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Multi-Regge factorization in inclusive two-particle production
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We consider in detail the multi-Regge expansion for the eight-particle amplitude with one triple-Regge.
and two double-Regge couplings. We show that under trivial conditions and with a suitable choice of
helicity contours, the double-Regge couplings in the multi-Regge (MR) limit are identical, to leading order,
with couplings obtained in the mixed helicity-pole —Regge-pole (HPRP) limit appropriate to inclusive
reactions. Since we do not need to introduce any dependences on any additional variables, our conditions
are somewhat simpler than the results of others. As a plausibility argument for the identity of 'the MR and
HPRP limit, we present an intuitive picture of how helicity poles may be visualized at the triple-Regge
vertex. Assuming the mentioned identity, we calculate the diffractive contribution to m p ~p m X and
discuss the problem of isolating this mechanism experimentally. We propose experimental tests for the
identity of the couplings and relate this to the problem of observing the A, .

i. INTRODUCTION

In a previous paper, ' we developed a Reggeized
Deck model satisfying the Steinmann relation for
the exclusive reaction m P- p m P. Owing to the
separation of the normal threshold singularities
in the p'g and the m P channels, we found that we
could interpret the two resulting terms as being
either resonant or nonresonant in the p n channel.
We showed that an A, resonance, if present in the
data, would be obscured both in magnitude and in
phase by the nonresonant piece. One wonders
whether such effects might be minimized in other
reactions; an interesting candidate is the reac-
tion

7T p- p'm x

shown in Fig. 1. If one uses the Mueller optical
theorem, "one can write the inclusive two-par-
ticle distribution for this reaction as the discon-
tinuity of a 4- 4 amplitude. Since we have deter-
mined the double-Begge couplings that describe
the exclusive reaction, and since triple-Regge
couplings have been determined from data on
PP-PX, one expects that these results can be
combined using the multi-Regge formalism to-yield
information about (1.1).

As we will show, certain complications arise.
In particular, if we attempt a "multi-Regge*' ex-
pansion of the 4-4 amplitude, we obtain a familiar
result, namely that the amplitude is dominated by
both Regge poles and helicity poles. ' ' In the
past, others have investigated this problem, ' and
have determined that the double-Regge couplings
in the multi-Regge limit and the mixed helicity-
pole-Regge-pole (HPRP) limit are different, un-

less the Regge residues obey certain relations.
In this paper, we will show that by a suitable
choice of helicity contour, the conditions that pro-
duce identical couplings in the two limits become
quite simple; in fact, we will show that it is not
necessary to introduce any new dependences on
any new variables in order to achieve this identity.
We develop an intuitive picture of the HPRP limit
to show that this identity is in fact an elegant re-
sult. We propose some experimental tests to
check this result, and perform some rough cal-
cul.ations assuming its validity.

In Sec. II, we review some basics of inclusive
cross sections, and express the p-g mass spec-
trum in terms of the discontinuity of an eight-
particle amplitude I,. In addition, we will dis-
cuss the legitimacy of using a multi-Regge ex-
pansion for this process.

In Sec. III, we write an SO(2, 1) expansion for
M„and relate the invariant subenergies of the ex-
ternal particles to the SO(2, 1) parameters in the
multi-Regge and HPRP limits. We establish a
correspondence between the SO(2, 1) parameters
for M, in the kinematic limit appropriate to the
inclusive cross section, and a parametrization of
a "naive" set of momenta, treating the momentum
of the unobserved particles Q~ as that of a quasi-
par ticle.

In Sec. IV, we analytically continue the SO(2, 1)
parameters into an ordinary O(3) parametriza-
tion, and write down the resulting partial-wave
expansion for M, . This determines the analytic
continuation of I, that yields the iriclusive cross
section. There are two types of angle parameters
that result from this continuation process. There
are polar angles, which specify the angle between
two three-vectors in a particular rest frame. In
addition, '.here are azimuthal angles which specify
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FIG. 1. Kinematics for the inclusive reaction g-p
~pg X,

the orientations between planes formed by sets of
three-momentum vectors in certain rest frames.
We study the behavior of the O(3) parameters in

various asymptotic limits, and show in detail that
in the multi-Begge limit, a set of polar angles be-
comes large, but in the HPRP-limit, a set of polar
and azimuthal angles becomes large.

In Sec. V, we. show that with a suitable choice of
helicity contours, the multi-Regge and the HPRP
expansions agree if certain simple conditions are
satisfied.

In Sec. VI, we develop an intuitive picture of the

HPRP limit. We show how it contributes to the
inclusive cross section, and relate the identity of
the couplings to the commutativity of the asymp-
totic limits.

In Sec. VII, we assume the identity of the cou-
plings in the multi-Regge and HPRP limits, and
determine the remaining residues by unitarity.
We isolate the HRPB limit through the use of
kinematic cuts, and show that these cuts effec-
tively isolate "diffractively" produced pm sys-
tems. We extend our result to p P-m g'g Xand
suggest an experimental test for the identity of
the couplings in the multi-Regge and HPBP limit.
We compare with reported data.

In Sec. VIII, we relate our results to the problem
of observing the A.„and suggest mechanism by
which it might be seen.

In Sec. IX, we summarize the main results of
this analysis.

The reader who is concerned only with the
phenomenological aspects of this analysis may
wish to skip sections III, IV, V, and VI altogether.
Those who are more theoretically inclined may find
it useful to skip Sec. V on the first reading, in
order to follow the "geometric" arguments used
to characterize the helicity poles at the triple-
Regge vertex.

II. MUELLER ANALYSIS

4

In Fig. 1, we display the kinematics for the reaction m P- p w X, where X stands for the unobserved
particles in the final state. The momenta P, and P, are those of the incident pion and proton, respectively;
q, and q are the momenta of the outgoing p and pion. The missing four-momentum is Q», and the missing
mass is Mx. The important kinematic invariants are given by

S12 (pl p2) q Si (ql l) i S2 (pl p2 ql) t Sx (pl p2 ql q) Qx

ti —(Pi —qi), t2 —(P2 —Qx), M»= assai Mx = v sx . (2.1)

In order to write a general expression for the p-m mass spectrum, we first consider the amplitude for
v p- (@+I)p"s+(m+1) it 's+X, where the unobserved state X contains no particles which are either
po's or v 's (see Fig. 2). If we label the momenta of the p"s by k„k„.. . , k„, with ko=q„and label the
momenta of the n 's by /p $y

