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We generalize the Georgi-Weinberg. discussion of the effective neutral-current Haniiltonian in expanded
gauge models to include the four-momentum-transfer (q 2) effects due to neutral-gauge-boson propagators.
We show that the condition that an SU(2))&U(1))&G gauge theory reproduces the neutrino-quark
interactions of the standard SU(2) )& U(1) model at any q'@0 is that, in addition to satisfying the
conditions of the Georgi-Weinberg theorem, the electromagnetic charge must decouple from the neutral
generators of G. We also show that relationships among neutral-current parameters hold at any q '+0 if
they hold at q'=0. The quantity (u&'+dL' —u„' —d„')/ (u~'+dL'+u~ +d„') is studied in several
expanded gauge theories using the q.'@0 neutral-current formalism. Momentum-transfer and neutrino-
energy (E„)dependences of this ratio put loose constraints on the parameters in several SU(2) )& U(1) )& U(1)
models. In the SU&(2) p SU&(2) p U(1) models which we examine, the q

' and E, dependence are essentially
the same as that of the standard model for neutrino energies up to 2 TeV.

I. INTRODUCTION

Analyses of neutrino-hadron neutral-current
couplings' and the measurements of the parity-
violation asymmetry in polarized-electron scatter-
ing from deuterium' single out SU(2) x U(1) in the
steinberg-Salam standard form' as nature's choice
of gauge theory of weak and electromagnetic inter-
actions at currently available neutrino and electron
energies. Further tests that this is indeed the
correct theory can be made by measuring atomic
parity violation in hydrogen and deuterium, by
measuring weak-electromagnetic interference ef-
fects in e'+ e —p'+ g (Ref. 5), and by improved
statistics on v-e, v-hadron, and e-hadron weak-
neutral-current amplitudes. In particular, the
factor ization among phenomenological neutral-
current couplings which follows from the single
Z-boson exchange characteristic of SU(2) x U(1)
can be tested. '

Analyses of neutral currents that have been made
to date and the tests which have been proposed for
the future rely on effective four-fermion interac-
tion parametrizations which ignore possible four-
momentum dependence (g') due to neutral-gauge-
boson propagators. Limits on the gauge-boson
masses' certainly-justify ignoring this dependence.
In higher-energy neutrino and electron beams, in-
cluding colliding beams, it might be necessary to
include the q' dependence of the effective interac-
tion due to vector-boson exchange. In this paper
we develop a q' 0 neutral-current Hamiltonian
formalism and apply it to general questions of
neutral-current structure and to particular fea-
tures of neutrino-hadron inclusive cross sections
in several expanded gauge theories. In particu-
lar, we are interested in illustrating tests, inde-
pendent of the q'= 0 factorization tests, of the

single-Z-boson picture of neutral-current inter-
actions.

In the following section we generalize the Georgi-
Weinberg" analysis of the q'=0, effective four-
fermion neutral-current Hamiltonian in an arbi-
trary gauge group of weak and electromagnetic
interactions to include the q'+0 neutral-vector-
boson propagator effects. The condition under
which the gauge theory SU(2) x U(1) x G reproduces
the neutrino-quark interactions of the standard
SU(2) x U(1) modeP at any q'e 0 is shown to be
that, in addition to satisfying the conditions of the
Georgi-Weinberg theorem, ' the electromagnetic
charge decouples from the neutral generators of
G. As a second application of the general for-
mula, we show that relationships among neutral-
current parameters such as those pointed out by
Bernabeu and Jarlskog" hold at any q' if they hold
at q =0.

In Sec. III we examine the quantity (u~'+ d~' -u~'
-d„')/(u~'+d~'+us'+dz') in several expanded
gauge theories. " This quantity is independent of
q' in theories with a single gauge boson such as the
standard SU(2) x U(1) model. We show that the q'
dependence and the E„dependence of this ratio put
loose constraints on the parameters in several
SU(2) x U(1) x U(1) models of weak and electro-
magnetic interactions, constraints which go beyond
those available from q'= 0 analyses alone. How-
ever, in the SU~(2) x SU„(2) x U(1) gauge models
which we examine, the q' dependence and E„de-
pendence are constrained by low-energy phenomen-
ology to be essentially identical to that of the stan-
dard model even at neutrino energies above 2 TeV.

