 = (55
y-Ay/2

Putting these results together, we find that 3
approximately breaks up into a product of gen-
erating functionals over the rapidity clusters,

3= H Z;=exp ZFi s

(clusters)

where each Z; is of an identical structure, viz.,

- T(y;) 9% \2
Z,= fD@exp{-Any dt[Zt(t+1)(5-{—> +U
0

The upper limit of the integration over ¢ is
determined by Eq. (2.2) taken at the center of the
ith rapidity cluster,

T(y,) = 1. (2.10)

s
4(coshy;)* ~
1t is obvious from the foregoing that the “indepen-
dent cluster approximation” developed here breaks
down near the end points of the available rapidity
interval £~0, 4(coshy)®~s. Our main interest
lies, however, in studying distributions far away
from these points; hence, we expect this approxi-
mation to reflect the main qualitative features of
the distributions reasonably well.

In what follows, we study models in which U
is of the Landau-Ginzburg form?'?

U=2A3%.B(3)". (2.11)

We notice that the four parameters (4,B,C, B) of
such models are not all independent. The param-
eter B may be put equal to unity by means of a
rescaling of the random variable &. The scale

of & in turn can be fixed by means of the nor-

ford P22 3001] | @ + /2 expl 20001 0B - 29/2)

2CP% [¢(y)]]}exp [— [g(y‘LAy/z)'S(y'Ay/z”z]. (2.8)

284y (1 +4)

—

malization condition

2
fT(y)dt {L *_G_Z_’_] =-AN,
o Z 5j(t)+ 5j()]5-0
where AN is the multiplicity of secondaries
produced in a rapidity interval of width Ay cen-
tered around y. However, from the calculational
point of view, it will be convenient to retain a

redundant set of parameters until the end of the
calculation.

III. CORRELATIONS IN TRANSVERSE MOMENTUM

(2.12)

In the independent-cluster approximation the
distributions in ¢ are determined by one-dimen-
sional path integrals. Using Egs. (2.9) and (2.4)
we standardized the model by absorbing a factor
(4 gy) into 8. We thus have with a trival rescaling
of j:

T T\ 2
Z= fD<1> exp{—Bf dt[ét(nl)(%)
4 0
+%( - 1it>$2

o8 @48

szEexp[—ﬁ _[)-Tdt(W+i§-$)]. (3.1)

As discussed in I, this one-dimensional entropy
has locally stable minima; these are found by
looking at stable solutions of the Euler-Lagrange
equation

dt(t(t+1) df) < -

We adjust phases such that i =(f(#), 0); the pa-
rameter A is chosen so as to give the classical
(mean-field) distribution the desired asymptotic
behavior at large . In the mean-field approxi-
mation we have

>f +B(®%=0. (3.2)

We demand dN/dt~t™; this gives'A =2. We notice
in passing that a scaling law corresponding to
standard quark models,® viz., dN/dt~t"2, would
demand A =0. We argue, however, that events

in which free-quark properties reveal themselves
are statistically rare ones, and thus they are

beyond the domain of applicability of this model.
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Thus, we fix A corresponding to the intermediate
scaling region of the inclusive cross section. The
classical solution is sought with the boundary
conditions 7(0) =f,, f(T)=0. We found that letting

T - has very little effect on the general behavior
of f(t); thus, we use this approximation whenever
it is convenient. The requirement of stability
establishes a relationship between f, and the values
of the remaining parameters B and C. We could
establish such a relationship by means of a num-
erical experimentation. The calculations reported
in Sec. IV are carried out with such values of the
parameters. .

We now set & =f+% and expand W up to second
order in X; this allows us to compute Gaussian
fluctuations around the mean-field solution. We
have

w=w(f)+w(f,%),

where

2
w=%t(t+1)<-z—§—> +%<A -

€ .5 ?2)§2+B(f-§)2.
1+¢
(3.3)
The variable X is subject to the boundary con-
ditions X(0) =X(T) =0.

Formally, our problem is equivalent to the task
of calculating the correlation functions for an
anisotropic oscillator in two dimensions. The
problem is complicated, however, by the fact
that the “mass” and the “oscillator strength” of
this fictitious oscillator are “time”-dependent
quantities; moreover, the classical solution is
known only numerically. Under such circum-
stances a reliable calculation of the functional
integral would be very difficult.