'$ with /, =q, we may treat all particles as being spinless, and write
the differential cross section for this reaction as'

do (2 w)' 1 'x'~ d'P„„
dq,dqdk, ~ ~ ~ dkpl, ~ ~ ~ dl„2X' '(s»I, m', ms')» F». „~ ~ (2w)'2(p„„)0

x 5 P, +P, —q, —q — k) — l~ — P„
i 1 =1 t' 1

x /&q„q;k„ l„p„ IMip„p, ) f', (2.2)
I

where X(a, k, c) = cP+5'+c' —2ab —2ac —2bc In the ab. ove, the phase-space element is given by dk, =d'k, /
(2v)'2(k, ), and F», is the appropriate statistical factor for the unobserved state X', which contains s(X') un-
observed particles. The inclusive p-g distribution is given by

dq, dq „~0 nl ml i=i (2v)'2k. ..'"; (2w)'21& dq, dqdk, ~ ~ ~ dk„dk„dl, ~ ~ ~ dl„ (2.3)
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ants in Eq. (2.1) by the following expressions:

M 1™w' 4 I NI ~ (l~ w&4)P» 2~1 1

s» —Sy —Sx s A. (S»i s~) S~)q 1/2

2vs, ' x 2&s,

2 2 1I2 l 2 2Y+m
q»
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x
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'
S2 2 2
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t1+ P1oq10 meal o

(2.5)

FIG. 2. A particular final state containing (n+ 1) p 's,
(E+1) 7t &s, and x~ particles of other types.

I.et us now attempt to write the p-m mass spec-
trum in terms of do/dq, dq. It is convenient
to consider vectors in the p-m rest frame and
the ~ frame; we denote four-vectors in the
M frame by a superscript M. In Fig. 3, we see
that the M frame is defined by the condition q,"
+q"= 0 and the or ientations

pu (pu 0 0 ip

q, = (q,"„['|I,"(sin8, cosp„(q, [sin8, sin@„(q,"(cos8,),

(2.4)

Q„"=(Q",(Q"~sin&„0, (Q„")cosg,).
The M-frame quantities are related to the invari-

sin8, = (1 —cos'8, )'~',

2pxo@xo + si ™~—t, —s»N N 2

sing, = (1 —cos'P, )'~'.

The inclusive p-g mass spectrum is then given by

dg 1

dM, 24(2w)'X'"(s», m„', m„')

d g

We observe from Eqs. (2.2) and (2.8) that the term
in Eq. (2.2) with n = m =0 will yield a 5-function
contribution to the sz integral at sx =m&2. This
contribution, due to the "elastic" p p P, can cause

. problems in the presence of poor missing-mass
resolution. This problem will be discussed in
Sec. VII.

]3y Mueller's optical theorem, "do/dq, dq may be
written in terms of the discontinuity in sx of the
4-4 amplitude shown in Fig. 4:

dg 1
, Disc, M, (MFD). (2.7)

dq, dq 2iA. '~ s», m,', m„'

The expression M, (MFD) denotes the eight-par-
ticle amplitude evaluated in the "Mueller forward
direction" denoted by the limit

I I g I
P1=P1 P2 =P2 q1=q1 q=q ~ (2.8)

gM

It is our aim to see whether or not the Deck-type
bump is predicted for the p-m mass spectrum.
Our prediction will be based upon a multi-Begge

q) O

pO

FIG. 3. Orientation of vectors in the M frame (p-z
rest frame).

FIG. 4. General 4 4 amplitude. Arrows pointing in-
ward denote incoming particles, etc. Dashed line de-
notes discontinuity in missing mass squared.
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FIG. 5. Kinematics for the exclusive reaction ~p
P 1lP.

expansion of the eight-particle amplitude in Eq.
(2.7}. Owing to the relatively low value of M in
this region (& 1.5 GeV), some comments on the
plausibility of this procedure are in order.

For the exclusive reaction v P- p w P (see Fig.
5), the kinematic region of interest is given by

~1 ~2 sl fixed s s (2.9)

S2 S12 $1$21V1(fit f21 012) I

a, = p, (f,}p,(f,)r(-a, )r(-a, )

Sl S12 $2)12 V2(fll f21 112) '

(2.11)

(2.12)

The "reduced" contributions to the pion-Pomeron-
Beggerized-pion vertex are given by

z(f„f, )r(a, —a, )
M(f„ f2) "lr (-a2}r (I +a,)

M)x & -a„-a, ll —lr, +n
812j

n1F 1 —n1, -e1 1 —O.i+a 'n J

(2.13)
J(f„f,)r(n, -a,)

2( li 21 012} M(f ] )02r( ~ )r(1 ~~ ) Ix F -a„-a, il + a, —a2 i
012

(2.14)

%e will refer to the above as the A, region. In
Ref. 1, the exclusive reaction was described by
a double-Regge amplitude appropriate to the
kinematic region

f, f2, 17» = s»/sls2 fixed, s„s„s»-, (2.10)

which we shall term the double-Begge region. '
From Ref. 1, the five-particle amplitude can be
written M, =H, +H„where

H, =p,(f,)p2(f, )r( cl,)r( a,)--

(b)

FIG. 6. Normal threshold structure of the five-parti-
cle amplitude M5=Hg+H2. (a) Hg, with A. =np —n, n=0, 1,

(b) ~,, psmith y=o., -n.

Quantities appearing in the last two equations
were defined in Bef. 1.

The legitimacy of applying the double-Regge
formula to the region (2.10) may be readily ap-
preciated if we examine the singularity structure
of Eqs. (2.11) and (2.12). In the physical region
of the exclusive reaction, . V, and V2 are free of
cuts in g». If we let X be the complex helicity of
the exchanged Reggeons, the term H, is due to the
contributions from helicity poles at X =a, -n,
where e, is the pion trajectory appearing in the

t1 channel, and g = 0, 1, 2, . . . ; similar ly, H, is
due to contributions from helicity poles at X =e2

n, where a2 is the Pomeron trajectory appearing
in the g2 channel. ' Since V, and V2 are free of
cuts in g» H1 has cuts in s, and s», and thus a
discontinuity structure appropriate to the tree
graph of Fig. 6(a); similarly, H2 has cuts in s,
and s», and a discontinuity structure correspon-
ding to Fig. 6(b).

If we extrapolate the amplitude A., in the variable
s, from the double-Begge region down into the A,
region, the term H, dominates the term H, . Since
s, and s» remain large in the A, region, the
term H, is expected to have the correct phase and
power-law behavior, since it contains the normal
threshold singularities in these channels. Qn the
other hand, the term H„which contains the nor-
mal threshold singularities in the s, and s»
channels, can at best be expected to approximate
the average behavior of the amplitude in s, in a
"dual" sense, since M« is close to threshold.
This is sufficient to give excellent agreement with
the data, however, since H, is much smaller than
P1.