In Sec. IV we summarize our conclusions and
suggest further applications. In the Appendix are
listed the fermion couplings to the gauge fields in
models discussed in the text.
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II. PROPAGATOR MOMENTUM-TRANSFER DEPENDENCE
OF THE EFFECTIVE HAMILTONIAN FOR

NEUTRAL CURRENT PROCESSES

The photon field is

A" = g P.A". , (2)

where A" is the Ah neutral gauge field of G, g is
its Lorentz index, and p are the components of
the eigenvector which belongs to the zero eigen-
value of the neutral-gauge-boson mass matrix p,'.

Georgi and Weinberg ' derived the necessary
and sufficient conditions that must be met in order
that a gauge theory of weak and electromagnetic
interactions have the same zero four-momentum-
transfer squared (q' = 0) neutral-current interac-
tions for a neutral fermion fs as those of the stan-
dard Weinberg-Salam model. ' Their principal
result, on which discussion of SU(2) x U(1) is
based, is stated as a theorem. We repeat the
statement of the theorem for ease of reference.
"Suppose that the effective gauge group of weak
and electromagnetic interactions is a direct pro-
duct G, x G, x U(1), with G, and G, arbitrary gauge
groups, not necessarily simple. Suppose that this
gauge symmetry is broken by the vacuum expecta-
tion values of two sets of scalar fields p, and p, .
The P, multiplet transforms nontrivially under G,
and U(1) but is neutral under G, . The p, multiplet
transforms nontrivially under G, and U(1) but is
neutral under G, . As usual, one linear combina-
tion of the neutral generators of G„G„and U(1)
remains unbroken and is identified with the elec-
tric charge. ' At zero momentum transfer the
neutral current -interactions of any fermion f'
which is both electrically neutral and neutral
under G, will be precisely the same as if the
gauge group werejust G, x U(1) and broken only

We fo1.low the notation of Georgi and steinberg
and extend their discussion to q't0 effective inter-
actions. We find that if the electric charge oPera
tor contains no generators of G» their result ob-
tains at arbitrary q' tO.

Our development of the expression for the q2+0
neutral-current Hamiltonian in terms of a sub-
matrix of the neutral-boson propagator matrix is
patterned after the q'= 0 discussion. ' Let G de-
note the local gauge group which is to be con-
sidered as a candidate for the theory of weak and
electromagnetic interactions. In terms of the
electrically neutral generators of G, to be re-
ferred to as T, the electric charge can be written

g p'. ,p, =O, g p,'=1.
Likewise, the massive intermediate vector bosons
Z", can be expressed as

Z)" —— u] A

where

2 2~8u)8= tB] u)8 ~

u j 8u8$ 5)f ~

8

The full intermediate-vector -boson propagator
6,"s(q') can be written as

&."s(q') = &.s(q') g""+&.'s(q') q'q",
where g" are the components of the four-momen-
tum carried by the propagator, g'" is the metric
tensor, and & and P are gauge-group indices. The
second term in Eq. (7) introduces factors of fer-
mion mass in processes with external fermions,
and its contribution will be negligible in any ap-
plication of interest. We therefore consider the
first term alone, and we have

+ s(q ) = E u &us&(m,
' —q') '.

Define

g s=b s-p ps= Qu, us).

Referring to Eq. (9), it is evident that

(V' —q').„&„s(q')= r..s

and

(10a)

Zp ~.s= +pst'. s=0 ~

Ot 8

so that one can write Eq. (10a) as

(u' —q'L).„&,s(q') = r.s

(10b)

Next, suppose that there are m, electrically neu-
tral generators of G, and m2 electrically neutral
generators of G, . Let (u' q'f),

&
d. e-n. ote a dimen-

sion (m, +m, ) x (m, + m, ) matrix which is obtained
from the full matrix (p,

' -q'f), s which is of di-
mension (m, +m, +1)x (m, +m, +1) by deleting
the entries which refer to any one of the fields
A„' 'which contributes to the electric charge (p e0).
Denote by T, the generator corresponding to the
field chosen. At q'=0, the form which we seek
reduces to