Instead, we resort to an equivalent canonical
formulation’ in terms of a density operator
Q(¢, t,) which satisfies a Bloch equation with the
standard initial condition

193

—J-+HQ=O, Qty, 1) =1, (3.4)

where H=H, +H,, with

__1___. 2 E ¢ 2

= omG+n Pt 2(‘4" 1+1 *33]2)"1 ’
(3.5)

1 2 _B_ 2 2

Hy= 2;315(t+1)"’2 *72 ( T o1+t +Bf)"2 .

Here p;, x; are canonically conjugate operators
[%xs0,]=13,, (,1=1,2). For the sake of brevity
we write

Hy=h)pl2+g,(x? (=1,2), (3.6)

where the functions %; and g; can be read off from
Eq. (3.5). Correspondingly, the density operator
factorizes, 2=9,2,=2,2,. The one-dimensional
Bloch equations with H; given by (3.6) can be
solved by the following Ansatz:

Q=exp[,(t, t,) p] exp[ e, (¢, t,)x?]

x exp{o,(t, 1) p° x*T}, 3.7

where the functions ¢ satisfy the ordinary dif-
ferential equations

—d%—- 4¢6.2g(t) +h(t)=0,

—d-g-;—z—+8¢1¢2g(t)+g(t)=0, (3.8)

La g9,
These differential equations together with other
useful relations are derived in the Appendix.
(For the sake of simplicity, the subscripts labeling
the degrees of freedom have been suppressed.)
The advantage of the canonical formulation is now
evident. Once Q is given by (3.7), all the cor-
relation functions can be calculated explicitly in
terms of the functions ¢, whereas the system of
differential equations (3.8) is easily amenable to
a numerical treatment.

We record here the expressions of the normalized
inclusive cross section and of the irreducible cor-
relation function in the Gaussian approximation:

AN _1do_ gy =T+ G,
dt o dt
(3.9)
1 42 1 do do
Clty,ty)= 7

o dtdi,  of di, di,
=@ ()78 (2,)%) - (B ¢,)2 )3 ¢,)?)
=4(T(,) - %) T6,) - X(,)

where the averages are to be taken with respect
to the full density operator ; for instance,

£)XQ(t,1,)%0(2,, 0) | 0)

R ole(r,
&(t )zt N=00, ~1,) (019(T, 0)10)

+(t,~t,). (3.10)

The matrix elements of Q are easily calculable.
We find

1
(|, ) |x,) = 2[—10, ", D] 2 e,

where
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K=204(t',1)+$,{t", 1) 03¢ Dy 2

(xz - e4¢3(t' , t)xl)z

4¢,(t',1)

(see the Appendix). With the help of these for-
mulas the calculation of the averages can be
reduced to quadratures. Throughout these equa-
tions, |0) stands for the coordinate eigenvector
with vanishing eigenvalue.

We now proceed to define certain combinations
of the functions ¢,,..., ¢, for each degree of
freedom in a way which allows us to express the
inclusive cross section and the correlation function
]

+

in a convenient form.
Let us define

1
R(l‘3, £y tl)=eB¢3(t3,t2><¢2(t3, t2)+ m)
b1
4¢,(t,t,)’
(3.11)
_e%03(taty)
Gl t) =5 i)

After a somewhat lengthy but straightforward
calculation we obtain

AN 13 G,(T, )G, t,0 1/2 s
G0 5k (Bere ) eneors,

G,(T,0)

C(t,, t1)=ze(t2-t,)f(t2)f(t1)( G.(.0)

By repeated use of the addition theorem derived
in the Appendix, these expressions can be further
simplified. We obtain finally

N _ oy, 13 GA(T,0)
=0+ Ekzl W’ oy
Cltn 1) = 20(t, ~ 1)) f(E,) (¢, "G_TT%%%—O)

+(t,—t,).

In all these equations it is understood that G, and
R, are computed via Egs. (3.8) and (3.11) with the
input functions % () and g,(t), cf. Egs. (3.5) and
(8.6).