We see then that it is consistent to regard the
term H, as containing a dual average to resonances
in the s, channel, and to apply our double-Begge
formula in the A, region. It seems reasonable to
expect that a multi-Begge analysis of the eight-
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III. THE SO {2,1) EXPANSION AND ASYMPTOTIC LIMITS

In this section, we will consider an SO(2, 1)
parametrization of the eight-particle amplitude,
symbolized by Fig. 7. Following a similar
treatment of the six-particle amplitude by Abar-
banel and Schwimmer, ' we shall determine the
asymptotic behavior of the subenergy invariants
in terms of the group variables. In Sec. IV we
will continue the SO(2, 1) expansion into an ordin-
ary O(3) angular momentum expansion, and
demonstrate the manner in which singularities
in complex angular momenta and helicities deter-
mine the asymptotic behavior of the amplitude in
the inclusive A, region.

In Fig. 7, we have taken

k. =Qi~
(3.1)

k, i = q, k, =P„k,.= Q4 .

Using a technique due to Toiler, ' we can describe
a general configuration of momenta by the action
of the group SO(2, 1) acting on a set of standard
reference momenta. We denote our reference
momenta by 0, ', where the superscript s, denotes
the frame in which Q&' =[0, 0, 0, v' —t, ] and k",

= [(k,")„0,0, (k", ),] The refe. rence momenta,
which depend only on the t, 's, are given in Table
I. We define the reference frames Qy +3
such that in the frame I'„ the momenta 0, ', k, .'
are given by

kr
'

=g&(X&,, $&, P&)k&',

p] Sg
k« -g~(x~~ &i~ 4~)k~ . (3.2)

The SO(2, 1) group elements g( „Xg„p,) are given

particle amplitude in Eq. (2.V) would have com-
parable success in describing inclusive 4, pro-
duction through a similar mechanism. I.et us now
attempt such an analysis.

TABLE l. Reference momenta for the SO{2,1) param-
etrization tx =(t, x)].

Q =(0, 0t Otl-t;)

' '( P' ' ti) P'- m'-tf

{mp, m„, t )1/2 2 2 2 2

2&-t,

s2 {mm, ti, t2) m& -t~-t2p„i/2 2 2

2l t2
' ' 2v'-t2

~ / (mm, ti, t2) t2+'mm -t)
2V'-t2 24-t2

k33= t(m@ -4 t3), o, o, —2&-t3~

k3t = I(m+ 4 t3), 0, 0, 2 v'-t3 l
s3 2 ~ i/2

i/2 2 2 2 2{gnat, mp, t4) m~ —m p
—t4

t t t

s4 gi/ (m& mp t ) t~+mz —mp

(m, , t, t )i/2 4- mm
2

24-t5 , 0, 0,
2 v'-t5

s5 & (mft, tg, tp) ts+t4- mp
i/2 2 + 2 ~

k5i =—
2v'-t

5
2v'-t

5

k5=
5

cosh), sinh$, 0 0

sinh$, cosh); 0 0

gf(Xj $ Q$) B,(X,)B,(g, )R,(P, ), i =2, 3, 5, (3.3a)

g (x h; 4 )=i~,(x )B.($ )&,(y;) =1,4 (3 3h)

In the above, B, and B„correspond to I.orentz
boosts in the y and x directions; R, corresponds
to a rotation about the g axis. Their explicit ma-
trix realizations are given by the mell-known
forms

B.(h&) =
1 0

0 1

cosh', 0 sinhX, 0

0 1 0 0
B,(x )=

sinhy, 0 coshX, 0 (3.4)

0

1 0

0 0 1

0 0

0 cosX~ -sing - 0

FIG. 7. Tree diagram symbolizing SO(2, 1) paramet-
rization of M8.

ft( )=
Slnx)

i,0 0

cosx] 0



21 MULTI-REGGE FAGTORIZATION IN INCLUSIVE. . . 2581

(3.5)

where

t, —t, —t,cos82 = [-x(t„t„t,)]"'
2V t, v' t-, -

The motivation behind the choice of Eqs. (3.3a)
and (3.3b) will become apparent in Sec. IV.

In order to apply our analysis to the amplitude
in Eq. (2.7), we consider the case where all the

Q, are spacelike. It was shown by Misheloff' that
the frame F, can be defined so that Q„Q„and
Q, all lie in the x-z plane, and

Q2' =&,(e2}q.'
q", =It„(e,)q, ',

TABLE II. SO(2, 1) parametrization of the external
momenta.

k2'=R„(02)B„(X2)B.(&2)k2'

kg~ =R&(02)B&(X2)Bx((2)Bz(K2g)Rg(~2)Bx((&)k

k) =R„(02)B3(X2)Bx((2)Bg(K2g)Rg(g2)Bx($ g) k'g

k3 =B3l(X3)Bx($3)k3

k5 =R„(85)B~(X5)Bx(&5) ks

k4 =R~(85)By{X5)Bx(45)Bz(&54)Rz{~45)Bx(~4)k4

k4~ =R„(05)B~(X5)Bx(k5)Bz(&54)Rg{A@45)Bx($4)k4)

k3 B (X3)B (h3)k3

5

1 0 0

(3.6)

ft, (e, }=
0 cos8, 0 sin8,

0 1 0

(3.7)

0 -sin8, 0 cos 8,

We take Eq. (3.5) to be the general transforma-
tion between four-vectors in the frames E„E„
and E,.

The relations between frames E, and E, and
between frames E4 and E, have been discussed
previously in terms of the Bali-Chew-Pignotti
variables. ' The frame E, is reached from the
standard frame s, by boosting along the z axis,
with a similar relation between frames s, and E4.
For any four-Vector A, we have that

A =B,(K21)A ',
A" =B.(~„)A ',

S„=(Q, —Q2)', S,2 = (k, —Q, )',

s, = (k4+ k, )', s2, = (Q, + k,)',

s„=(k,.—Q,)', s, =(q, —k, ,)', (3.10)

S4, = (k2i+k4i}', s„=(k,.—k,)'.

with z boosts, Eq. (3.9) depends only on the sum

f2+X,. We may then set p2 =0 and write &u» =X,.
Similarly, we may set p2 =0 and write &u4, =X4.
The external momenta may then be written in the
F, frame as shown in Table II.