&.s(q'=0)= Z &.«s~~~'j 'o (12)

where [p, '] '&& stands for the elements of the inverse of
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the (m, +m, ) x (m, +m, ) submatrix of the mass ma-
trix which is obtained by removing those entries of
the full mass matrix which are associated with the
generator To. The generalization of Eq. (12) to q'
~0lS

~.a(q')= Z & ~4s[&'-q'&]
ff

which obeys the defining properties (10a) and
(10b), as one can readily verify. "

Turning to the effective four-fermion neutral-
current Hamiltonian, we have

one must choose T, from among those generators
which do contribute to the electric charge when the
submatrices p,',~ and (p' -q'g), ~ are formed in the
way described before Eq. (12). In applications of
interest, To is chosen to be the generator of U(1),
so there is no difficulty in applying the stated con-
dition.

As another simple application of Eq. (14), let us
consider some relations among neutral-current
parameters which hold in certain classes of
models at q'= 0. Bernebeu and Jarlskog' noted
that in some models"

ff„,=-.' P (qr't. y)(y~„t,y) g.g, ~., (q')

= z p(py "n&g)(gy n&g)[p —q r] &&, (14)

and

4uI, + 2' +gv+ gA —0

2ui+4d~+p =0

(i5a)

where

n, =Qg f )t

g is the canonically normalized coupling constant
of the gauge field A to the current T, and t are
the matrix representations of the generators T
on the fermion fields. The i, j are indices of the
submatrix described previously.

As a first application of this formula, we ask
what conditions must be met in order thai the theo-
rem of Georgi and Weinberg generalize to q't0.
Consider the group G, x G, x U(1) and choose the
generator of the U(1) invariant subgroup to be
identified as To, the generator whose gauge field
is removed in forming the submatrices [p,'],&

and

[p.'-q'f], » as discussed above Eq. (12). If a
model which is based on the gauge group G, x G,
x U(1) meets the conditions of the theorem due to
Georgi and Weinberg as stated earlier, then the
neutral-boson mass matrix and thus the q'=0
effective neutral-current Hamiltonian can be writ-
ten as the sums of two terms —one depending on

( Q, ) but not ( P, ) and the other depending on ( Q, )
but not ( P, ). This division of the Hamiltonian
into two terms is necessary in order that the
italicized phrase in the theorem follow. By in-
spection of Eqs. (13) and (14), we see that the
corresponding division occurs in the q 40-neutral-
current effective Hamiltonian if, in addition to the
q'= 0 conditions, one has f» ——0 for all A, B such
that A is an index in G» and B is an index in G, .
Since K» ——6„~ -pAp» this means that either pA
= 0 for all A. in Gl or p„=0 for all A in G~. In
other words, the q' c 0 effective neutral-current
Hamiltonian is the sum of two separate pieces,
one determined by (P, ) and the other determined
by ( P, ) if the q' = 0 conditions are satisfied, and
either G, or G, has no generators which contribute
to the electromagnetic current. In such a case,

while Sidhu' discussed cases where

4ug —2dg +gv- gA —0 ~ (15c)

4uL + 2dI. +gV +gA
J

ml

=2+ T,~ [p,'] ',~(2T&~+ T&~+ T&~), (16a)
al

ml m»

2u~ + 4d~ +P = 2 Q T(~ Q [p ] '(~ (Tq ~ + 2 P)'~ + T)~ ),
)a» f~1

(i6b)

4u~ —2' +gv -gA

m»+yg~

~), Q [~']'&~(2T,"s+&jn+gs).
h+fÃl +1

1

(i6c)

We add that

z, +dr, -us -ds
ml m

~~r,
im» =1

ml+ m~

[4'] '&i(&s" +~~ )j .
f=ml+l

(16d)