- Let us observe that in the neighborhood of £=0,
h(t)cct™ and hence, t=0 is a singular point of the
system (3.8). For the purpose of a numerical
treatment, we shift this singularity to some un-
physical value of £, by writing 2™ () =(f+2\)({+1)
with some small positive A. [Other regulariza-
tion methods are also tried. The exact manner in
which k(t) is regularized has little effect on the
end result.] More importantly, it can be verified
that the averages (3.9) exist if and only if the fol-
lowing convergence conditions are satisfied:

R(T, by, 1) + Ry(ty, 1, 0) <0,
Ry(T, by, t)R(t5,2,,0) = G 2(t,, 1) >0,
b, (£, 1,) <O.

These conditions are closely related to the local
stability of the classical solution f(¢) (i.e., to the
positivity of the functional w); details of these
considerations are reported elsewhere.?

(3.13)

Gy (T, 1,)(G, (b, 1)1°G, 5, 0)>”2[

R,(T,t,, tl)Rl(tZ’ ty,0)=G,(t,, t1)]-3/2 +(t,—1,).

IV. RESULTS OF A TYPICAL NUMERICAL
CALCULATION AND CONCLUSIONS

Below we present the results® of a typical nu-
merical estimate of dN/dt and C(t,,¢,). No seri-
ous attempt has been made to fit actual measured
distributions. [In particular, as far as we know,
no detailed measurements of C(,,%,) have been
made so far.] Before presenting the results, how-
ever, two qualitative questions have to be settled.

First, we observe that the parameter 8™ rep-
resents an effective temperature of the Feynman
gas as characterized by Egs. (2.1)-(2.3). A semi-
classical expansion around the mean-field results
has a meaning only if the effective temperature is
sufficiently low; otherwise, the fluctuations in-.
crease rapidly. In the Gaussian approximation
both (%) and the correlation function scale as 87,
provided the parameters A, B, C, are kept fixed.
(This is just the classical scaling law.)

Second, we have to settle the question of the
variables used in the correlation function C(¢,,¢,).
Intuitively, this function measures the correlation
present between two points on the phase space
which are separated by a “distance” d. In our
case, the two points are within the same rapidity
cluster, so they have the same rapidity coordin-
ates (within an uncertainty of the order of Ay,
which we neglect). Inthe same way, we take the
two points to have the same azimuthal coordinate.
In I we derived the infinitesimal line element on
the phase space; we found

de?

1
2 2, = 2
ds?=(1+t)dy +4t(1+t)+td¢ .
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Therefore, on setting dy =d¢ =0, we integrate ds
between two points in order to obtain their dis-
tance:

1 dt
d(tl’tZ)_zj;l W

[t + 1)+ 1,4 % 4.1)

=1
=z In [£,¢,+ D%t 43

We' introduce therefore the coordinates
T=1Inf2[t(t +1)]V2+2¢+ 1}

and give the values of the correlation function as
a function of d= | 7,— 7,| while keeping 7, + T,
fixed. The coordinate 7 is readily recognized as
the “transverse rapidity”, viz., #=sinh? 7.

The numerical results presented here have been
obtained with the following values of the parame-
ters: A=2, B=7.4x10™, and C=5.2. Inorder to
suppress the fluctuations, we have taken a suf-

ficiently low value of the temperature 8=1.5 x10%°,

10‘3 - d .'

1075} \
NN

\xx
@y
\\ \‘\.
1079 "\ X<
. ~_ ’S(\
\\ - X x
|0—II I
1 | ]
| 2 3 P [GeV]

FIG. 1. Typical single-particle inclusive distribution
in transverse momentum. All produced particles are
assumed to be pions: m=0.14 GeV. The values of the
parameters are A=2, B=7 X10"%, and C=5.2. (The
curve is normalized to a total multiplicity (N)=9.)
Full line: Mean field with Gaussian fluctuations.
Dashed line: Gaussian fluctuation (scaled up by a fac-
tor 10%.) Crosses: experimental data taken from Fig.
19 of Ref. 10. The data have been normalized to the
theoretical curve at £ 1/2=2.8 GeV.

(With this value of B, the single-particle cross
section is dominated by the mean-field term up to
t<5000; this is equivalent to p <10 GeV for
pions.)