In order to display the singularity structure of
the full amplitude, it is useful to consider the two
subamplitudes that result when we treat the li.mes
carry.'ng Q, and Q, as external particles. " These
subamplitudes are shown in Fig. 8. In order to
help determine the behavior of the group param-
eters, we introduce the following invariants in
addition to those in Eq. (2.1):

where

2

2&-t g-t, '

m
'4 2&-t, &-t, '

2k-t.,v'-t,
(3.8&X'"(m,', t„t,) ' '

slnhK5~ =
4 5

We remark that from Eq. (2.7}, the inclusive
cross section is a discontinuity in sx; as a result,
the Steinman relation' ""demands that the in-
clusive distribution has no discontinuities in s»,
s$3 s25 s3Q etc. It is convenient in spe cifying
the asymptotic limits to define the following use-

To illustrate the general procedure for specify-
ing the momenta in a particular frame, we will
write our expression for the four-vector k, in the

F, frame. We see that Eq. (3.2) gives us k, in the

F, frame, Eq. (3.7) gives us k, in the s, frame,
Eq. (3.2) gives us k, in the F, frame, and Eq. (3.5)
gives us k, in the E, frame. The net result is

kl B2( 242(X2& ~21 'It 2}B(~21 8)1 (lXt tlat 41)k1 ' (3'.9}
k3

'Sx

Sg

S34
'

S4',

'm'I & '4&

44'

sx'

%e note that since k, ' points along the z axis, and
since the external particles are treated as being
spinless, we may take p, =0 with no loss of gen-
erality. Furthermore, since z rotations commute

(a) (b)

FIG. 8. Invariants defined in text. (a) Invariants to be
evaluated with +i8 pre scription. (b) Invariants evaluated
with -ig prescription.
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TABLE III. 80(2, 1) expressions for selected invariant subenergies.

gi/2(m 2 ti t2) t ~(t2 t3, t5)lf/2
sinh(2-4t 2

1/2
S2=t1+m» +(m» -pt3) / - (m, tf, t2) cosh(2 cosh)3 coshg2—

2 ~t )1/2 (mar 3 t4 ~ t2)(t5 t2 t3)
mg 4 t3 (-2t )~ t sinh 2 sinh 3

2 3

2 ~t 1/2 ™~f t2) ~ ~(t2 t3 t5)~
2 1/2- 'm —" {-2t,)~-t,

2(m" - t f- t2) (t 5
- t 2

- t 3)sinh(3 +

2+ 2+ ~ (m&, tis t2P (mp ™t ~f) + ™+~f- t2~™p+tf ™m)1/2 2 1/2 2 2 2
'

2 2

sf ™~mp + - cosh(&+
1 1

(t5 t2 t3)(mg t f t2) f-~(t2, t3, t5)]' '~' '(mg', t f t2)
si5 =ti+t3+ —2t2 -2t2

ful quantities:

112 12/S1S2 t 145 45/ 4 5r

723= 2/S15 X& 135 5/ 25 Xi

725 = S14/S15S25 .

A. Multi-Regge limit

(3.11)

Tables III, IV, and V, we get

[-X(t„t„t,)]"X'"(m,', t„t, )
2

2& 3& 5]
(m 2 1t)1/2~!t t t )]"'

(3.14)

(3.15)

The (unphysical) multi-Regge limit of the ex-

pansionn

shown in Fig. 7 is given by

4 2S 34 5 45 gg etc. -~,

As a result, we must choose $„$3-—~. To ob-
tain agreement with standard forms, we choose
g, -+~. Our leading terms in the remaining in-
variants are then

'J.
7 t5 /$2 p /$5' $23) f35) f25 flnlie . (3.12)

In order to determine the behavior of the group
parameters in this limit, we can explicitly compute
the invariants in Eqs. (2.1) and (3.10) using the
expressions in Table II. The results of these ex-
plicit calculations for the invariants in Fig. 8(a)
are given in Tables GI, IV, and V.

Vfe now consider the leading terms in these ex-
pressions as ~g, ~, [g2 ~, ~$3[- ~. By examining

[-~(t„t„t,)]' /~' /( m, 2m,', t, )
16t,t,

x (m,' —t, —t, —2v" t, v' t2 cos-(u1-2)e ' "

. (m 2 t )1/2/1/2(m 2 t t )
(-8t,)g t, -

x(t, +t, —t, +v' t2v' t3 csohy )-2e-

(3.16)

(3.17)

TABLE IV. More SO(2, 1) expressions for selected invariant subenergies.

~(t2 t3 t5) j P. .Q . f/2 ~ (t5 t2 t3)(mm —t f t2)
(m~ '-'4 t3) sinh(3-

2V'-t24-t3

2+t + (t5 t2 t3) (m~ t~ t2) zf/2{
&1/2

s13=m, +t, + mp s m" 'ti cosh 1
1 2

+ (tf +t2- m~ ) [- (t2, t3, t5)1 ~ f/2
4t t (mp, m~, tf) cosh(f sinhg2 .

1 2

-~(t2, t3, t5)] ~ {mP, mfa, tf) sinh(f cosh/2 cos~f2

2(t5 t2 t3)(m& —tf - t2)(mp —m& —tf)2 2'

4tit2

+ (tf +m —mp ) [—~(tg, t3, t5)l' '~' {m~,t), tp)
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(m ' —'t )'-'X' '(m ' m ' t )
32t, t,v -'t,

x(t, +t, —t, +24-t, v' t, co-sh)(, )

x(m,' —t, —t, —2V-t, v t,-cosa&»)e
C1- C2- K3

An asymptotic analysis of the invariants shown in
Fig. 8(b) would yield further expressions similar
to the last five equations.

B. Mueller forward direction (MFD)

Then the leading order,

2V t1V t2 COS4 12
X(m' t t)

(3.18) We will now calculate the behavior of the group
parameters in the case of direct experimental
importance, namely the MFD, given by Eq. (2.8).
Following Abarbanel and Schwimmer, ' we note
that in the MFD

13

S1S15

t5-t2-t3- &-t2&-ts OS X2

x(t„t„t, )

S12

S13SX

(3.19)

(3.20)

t1 -t4, t2 —t5.

Equations (3.6) imply.

1 (t )'&'
cose, =-~-aj, sine, = 1 ——'-

~2(tj ' ' 4tj
82 = -85.

Similarly, Eqs. (3.8) imply that

(3.21)

(3.22)

(3.23)

The last two equations demonstrate the well-
known Gram-determinant constraints' '" that the
subenergies must obey in the multi-Hegge limit.

&21 = -~5~ ~ (3.24)

We can obtain constraints on )(, and g, by setting

TABLE V. SO(2, 1) exPression for sf2.