In addition, a condition between left- and right-
hand parameters,

u~ + d~ -u„-d~= 0,
holds in the Weinberg-Salam model, ' for example.
Mohapatra and Sidhu" have recently discussed the
conditions under which relation (15a)-(15c) hold
in G, x G» gauge theories at q'=0. We can im-''

mediately generalize their results and a corre-
sponding one for (15d) to arbitrary q c0. We re-
view the results and notations of Mohapatra and
Sidhu. They show that
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On the right-hand side of Eqs. (16) it is assumed
that G,~ has a single U(1) factor labeled 0, and
that the remaining neutral generators are m, in
number. The group |"»has yn, neutral genera-
tors. T~&~,'» denote the eigenvalues of the quark
(q) or lepton (I) under the left (L) or right (R)
generators. Evidently, the relations (15) are true
if one has

fL 9 j 9 ~

+2~jg + ~fg 0 9 j 19 ~ ~ 9~$ 9

(17a)

(17b)

2 TfR + 2 ~f I, + +fg = 0 9 j= 'f/' + 1 9 . . ~ 9 ~3 + ~~ 9

(17c)
and, simultaneously,

T". + T.„=0, j=m, +1, . . . , m, +m, . (17d)

III. NEUTRINO NEUTRAL CURRENTS IN SEVERAL
EXPANDED GAUGE MODELS

Now the only change from the q'= 0 formulas
which occurs at q' 40 is the replacement

[i '1 '(, —[i ' -q'&] '„.
Inspecting Eqs. (16), we see that Eqs. (17) ensure
that Eqs. (15) are true at q' v0 if they are true at
q'= 0. On the other hand, if (15d) is satisfied at
q'= 0 by a cancellation between the two terms in
brackets on the right-hand side of Eq. (16d), then
(15d) will not be satisfied at q' c0. In any models
we have considered, Eqs. (17d) are the cause of
(15d) to be true.

In this section, we have derived Eqs. (13) and
(14) and applied them to the study of general
properties of H'„C. In Sec. III we further illustrate
Eqs. (13) and (14) by calculating u„, d„, u~, and
d~ in several models in which two massive neutral
vector bosons appear. The propagator, Eq. (13),
makes calculation extremejy simple in these
cases, and its advantage over diagonalization of
the mass matrix and the effective Hamiltonian is
evident.

%'e study the ratio

[gg +dg —BR —dg ]
(18)

do do do

p c(q)
(d

age g2+c yl+c gR~ cf'
+

«dy «dy «dy «dy ) i

where d'o "c/«dy (d'v" c/«dy) represent the v (v)
neutral-current double differential inclusive cross
section and similarly for charged currents {CC).
The dimensionless variables x and y are defined
as usual. " The equality between the bracketed
numerators on the left- and right-hand sides of
Eq. (20) [refer also to Eq. (18)] holds even when
strange- and charmed-quark contributions are in-
cluded. "

as a function of q' at fixed neutrino energy E„and,
by integrating over q', as a function of F-„. The
observables u~, d~, u„, and d~ are defined in
footnote 11, following one of the commonly used
notations. The quantity p„c(q') has the virtue that
it is a constant in models with only one massive
neutral vector boson. Changes in this quantity as
q' and/or E„are changed then illustrate effects
which are not present in the standard model. In
the standard Weinberg-Salam model, P„c(q') takes
the value

2

S =- 2 —Sln 6w
pNc —(W ) 1 ~ 2g + 10 sin4e2 —Sln w w9

We note that p„c(q') can be expressed in terms of
differential cross sections if the contributions of
strange and charmed quarks are neglected and if
only one left-handed vector boson dominates the
charged-current reactions. Under these condi-
tions, one has

In this section we examine the large-q' and
large-energy behavior of inclusive neutrino-
hadron neutral-current reactions in several mod-
els which have two neutral, massive vector
bosons. We compare this behavior to that of the
standard steinberg-Salam model with its single-
massive neutral vector boson. Our intention here
is to illustrate the results of the previous section
and to obtain a rough idea of the differences that
show up when comparing models which have two
neutral massive vector bosons to the standard
model at neutrino beam energies (E„) up to about
2 TeV.

The expanded models

Both of the gauge groups SU(2) x U(1) x U{1)
(R«18) and SUg(2) x SU~(2) x U(1) have two mas-
sive neutral vector bosons. Both have received
considerable attention as uncomplicated expansions
of the standard SU(2) x U(1) model. The neutrino
neutral-current sector can be made to look identi-
cal or close to that of the standard model, while
electron couplings can be made to be quite differ-
ent. " The SU~(2) x SU„x U(1) group" affords
some interesting theoretical possibilities as well.