In Fig. 1 we plotted the resulting one-particle
inclusive distribution; for comparison, sample
data (appropriately normalized) are taken from
Ref. 10 and they are plotted together with the the-
oretical curve. In Fig. 2, we plotted the normal-
ized correlation function in transverse momentum,
C(d)/C(0), as a function of the distance on phase
space as defined by Eq. (4.1). All calculations
have been performed with T'— «; we have verified
that the results are practically unaffected if we
take finite, realistic values of 7. (The statistical
model cannot be expected to work well near the
boundaries of the phase space where the finiteness
of T has a substantial effect on the distributions.)
At any rate, due to this approximation, our re-
sults can be expected to describe inclusive data
near the central region in rapidity (y=~0). Owing
to the kinematical constraint (2.2), the available

“transverse momentum is small in the fragmenta-

tion regions and our approximation necessarily

C (d)
! C (o) Ty +T,=3
S
(a)
o) 1 ) L,
A | 2 3d
|
T+ Tp=4
05_
(b)
0 1 L 1
| 2 3 d
I = ‘ T, +T2=5
SH .
. (c)
(0] L 1
I 2 3 d

FIG. 2. Normalized irreducible correlations in trans-
verse momentum plotted as a function of d=| 7, ~17,| .
Figures (a)—(c) give the values of the correlation func-
tions at 7+ 7,=3, 4, and 5, respectively. The values
of the parameters A, B, and C are the same as in Fig.
1.
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breaks down there. We have no reliable results
to report for finite and small values of T at this
time.

It is obvious from the figures that this statisti-
cal model reproduces the main features of the
single-particle distributions reasonably well. In
addition, we predict substantial positive correla-
tions between the magnitudes of the transverse
momenta of the emitted secondaries. Remarkably,
the correlation functions depend rather weakly on
the mean transverse rapidity, whereas they de-
crease rapidly with the distance d. [The range of
correlations becomes somewhat smaller as the
mean transverse rapidity increases (see Fig. 2).]
Keeping in mind that our results have been worked
out for fixed longitudinal rapidity (with an uncer-
tainty Ay), this result can be converted into a pre-
diction of angular correlations between secondar-
ies emitted from the same cluster.

To this end we recall that the standard formula
relating ¢ to the emission angle © in the c.m.s.
frame reads

sinh?y sin’@
- ) 4.2
1— cosi®y sinf®@ (4.2

On assuming that the secondaries are emitted

from a cluster of width Ay centered around y =0,
we have approximately

t~(AyyPtan’e[1+0((Ay)?)]. 4.3)

This expression can be substituted into (4.1) in
order to express d in terms of the emission ang-
les. The expression of d becomes particularly
simple if we assume > 1 (in conventional units,
this is well satisfied for £= 1 GeV). In that case
we have '

d(t,,t,)~ |Intan®, — Intan®, | (4.4)

so that, in essence, we predict positive angular
correlations in ©.
We claim that this result gives qualitative evi-

dence for the presence of jets of secondaries emit-

ted from the central rapidity region. In order to
substantiate this claim, we would have to con-
sider correlations both in the angle © and in the
azimuthal angles. Whereas we have suppressed
any dependence on azimuthal angles throughout
this paper, it is not difficult to see that, i the
Gaussian approximation, one necessarily obtains
positive correlations both in transverse rapidity
and in the azimuthal angles. (Phenomenologically,
“jets” are characterized precisely by such cor-
relations, cf. ref. 4.)

Indeed, on considering fluctuations which are
not all cylindircally symmetrical, viz. X=X(¢, ¢),
we can expand them in a Fourier series,

- 1 &K= ; - -
X(t,¢)=7—2=1; 2 X, eim (X, =%X.

m==oo

By repeating the calculation described in Sec. III,
we find that the density operator 2 factorizes in
m, each Q, being determined by a Hamiltonian of
the form (3.6). (However, for m #0, the functions
g,; pick up an additional term m?/4¢.) The corr-
elation functions (3.9) are now generalized to

.

Clty, by5 by b2 =4 Y (R(E) - K, (1)) R 50,))

xcosm(d, - ¢,), (4.5)

where each coefficient of this Fourier series can
be shown to be positive. Consequently, the cor-
relation is largest at ¢, =¢,. [Unfortunately, the
series (4.5) is converging rather slowly near

¢, = ¢,; therefore, a reliable computation of the
joint correlation function requires a large amount
of numerical work, which is beyond the scope of
this paper.]