1/2 2 2 2

s»=m~ +m» +(ms -ft») ' cosh/&cosh(2cosh)»coshX22 2 2 i/2 ~ (mP. mm tf)(mm' ti t2)
(-2ti) V'-t2

(m t t )(m -m -t )

I-~(t2» t3» t g) ~ (mp m~ t g) (m„- tg —t2)
cosh& i sinh)2

f-~(t2, t3, tg)] (mP —m —t~)~' (m~, t~, t2)

(
2 Qt~f/» (t5 t2 t3) (mp, ms ~ tq)(ms —tf t2)pi/2 2 2 2

mg —4t cosh f sjnh 2sinh 34t,t,v'-t3

w f/2 (t5 t2 t3)(mP m& —t&)~ (m&, t&, t2)

12

~-~(t2 t3 t5)&' &' '(~P'. m~' tf) sinh$ i cosh(2 cos~f24V'-tfv -t2

(ms —ft»)'~ (tg-t»-t»)& ~~»(mp, m„, tg) sinh$ i cosh)2 sinh)3 cos~ f22W-t fv'-t2&-ts

( 2 Xt )f/gf/2(m 2 2 t )+ — — " sinhp i sinh)2 cosh)3 cosh&2 cos f2
1

2 &,f/2 ~-~«2 t3. ts)~"'~"'(mp'. m. '. ti) '"(m.', t~. t2)
4t ft24

(t,-t2-t, )A,
' '(mP', m, ', tf)A, ' ' m„'

Stft2
cosh(i

i/2 2 2 2

-(mg -4t3)2 & f/2 I-~(t2» t3 t5) j (mp —mg —tf)(mg tf t2) Sinh)3
4tft24-t3

2 2(t, -t2-te)(mp -m„-t,)(m, -t, -t,)2

Stft2
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k,P =k, '. From Table I, we see that Eqs. (3.21)
imply that

(3.25)

(3.26)

If we explicitly compute the above, equating the
f and y components yields

ks QFn=R„(v)k2. .
Then from Table II and Eq. (3.23), we have

R„(8,)B„()(,)B„(4)k2' =R„(-8,)B,(y,)B„($,)R (v)kgb.

The last two equations will be equal if

B,(& )R (&u )B„($ ) = B„(-X,)R„(-v)B„(y,)

».(-~.,)R,(~„)B.($.)R,(v)

=B,(~„)R.(-~„)B,(-g,). (3.30)

In the last line, we have used the fact that y boosts
commute with y rotations. From Eq. (3.30), we
obtain that &u» =-+45, g, =-$,. In summary, the
MFD is specified by

cosh), cosh', = cosh(, cosh', ,

cosh), sinhy, =cosh), sinhl(, . (3.27)

t4) t2 . t5 p t3

X2 X5&

4=$5=0 (3.31)
The last two equations yield X, =X,. If we equate
the x and z components of Eq. (3.26), we get

sinh$, cos8, = sinhg, cos8, , (3.28)

2(k2+), cos8, =(k,"),sin8, (sinh), +sinh$, ) . (3.29)

From the condition k3 =43. we have t3-0 in the
MFD, so that from Eqs. (3.22), we have 8, = w/2.
From Eq. (3.29), we get that (, =-g, . U we de-
mand that Eq. (3.28) holds as t, approaches zero,
we get that $, = $„so that we must have t, = g, =0.
As we shall see in Sec. VI, this last condition has
a dramatic interpretation in terms of the cross-
channel partial-wave decomposition.

%e can fix the remaining group parameters in
the MFD by noting that from Tables I and II,

k, ' = R „(v/2) B,(X,)B,(&„)R,(&o»)B,($,)k,",
k, ,' =R„(—7//2) B„(y,)B,(—K„)R,((o„)B,((,)R„(7t)k,' .

X2 = 45~

&i =-&4 ~

The above imply

8, =-8, =v/2,

K2~ —-/C 4. (3.32)

In the MFD, the external momenta in the E3 frame
are given by

k~8 =R„(v/2)B,(q, )k,", ,

k',P =R„(v/2)B„(x,)B,(~„)R.(~„)B„(g,)k,", ,

k, ' =R,(v/2)B, (X,)B,(a'„)R,((u, )B„(&,)k,',
k, ' = B„([,)k,",

with similar expressions for the remaining mo-
m enta.

If we restrict ourselves to the submanifold of

TABLE VI. SO(2, 1) expressions for selected invariants in the MFD.

(m„, ti, t2)~ . (mp, m, ti)i/2 i/2 (m +ti t2)(mp . t f mg )
2 2 2

si=m„+mp cosh(, +--2t i —2ti

si5

(m„, ti, t2}
i/2 2

s2 = t i+m~ + m~
' cosh(3 coshX2- mz

m~ —ti-t2
sinh(34-t2 4-t2

s~ =mg +t2- 2m~v'-t2 sinh$32

2si3= ma

1/2 2 2 2

Sf2 mg +m+ + mQ
(mp m~ ti)(m& —tf t2)

cosh(i cosh)3 cosh/2
(-2ti) 4-t2

+mz-- ' '
. cosh(3 coshX2+mz ' ' sinh( cosh(3 sinhg2 sin~i2

(m„, t i, t2)(m p
—m ~ —t i}

(-2t i}V'-t2

y 1/2 2 2 g 1/2 2(mp, m„, tt) (m, tt, tg)
h h mg(m~ -m„-tt)(m tt tp)--2 2 2

mgf cosh i cosh 3+ — sinh(3
2t, V"-t2 2t i&-t2
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group parameters defined by Eq. (3.31), the forms
of the invariants in Fig. 8(a) become much more
compact. If we use the fact that

where k~ is evaluated in the limit t3=0. For the
rest of our set of "standard" four-momenta, we
choose

[-x(t., t. , t, )]'I'
MFD

S2 A%2 p
Sl ySy ~sl sl

then in the MFD the invariants in Tables III, IV,
and V reduce to the expressions in Table VI. If
we take all boost parameters to be large, we have
that

cosll-2t1

(3.34)

s» — 2mN—"/ t2 sin-h)2 .
In order that the above be large and positive, we
take the limit $,- -~, X, —-~, so that

Then

(-16t,)&-t,

x (m,' —t, —t, —2/-t, 4-t2 sin&a») e '

24 ty 4 t2 sin~y2
x(m,2, t„t, }

(3.35)

(3.36)

C. Inclusive reaction as a quasiexclusive reaction

In order to see that our equations are reason-
able, it is useful to relate our set of parameters
to those corresponding to a naive set of-momenta
as in Fig. 1, treating Q„as a quasiparticle. I.et
the N, frame be given by Q, ' =[0,0, 0, 4-t2], and

p, '=[(p,"')„0,0, (p, '),], where

It is now clear from the last five equations that
our SO(2, 1) expansion will be an appropriate
asymptotic expansion to describe the reaction of
Fig. 1 in the limit

s», s„s„s»,s2/s»- ~, t„t„l}»fixed. (3.37)

We note that the quantity s»/s, s» is independent
of &u», and ii»+ s»/s, s», in contrast with Eq.
(3.19). Furthermore, we see that although Eq.
(3.36) depends on sin&a», Eq. (3.19) depends on

COS(0~2 ~

B,(g, ) =R„(-w/2)B„(4)R,(w/2),

then

R„(w/2)p, ' = B,(4)I2,',
R (w/2)pl =R2(w/2 )B,(p2)B2(K»)R, ((u„+w/2)

XB„(P„)kl (3.41)

R,(w/2)q, ' =
R( /w2) B(P ) 2B(»»)R,(&o„+/w2)

xB„(p,)u', ,',
R,(w/2)q, ' =R,(w/2)B„(p, )I p .