While the SU(2) x U(1) x U(1) group has three in-
dependent gauge coupling constants, the much stu-
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TABLE I. Coefficients q &0~&, q& z, 4i and &2 as defined by Eq. (21) for the SU(2) & U(1) && U(1)
models which are treated in the text. The neutrino-quark scattering coefficients qz z are de-
fined in Ref. 11, following one of several commonly used notations.

Four-quark model Six-quark model

u (0)
QL

u„(0)

&„(0)

„()

2-3 sin 8

-+++sin 8

3 sin 8

-3 sin 82. - 2

sin 8/(2/qi q2 )

-sin'8/(n«'q2')

s in28/(2gq i2)

sin 8/(PAqi2)

Sin 8 2cos 8+ 2 2 (1+q2 )
~qi q2

sin 8

~qi q2

c —2b

—c+b

-a -2b

a+b

c sin 8(~qi q2 )

-c sin 8/{A,qi q2 )

-c sin 8/(&qi )

c s in28/(&qi2)

sin 8 22c cos 8+ 2 2 (1+q2 )

sin2n 2 2 sin 8+ cos 8—
q,

2csin 8
Aq2q2

~ terms of quantities defined in the text, a =Csin 8/X, b =(2c/3) [sin 8 —sin 8qf /(qf +q2
+qi q22)p] and c [2 (1+ sin28 cos 8/p)] i

died right-left-symmetric version of SU&(2)
x SU„(2) x U(1) has only two. Because of this,
the SV~ (2) x SU„(2) x U(1) models tend to be more
tightly constrained by low-energy neutrino and
electron data and these models show very little
difference from the standard Weinberg-Salam
model even at large q' and E„values.

y, : (-,', 0, --,') ( 4&, &, =
0

(21}

SU(2) X U(1) X U(1)

We consider two models based on this group
which have recently been discussed by McKay and
Munczek. ' The first version is a four-quark-
model, readily expandable to eight quarks, which
identically reproduces the neutrino scattering and
electron parity-violation formulas of the standard
model at q'=0. The second version is a six-quark
model which incorporates an extra scalar doublet
to give masses to two heavy quarks. Deviations
from the standard model q'= 0 parametrization of
neutral currents are proportional to the vacuum
expectation value of this extra scalar field.

The relevant quantities which are necessary for
evaluation of uz, d~, u~, and d~ (see Ref. 11) are
as follows:

(i) gauge couplings &2g, q, g/W2, and q2g/v 2 of
SU(2) and the two independent U(1) transformations,
respectively,

(ii) the vacuum expectation values of doublets

and singlets
0

l1 72 /(71 12 'fl 12

& =g'& n&2'/MW',

cos'o =g'(( y, &2'+( y2 &0')/M2',

sin'o=g'& y, &,'/M~',

(22) .

where M2,'=g'((p, &2'+(g2&,2+(p2&2'} is the
charged-boson mass and Gz/&2=g'/(4M2') is
the effective weak four-fermion coupling constant.
We refer the reader to the Appendix for specifica-

q:(0, —'„--,') (1i2&x0 neutral,

X: (o, 2, 2) (X& 2= 0 charged

(the numbers in parentheses are the SU(2) and U(1)
eigenvalues, respectively), and

(iii) parameters which are based on (i) and (ii)
and defined to be
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1.0

s(x)
p(ws)

I I I
i

I I

I.O

FIG. 3. The y dependence of p„c/p„c(WS) at E„=0.8TeV
for case A of the same m6del as in Figs. 1 and 2.

compatible with the value of sin 0=0.2 which is
determined from lower-energy e-p asymmetry
studies, the choice of M =25 GeV and q, =2.5
in this SU(2) x U(1) x U(1) model is barely accep-
table. It is consistent with reported e'+ 8 —p,

'
+ p asymmetry studies at (E) = 6.5 GeV, but
certainly the next higher energies which will be
available at the energy-doubled Fermilab beam
would make it possible to detect such a strong
energy dependence. See also Fig. 3, where the

y distribution. for E„=5 M& =400 GeV is shown.
One can say then that q,

' = 2 for M~ =M~/v' 10
with the value sin'6)= 0.2 are rough limits on pa-
rameters in this SU(2) x U(1) x U(1) version. As
M~ is allowed to rise, limits on q,