To summarize, we found that at least some im-
portant properties of the inclusive distributions
can be qualitatively understood in terms of a con-
ceptually simple statistical model. Obviously,
further calculations and, in particular, improved
approximations are necessary in order to test
such models in detail. Owing to the fact that parti-
cle formation takes place in a region where the
coupling strength of the fundamental interaction
between quarks and gluons appears to be large
(and, hence, details of the fundamental dynamics
are hard to calculate), such an approach may be
worth persuing.
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APPENDIX

A. The density matrix of a temperature-dependent
oscillator
Let h(¢), g(t) be real smooth functions of ¢ in
some interval (T>¢>t,). Consider now a Bloch
equation of the form

%+ (1) p? +g xR =0, (A1)

where £ may be formally regarded as an inverse
temperature. This equation is the Lie differen-
tail equation of a one-parameter subgroup on the
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dynamical group' of the oscillator, which in our
case is isomorphic to SL(2,R). The dynamical
group may be obtained by analytic continuation
from SU(1, 1); therefore, the treatment of Eq.
(A1) parallels that of an oscillator with time-
dependent coefficients, see e.g., Malkin et al.'?
A standard Cartesian basis of SL(2, R) could be
obtained by taking, e.g.,

Ti= F 047, Jy= (e,
i 2 2 (AZ)

Jy= e ®2-x3).
However, such a basis is not particularly useful
here. The commutation relations are immediately
verified with the help of the canonical commutation
relations.

The group element 2 may be parametrized in

various ways, see e.g., Wybourne, Ref. 11. We
choose the following parametrization:

Q2 =exp(¢,p?) exp(¢,x®) exp{¢,[p? x*]}. (A3)
Notice that J, is acting as a generator of “dila-
tions,”

i[Jy, 0% = -p?,

—i[Jl,x2] =x%.

The functions ¢, (1 <% <3) obey the standard ini-
tial conditions ¢,(,,%,)=0. On inserting (A3) into
(A1) written in the form

(A4)

52 gn +hp®+gx®=0

at

and using the Baker-Campbell-Hausdorff formula,
we obtain the differential equations (3.8).

The calculation of the matrix elements of 2 is
straightforward. One inserts eigenvectors of the
operators p and x between the product of operators
(A3) and uses the commutation relations (A4).
This reduces the problem to the computation of

some Gaussian integrals. The end result is
1
X, | 27, ) %)) = ————eF
ARG 2v=mo,(t', 1) ’
with
K=2¢3(t',t) +x126803(t',t)¢2(t1’t)

2 40 (¢ ,¢)
X2 XXge "3

1
T46,0,0 46,0, 0" 26,0 (a5)

This has been already quoted in Sec. III

B. Addition theorem

Addition theorems result from the multiplication
of group elements. In particular, we have for
l3>t,>1 '

fdx(x2 |2, t,) ’ Qx)x | Qt,, t,) ‘xl)

= (0 |ty )|, . (A6)

On inserting the expressions (A5) into this equa-
tion and performing the resulting Gaussian in-
tegral, we can compare the coefficients of x,2,
x,%, and x,x, on both sides of the equation. Using
the definition of the functions R and G [Eq. (3.11)],
the resulting relationships can be written as

1 ) __GR(tpt)
4¢1(t2, tl) R(tm 129 tl)

eBO3(t2: t1) <¢2(t2, tl) +

1
_ p803(t3, ¢y S TR Y
—eB03(tat >(¢2(t3, )+ 5.0, tl)) , (A7)
1 G(tgyty) 1
4¢1(t39 tz) - R(ts;atz’zt1) - 4¢‘1(t3’ tl) ’ (AS)
QUi )G 1) |y, ” (49)

R(tS’ tz, t].)

By using again Eq. (3.11), these equations can be
further rewritten into relationships involving
only R, G, and ¢,. We find

2
Rty ty,t0) - _Clpt)' =Rty t,,1,), (A10)
R (tas tzy tl)

G
Sl t)GUat) po 4 1y _RG, 1), (AL1)

Gltst,)
4Gty )Gt 1 1
Clnty = bty ~ Bilgty A2

This is the form of the addition theorem we used
in order to simplify the expression of the cor-
relation functions. We remark that in the case of
the standard harmonic oscillator (dh/dt =dg/d¢
=0), Eqgs. (A7)-(A9) are trivially satisfied in view
of the addition theorems of hyperbolic functions.
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