From Eq. (3.33), we can make the identification

P. =X2~ Pl = 4.~ fd» = (dw +w/2 . (3.42)

Ne see that in the MFD, the g2 frame corresponds
to a Brett frame with the momentum Q, along the

g axis, rather than along the z axis as in the N2

frame. Since sin&@» =coerce„, Eq. (3.36) depends
on the cosine of the "naive" Toiler angle, as
expected. What is surprising is tne relation p, =X„
and in the next three sections we explore the im-
plications of this relation in terms of complex
angular momentum.

If we exclusively choose the SO(2, 1) parametriza-
tion of Eq. (3.3a), we may follow steps identical
to the discussion after Eq. (3.9) and write the ex-
ternal momenta in the &2 frame as

P~ =B.(~.)~.',
P, ' =R.(n, )B,(P, )B,(»„)R,(~„)B,(P,)a,',
q,

' =R,(a,)B„(p,)B,(K„)R,(to„)B„(p,)k,',

q
' =R,(o.2)B„(p2)k,'.

As before, »» is defined by Eq. (3.8). The angle
~„ is the Toiler angle"" appropriate to the five-
particle amplitude. -If we temporarily ignore the
internal degrees of freedom of the missing mass
Q», we may set a2 =w/2. Now since

B„(P,) =R,( w/2)B„(-P, )R,(w/2)

2t2+m
(P2 jg 2g t2

(p 2) (t2& N & S»)
2V'-t2

From Tables I and VI, we have that

P,"' = B.(~,)g',

(3.38)

(3.39)

IV. THE O{3)EXPANSION AND REGGEIZATION

The asymptotic behavior of I, can be deter-
mined by expanding it, using as basis functions
the irreducible unitary representations of the
group SO(2, 1}." " Rather than work with these
less familiar functions, we will find it convenient
and instructive to follow Abarbanel and Schwim-
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t„+m,' —m,' p'
p

X' '(m, ', m,', t„)
2&t„

PA (4.3)

~C 3 &C= "3

FIG. 9. Tree diagram symbolizirg O(3) parametriz-
ation of M8 obtained by analytic continuation.

(4.1)

The quantities appearing in the last equation are
still expressed in the Breit frame where 4-ty
points along the +z axis. We consider, then,
the action of the complex z boost B,(-iw/2), which
has the explicit form

0 0 0 -i

B,(-iw/2) =
0 1 0 0

(4.2)

'-i 0 0 0.

mer, ' and continue our SO(2, 1) parametrization
of M, into a parametrization of O(3). We then can
write down an ordinary partial-wave expansion,
and directly interpret the asymptotic behavior in
terms of complex angular momenta and helicities.

The O(3) expansion symbolized by Fig. 9 is
produced by first continuing the amplitude into the
kinematic region where t„.. . , t, ~ 0. If we denote
by t„ the value of t, reached at the end of the con-
tinuation, then since t~ is a physical subenergy
above threshold, we must continue to the +i&
boundary of the +Bet„axis in the complex t„
plane. The net effect of the continuation is sum-
marized by v' t, =e '"'Wt„-, with identical rela-
tions for t~, . . . , t~.

Let us examine the effect of the continuation on
the standard vectors of Table I. After continua-
tion, the four-vector 0,' becomes

2(t t )&12 ' 2(t t ) ~2

(4 4)

&4 2 (t t )1/2 ' 44 2 (t t )"t

So we let

Kgyg
= -K2zy K&D —K5~

U we choose the path of continuation such that

[-z(t„t„t, ) j'12 = -ix"'(t„,t„t,),
from Eqs. (3.6) we deduce that

tc+ta tz-cos8 = ~~ = cosl18z,
B 8

g

t~+t~ —t~Cos85 = 2~ ~ —= Cosh8z ~

C E

sin8 = -i ~—' ~—' ~ =—-i sinh8

(4.5)

(4.6)

(4.7)

We then define e, =-i0~ and 8, -=-i8~.
Now according to the Bargmann-Hall-Wightmann

theorem, "M, should be invariant under the com-
plex Lorentz transformation B,(-iw/2). If we

explicitly display the dependence of M, on the ex-
ternal momenta in the I", frame, we have the
relation

If we compare Figs. 7 and 9, we see that the minus
sign in the last equation arises from the fact that

0, is an incoming vector and P„ is an outgoing vec-
tor. It is quite apparent thai the frame s„ is the
center-of-mass frame of P„and P„., with P„"point-
ing along the +z axis. If we continue in the re-
maining t~, . . . , tz, such that each is timelike at
the end of each continuation, and apply the complex
z boost of Eq. (4.2), we generate the set of stan-
dard vectors appropriate to Fig. 9. These vectors
are given in Table VII.

We can also continue the parameters relating
the various Lorentz frames involved in the SO(2, 1)
expansion. From Eqs. (3.8), we have

A new standard frame s„ is defined such that
four-vectors in the s„ frame are given by the ac-
tion of B,(-iw/2) on the four-vectors in the s,
frame. Then (4.8)
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TABLE VII. Reference momenta for the 0(3) parametrizatioo. 4 =(t, x)1.

B« —
2

k

B ——k2I ——

t„+m, —mp
p

~' (mp, m„, tg) yg

2~t~ 2V t~

mp -m„(mp jm& jt~)2 2 gi/2 2 2

2~t~ '
2~t~

=Pxj

ta+t~-mQ
p p

(mg t&jta) sa

2vtg ' ' '
2vtg

ta+mm'-t„p
p

' '(m~'jt„*ta) - sa

2~tg 2~kB

S3 2 i/2 s
B« ——k3 = [+2% tc j p j 0 j —(tc /4- m„) ] =pc2

$7l S3 SCB, -—
kg =(-~g~&c « —(tc/4-m. )'') =-Pc

B« ——k4I =

——
kg =

g7l

2 2 i/2 2 2ta mp m
p p

(m mp tg)) SD

2v t~
2 gi/2 2 2m~ mp

p p (mp p+p tg)
2v tg) 2v tD

gi/2 2m„-tQ
p p

(m, tD t~) s@
PE

t~+to- m, ' ~'/2(m ', t, t&) ~

2v t~

Note that the momenta on the left-hand side of
Eq. (4.8) are evaluated in the Breit frame where
v'-t, lies along the z axis, while on the right-
hand side the momenta are evaluated in the frame
where ~t~ is the center-of-mass energy.

In order to completely define the continuation of
our SO(2, 1) parameters into our O(3) parameters,
we will utilize the following relations, which may
be verified by explicit matrix multiplication:

m& m

R, 2,IR„(X)R„-2 =R,(-~), (4.11)

the Toiler angle, is a physical angle after continua-
tion is elegantly demonstrated.