' are corre-
spondingly allowed to rise. Of course, q,' =10
would make the perturbation results suspect. In

Fig. 4, curve A, we show the variation of the

quantity p(E,)lp(0)E„vs E„for the six-quark ver
sion of the SU(2) x U(1) x U(1) model. Parameters
are chosen so that q'= 0 results for v and e weak
neutral currents are in agreement with experiment
within 1 standard deviation while the atomic parity
violation in atomic Bi is nearly zero. 2 Using the
same values of q, ', q2, A. , and sin'0, we show in
curve B, Fig. 4, the corresponding behavior in
the four-quark model where the parity violation is
the same as that of the standard model in which
it is large. One clearly sees that the E„depen-
dences of the two eases are indistinguishable
from each other and from that of the standard mod-
el. In every case of the six-quark model for which
atomic parity violation is small, there is no sig-
nificant difference in q' or E„behavior.

Briefly summarizing the study of these two ver-
sions of SU(2) x U(1) xU(1), we can say that the q'
and ~„dependence of neutrino neutral-current ob-
servables puts loose constraints on the choices of
parameters, but that it may not be possible to
clearly discriminate between different versions
which have radically different electron neutral-
current predictions for atomic parity violation.
Cases which give almost no Bi parity violation
have about the same E„and q' behavior as the
standard model. Cases with large Bi parity viola-
tion are very similar to the corresponding four-
quark SU(2) x U(1) x U(1) cases (ones with similar
values of q, ', q, ', and A). For example, compare
curve C, Fig. 4, with curve A, Fig. 2.

E. 02

I .00

0.98

z(E„)
p(0}2m EI

Q. 5Q

I I I
)

I I I I
)

I

0.5 I.O

E„(Tev)

FIG. 4. The same energy-dependent ratio as in Fig. 2 but for the six-quark SU(2) x U(l) x U(1) model. Parameter
choices are such that the measure of atomic Bi parity violation. Q, takes the values Q&, =+3 (curve A), QII, =-110 (curve
g}, and Qz= -102 (curve C). In all three cases, the neutral-current neutrino and electron scattering parameters are
in agreement with low-energy experimental values.
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SUL(2) X SU@(2) X U(1)

Electron-scattering asymmetry measurements'
have ruled out the left-right-symmetric versions
of this class of models which have natural parity
conservation in the weak neutral currents. " How-
ever, there are versions in which the electron-
scattering asymmetry is correctly described, ""
and these are of great interest because relation-
ships between fermion masses and weak-current
mixing angles (e.g. , the Cabibbo angle) have been
discovered in models based on this group. The
left-right symmetry and spontaneous breaking of
parity might also provide a natural escape from
the instanton-generated strong CP violation, "in
addition to providing an origin for weak parity
violation which is more to the liking of some
authors than that of the standard model.

We study the neutral-current propagator effects
in those versions of the model which have the fol-
lowing scalar particles: (1) at least one multiplet
of the type

ve' 0

where the values of T'~, T~, and Y, the eigenval-
ues of total left spin, right spin, and the singlet
generator, are listed in the parenthesis, (2) two
multiplets of types

x, :(-'„0, -', ) (x, ),= (z', ),
x„:(0, -'„-', ) (x„),= (X'„),

and (2) two multiplets of the types

~, :(1,0, 0) (~, ),=0,
:(0,1, 0) (5„) 10.

These 6~ „fields are introduced so that the mass
of the charged vector bosons WR, which couple to
right-handed currents, can be made arbitrarily
large compared to the mass of W~. Imposing this
condition enables us to maintain the approximate
identity [Eq. (20j and makes our discussion of the
various models more uniform.

The fermion quantum numbers which we need to
evaluate H„"c are listed in the Appendix, and the
expressions for u~, d~, u„, and d~, defined in the
same way as in Eq. (21), can be obtained from the
entries of Table II. By choosing A, ~ = A.~ in the en-
tries of Table II, we can reproduce the results of
those models which have natural-parity conserva-
tion in the neutral current and which have a scalar
field

0 0'

Of course the relation X~ = A~ is not a natural one,
but it yields the same expressions as the case in

TABLE EE. Coefficients q~ ~, q~ @, ~&, and &2 as defined by Eq. (21) for the SU~(2) xSUz(2)(()) 0)

XU(1} models which are treated in the text. The quantities & and & are defined in the text in

terms of vacuum expectation values.

sin 0 sin 0
~ ~

2 3 3
&(&, ~)

d(}

„(0)

sin20 sin 0
2

+ +e +(e, 6)
6 6

sin 0 & sin 0
3

+6 2
— Q(E, 6)

3

sin 0 & sin 0+E' -2 +-' s(~, ~)
6 6

2 (1-&)
(—+2+

&~ sin 0) &+~ E(&, ~)

dz, (')

dg(( )

(2-~&2sin 0} &+~ E(&,&}2 (1—e)
~8

2(l —&)"a+6 +(~,~)/»E'

e+ 6 E(~, 5}/122 (1 —&)

a+5~(l- c)
(1—c)(e+62)

cos 0 f~+~ (] —e)]~(~, &)
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also ruled out by electron-scattering asymmetry
(the measured value is negative while the A~'/Xs'
= 10 yields a large positive value since a light,
right-. hand-coupled vector meson is present), is
shown since it is on the margin of being distin-
guishable from the standard model at E„=10M~
=700 GeV and illustrates the kind of test which
one could apply to a model that successfully de-
scribed a (hypothetical) large positive electron
asymmetry.

Recapping the situation in SU~(2) x SU„(2) x U(1)
models, we find that those versions of this class
of models which are consistent with low-energy
neutral-current data will continue to have essen-
tially the same neutral-current parametrization
as the standard model up to neutrino energies of
at least 2 TeV. Though we have shown only sin'0
= 0. 6 and ~= 0. 1 in Figs. 5 and 6, this conclusion
is the same for sin'0& 0. 6 and for -0. 1 &t' -0.1."

IV. CONCLUDING REMARKS

We have generalized the consideration of neutral-
current phenomena at q'= 0 in expanded gauge
models ' to include q'40 effects. ' An expression
for the effective neutral-current Hamiltonian was
derived in Sec. II. The form, like the q'=0 form
due to Georgi and Weinberg, does not require
diagonalization of the propagator matrix. Only a
submatrix of dimension one less than the full di-
mension of the propagator is needed, and the form
lends itself readily to the study of general proper-
ties of the effective Hamiltonian and to calculation
of neutral-current predictions in specific models.

Using the result Eq. (14) of Sec. II, we argued
that the neutrino interactions of a given model
would be identical to those of the standard model'
if the conditions of the Georgi-Weinberg theorem
were met and, in addition, the electromagnetic
current coupled only to the neutral generators of
SU(2) and U(1). We also used our expression for
the effective neutral-current Hamiltonian to show
that several relationships among neutral-current
parametersio, ix, w, xs hold at any q2 10 jf they hold
at q'=0.

In Sec. III we compared the q' dependence of
neutrino neutral-current deep-inelastic processes
in several expanded gauge models to the q' depen-
dence in the standard model. The quantity"

(Bg +dg —Bs —ds )/(Bg +dg +BR +dg )

was used for this purpose, since it is a constant
in the standard model, and since scale-violating
effects are weak insuch a ratio (see also comments
in footnote 17). We found that measureable dif-

ferences" from the standard mode1 begin to show
up in several versions of an SU(2) x U(1) x U(1)
scheme' at E„»100 GeV for a range of values of
the coupling constants and neutral-boson masses
which gives satisfactory description of all lower-
energy phenomena. Versions of a six-quark
scheme mith parameters ad~usted to ensure little
or no atomic Bi parity violation were found to be
indistinguishable from the standard model for
neutrino reactions up to 2 TeV. On one hand,
this is discouraging because future experimental
large-E„agreement with the standard model would
not independently exclude the possibility of having
no atomic parity violation in Bi. On the other
hand, rapid q' and E„dependence of TeV-region
neutrino neutral-current reactions would rule out
these models which have small Bi parity violation.
On the whole, we conclude that SU(2) x U(1) x U(1)
schemes which are identical to or within experi-
mental limits of the standard-model predictions
for all q = 0 phenomena, including atomic Bi pre-
dictions, ean be quite different from or nearly
the same as the standard model at energies of
1-2 TeV (see Figs. 1—4), depending upon the
specific values of parameters in the model.