As in Ref. 6, we now must specify the momenta
entirely in terms of y and z rotations, in order to
express M, in terms of the standard basis func-

' tions for the rotation group. Then since

B4( im/2)B„( )-B,(iw/2) =R„(-iy),

B.(-i./2)B. (&)B.(i./2) =R,(i&),

B,(-iw/2)R„(8)B,(iv)/2) =B„(i8).

(4.9)

Eq. (4.10) becomes

R,l- B, ——lk =B,(8,)R,(ix, )R„'~,+-l

%e illustrate the general procedure by evaluating
B,( iv/2)k, ,'. We w—ill attempt to reduce all the
boosts containing our SO(2, 1) parameters into
complex rotations. Then

I'

BJ—
2 k,. =B4l-2 R„(8,)B„(X,)B„($,)B,(&„)

xR,(~„)B,(h, )B«12 x 1 «~g~ A

=B,(-8,)R,(-ix, )R„(-i",)R„(i~,)

x B (u)»)R, (ig, )p„". (4.10)

Since z boosts commute with z rotations, R,(co»)
commutes with the Lorentz transformation that
takes us from the t, Breit frame to the tc center-
of-mass frame. The well-known fact" that ~1@,

xB,(—t(„s)R,(&u„)R,(it, )p„". .

Similar calculations on the other momenta listed
in Table II dictate the following choice of Q(3)
parameters:

XB ~X2& Xc =tXS~ Xs =~X5 j

(„=i)„g si$, & pc=i)3, pc=i)4& (4.12)

(s='$5» "s ~»& "az ~44.

We can now complete our specification of the Q(3)
parametrization of I, by giving expressions for
the external momenta in the I"c frame. The Ec
frame will be defined by specifying the compo-
nents of any four-vector V in I"c in terms of its
components in the F, frame:
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v" =~, (-',ls, I,
——'"

I
v". (4. 13)

The parametrization of our external momenta in
the I"c frame is therefore fixed and given in Table
&III.

Further insight into the nature of the O(3)
variables is gained by specifying the additional

frames F„,F+, Fc~F~, in which the respective
conditions QAA =Qss =gD~ =Qx~ =0 hold. We can
choose the orientations of the coordinate axes in
these frames so that the $'s correspond to polar
angles, and the X's and co's correspond to azi-
rnut"al angles. The Ec r arne d term'"ed by
Eq. (4.13), is shown in Fig. 10. We give the co-
ordinates of the following vectors in that frame:

@Ac = [Mt~ coshe~, 0, 0, Wt~ sinh9s],

pcc = (pcc)„—lpcc Isin (c+—
cosmic, —Ipcclsin pc+—singe, —lpcc Icos gc+—

(4.14)

The vector Qs defined the z axis, so that $c+m/2 is the polar angle of pc and yc is its azimuthal angle.
For convenience, we may set yc =0, so that pc lies in the half-plane y =0, x ~ o.

Next, we define the I ~ frame, shown in Fig. 11. The orientation of the coordinate axes is specified by
the vectors

Qc~ = [Wt~ cosh6s, 0, 0, Wt~ sinh-es],

m&&s' = (&s')t IP~'l»nl &s+2 lcosXs IPs'l»n &a+2»nXa, IPs'Icos &A+2 I .
2) 2 ' 2). '

(4.15)

So pcs defines the -z axis, and $s+v/2 is the polar angle of P&A, and ys is the azimuthal angle. Since
we have set ix3 =Xc =0 in Sec. III, pc and pc will lie in the x-z plane. . In Sec. V, we will make use of
the fact that in the MFD, given by Eq. (3.31), we will set $s= i), =-0, so that y~ becomes the angle be-
tween p~ and the +x axis.

Finally, in Fig. 12, we show the I'„ frame. %e have

t."=[(t ")„o,o, (p ") ],
&A" =[(PA")t, IpA" l»n&Acos~As, I

pA" l»n(A st»As, I pA'Icos(A]
(4.16)

The z axis is defined by ps', $A is the polar angle of p„, and u&As is its azimuthal angle. Similar configu-
rations are found in the FD and Fz frames, with )o and Pz +w/2 corresponding to polar angles, and (cps
and X~ corresponding to azimuthal angles.

Having specified the nature of the angles corresponding to our set of O(3) parameters, we now examine
their behavior in the various asymptotic limits of Sec. II. Let us define the (unphysical) multi-Regge limit
in terms of the invariants by

S.g~ Sys, Sx, S4, S25

Sy3 S2 S34 S5 etc .

S~2q S45~ etc. ~ 00
~

t„t„t„t„t„rt„,$4„g~, vl„, 7l„ f ixed.

The first line consists of those invariants that span one wavy line in Fig. 9 (see Fig. 8). The second line
consists of those that span two wavy lines, and the third, three or more. From Eqs. (3.13) to (3.20), and
their counterparts for the other invariants, we have that I), I, Ig, I, . . . , I(, I become large, while y„y„
&u~, and (c45 remain finite. In terms of the O(3) parameters, we must have that the polar angles I)AI,

I)DI, and Igzl become large, while the azimuthal angles lt~, Xs, u&As, and u&oz remain finite. ""Let
us recall the reasons for terming this the multi-Regge limit.

For the moment, we let y, be nonzero and write the O(3) expansion of M„as in Ref. 10. If we are
cavalier about minus signs and phases, we have

oo y J + oo oo +J
Ma= z z e( &A~A+& &B@el BWDgg EXES& CXC

xg= -oo Jg, Ja,= lX~I X~= -Jg 'AD= -co Jg,Jg= (Xgl X@=-J@Jc= X+ k@1

«:i„(( )dx'„i, (( +—)&.i,((o»*,.i, l(*+2)d'8,.(( +—)&i"„'i i+~', (&, , & ) ( (I
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TABLE VIII. O(3) parametrization of the momenta.

pgB =Bg(Bg)Rg(Xg)Ry(gg + r/2)pg ~

p~i =Bg(Bg)Rg(Xgy)Rq(gg + r/2)B g(-KgQR g( ~)R„($~)p~~

pA = B3(eB)R3()(B)R„(4+3/2)B3( KB-A) R3(~Ap)R3($A)pA

Pc =R (Xc)Ry(&c+~/2)Pc

PB =&3(-&B)&,(XB)R3(kB+3/2)PB

PP =BK( SB)Rg-(XB)R„($B+&l2)BK(KBP)R3(~PB)R3($P)PP

pg) =Bg(-B~)Rg(X~)R„(h~+ &/2)Bg(&&g))R~(D~)R, (kg))pD

PC =ft.(&C)fl3(&C+ 3&2)PC

P 8
8'

1 P QF()
C

FB
Qq

FIG. 11. Orientation of vectors in the I frame.