Turning to SU~(2) x SU+(2) x U(1) as a second il-
lustration, me discovered that those versions with
relatively simple scalar-field choices, as
discussed in the literature, ' ' will have essen-
tially the same high-energy neutrino predictions
as the standard model does due to the restrictions
imposed on masses and couplings by the low-ener-
gy neutral-current data. Figures 5 and 6 sum-
marize this observation.

We have compared in some detail the neutrino
neutral -current predictions in several expanded
gauge theories to those of the standard model.
One could also make a detailed study of the other
neutral-current processes w'hich will be of interest
at high energy and widen the survey of expanded
gauge models. If e-p colliding beams become
available, the study of q' and energy dependence
of parity-violating asymmetries will be of special
interest as a further tool in testing theories of
weak and electromagnetic interactions. Likewise,
discovery of asymmetry in e'+e —p. '+ g and
measurement of its energy dependence would un-
cover more about the gauge boson or bosons which
mediate the neutral current. The q'40 formalism
developed in Sec. II as a generalization of Ref. 8
(see Ref. 12) will lend itself readily to computation
of those processes in any model of interest.
Those models which have two massive gauge
bosons are especially easy to handle since, wit'hout
diagonalization, one need only deal with tmo-by-
two propagator matrices. These and other ques-
tions we leave to future work.
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APPENDIX

The gauge coupling constants, photon-field ex-
pression, and relevant fermion representation as-
signments are summarized here for the models
discussed in the text.

SU(2) X Up (1)X U~(1)

We studied two models having this gauge symme-
try group. The first one is a four-quark model
and it reduces to the Weinberg-Salam in the q'= 0
limit. The second is a six-quark version with a
q = 0 limit slightly different from the Weinberg-
Salam model. These models can be described as
follows.

(a) Coupling constants. There are three cou-
pling constants gv 2, (gv 2) && 2 Qyy and (g~2) ~ 2g2y

associated with SU(2), U, (1), and U, (1), respective-
ly.

(b) Fermion representations. Quantum numbers
are given in the form (a, b, c) where a, b, and c
refer to the weak isospin T, and the two hyper-
charged Y~ and Y„respectively. The following
relation is satisfied:

The primed fields are linear combinations of the

physical fields with the same charge. The first
two columns correspond to the first model (four
quarks). The second model includes the third
column.

(c) Photon field and electric charge. These are
given by

q2B~+ q, C„+q,q2V, ~
2 2 2 2 1/2

(vi + ~. +e, ~. )
qH'2

e = qW sin8, sin 8 =,
hql q2 ql q2

SUL (2) X SUR(2) X U(1)

Two models were analyzed, one of them with

natural-parity conservation. Their structure is
the following:

(a) Coupling constants. There are only two cou-
pling constants: g and g' corresponding to SU(2)
(both of them) and U(1), respectively.

(b) Fermion representations. Quantum numbers
are given in the form (a, h, c) where a, b, and c
refer to the two weak isospins (7'», T») and the

hyper charge, respectively. The charge relation

@=T»+ Tsa+ Y

is satisfied The assignments are as follows-

Q = T3+ Yq+ Y, .
The assignments are as follows:

Fermions

Leptons

Quantum numbers

Leptons

Fermions Quantum numbers

+L& ML~ TL

eR& &R& TR

Quark s

Dl, D2, Ds

PRt CRp tR

dR, SR, bR

(-'„0, --,')

(o, o, -1)

(2, —,', o)

(o, -', , —,')

(o, -', --', )

Quarks

(:,'. (:).
d]R S )R

{-'„o,1&e)

(o, —,', lee)

where

v, 't

e ]L

(c) photon field and electric charge These are.

given by

( g ' „+We'„) + (cos8)B, ,

e=(g/v 2) sin8.
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