By rotational invariance,

~x . .&g
AZ Z (tA, . . . , tB)

Xy
COSXB)(B (-1)33), COSXBQlpB (—3)43)

k@
cos"BXB (-'033)

vanishes unless X~+X~+Xc =0. As was pointed out
in Ref. 10, and as we can see from Eqs. (3.16) to
(3.20), to leading order the invariants depend on
cosv», coshX„cosco4„and coshx, . In terms of
the O(3} variables, the invariants will depend to
leading order on cos(u„~, cosy~, cos(d~~, and
cosyE. One can then take linear combinations
of the partial-wave amplitudes that are even under
XA- —XA, XB--AB, Xp- —Xp, and AB- -AB (since
we are only concerned about the part of M, that
has a discontinuity in sx, we need not worry about
Xc). Motivated by Eq. (3.19), we perform the
heuristic replacements

ARAB (CoS AB) ( 1i3) (4.18)

Clearly, each step involves a resummation of the
series, and a redefinition of the partial-wave am-
plitude. In the same spirit, we make the additional
replacements

~ox„((A} (-sx} &x„xBli(B+2)l ( si3) (4 19)

Zg J@
$E 2 ( 25)

%e now can describe in general terms the pro-
cedure for Reggerizing the sum in (4.17). As in
standard treatments, ""'""kinematic" singu-
larities in helicity may be removed from the d
functions after breaking up the helicity sums in
the appropriate fashion. "'" The various sums
contributing to (4.17) may be rewritten as inte-
grals over complex helicities and angular mo-
menta. In the multi-Regge limit, the invariants
associated with the d functions in (4.19}become
large, so that the asymptotic behavior of M, is
obtained by sweeping back the angular momentum
contours, and picking up the residues at the lead-
ing poles. In Sec. V, we will describe the Reggeiz-
ation procedure in more detail, and discuss the

Fc Fe
t'c

Fi

i ~~Fc
QE

FIG. 10. Orientation of vectors in the Ec frame. FIG. 12. Orientation of vectors in the E& &arne.
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problem of relating the multi-Regge and HPRP
limits of M, .

13
SS1 15

S12S152—
S1S13

12
f23

13 X

912 023

012 023

(5.1)

V. REGGEIZATION AND FACTORIZATION

Before discussing the Reggeization procedure
for M„we will discuss the equivalent procedure
for the linear six-particle amplitude of Fig. 8(a),
treating QD as a spinless external particle. We
will denote this amplitude by M, . Now in addition
to the invariant quantities in (3.11), we define the
following:

I
~12 ~12 &

@2 =1.

I
f23 023 & (5.2)

The above have already been verified by explicit
calculation in (3.19) and (3.20).

The partial-wave expansion of M, is given in
terms of our O(3) variables for M, by

Owing to Gram-determinant constraints, " in the
multi-Regge limit we have

M6 = e A+ABe B

(5 3)

M6 =Me(+M6)

JAJa Jcx Ax xs (t„,t» tc) .
In order to perform the necessary Sommerfeld-Watson transformation on the partial-wave sum, we divide
the sum up so that the partial-wave amplitudes are free of "kinematic" singularities in the helicities A.„
and As. ' ""If, in (4. 18) and (4.19), we may write

where

Z. '"Z„"d,'",„((.)d';„,,((,.—,") d;;.((.
A& g 0 JA

+ Z Z Z 2 &* "&- 'd.(„(( K„i,((+2)di',.,(4

7T Jg JBJg+
2

A
kings (tA tB tc)

(5.4)

I I
~12 012 0 12 +23 ~23 023 ' (5.5)

The subscript & denotes continuation away from X~& P„, and the subscript & denotes the continuation away
from XB ~ A.„. The possibility ambiguity in the choice of the q s in the multi-Regge limit is due to the
relations in (5.2). If we extract the kinematic singularities from the d functions and perform the substitu-
tions of (4.19), we may write the following integral representations [see Eq. (4.5) of Ref. 5]:

sinw(Xs —Js) sinwX„( ))„)xs
sinw Js sinw(As —X„)

(5.6)

I:;"" , '. .

fdic

fd. f=dd ddpd r{X„d„)r(i) —r d
-r(-x, )r(X —d )

s inw ()(.g —dJ s)s i nw Xs
s inw Js s inw(X„—X s)

(5.7)

We will carefully specify the locations of the helicity contours shortly, but we note that all contours are
determined by the requirement that when they are pushed to the right, the partial-wave sums must be re-
produced. 5 20AS a result, the dynamical poles in JA, JB, and Jc must lie to the left of the angular momen-
tun contours. Now if we write the pole contributions to the partial-wave amplitudes as
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A~A B~c(g g f )
~&( A& Bt @2)

(J~ —a„)(Js—as)(Jc —ao) '

g~A 8 c(g g f ) —. )( At Bi @2)

(J~ —ad«s —as)(Jc —ao) '
(5.8)

the residues b, and 5, depend on X„, Xs, t„, ts, tc, and (possibly) 4,. We can sweep the J„, Js, and Jc
contours to the left in (5.6) and (5.7), and obtain

(—s,) "(-s„)"(—s~)"
(2wi)'

B ~A

r(a, +1) b, (X„,~„e,)
r (a, —X, +1) r(X„+1) (5.9)

Cy Cy
A

r(a, +1) f,(~„,X„e,)
X r(a, —X„+1) r(X, +1) (5.10)

Im XA

'A3

ae3

e2

aB-2

a-I

ae '

aA

as

C

A

X+2

Re XA

'X -4
A

ac -2 ac I

XA-2

ac

XA-I

)is

RA+ I

(b)

Rek~

Imka "ImXA

a -3
S

c 2

. a 2

ac-I ac

"C),I (c)

aA 2 aA-I aA

"Cz
A

XA-2 XA-I XA+ I RA+2
%1+2 XI+3

RekA

FIG. 13. Helicity contours used to define Me&
B and Me&

B . (a) Contour C& which reproduces the sum for
5) Conteor C~ which reproduces the sum for gB &AA. (c) Contour C„which reproduces the sum for
(d) Contour gq&, which reproduces the sum for AB &.A~ ~

XAl
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In the above, we have made liberal use of the
identity

r(x)r (1 —x) = w/sinxx. (5.11)

The four helicity contours Cz, C z, Cz, Cz are
B

shown in Figs. 13(a)-13(d).
From (5.9) and (5.10), we see that the multi-

Hegge limit is a "pure" Regge limit in the sense
that the leading power behavior in the large in-
variants s1 s1„and s~, is determined by the
poles in angular momenta; this, of course, can
be traced to the fact that from (3.13), (3.14),
(3.15), and (4. 12), these invariants are propor-
tional to the cosines of polar angles.

Let us now investigate the cut structure of (5.9)
and (5.10). From Fig. 8, we see that s, and s»
overlap; so do s» and s~. Since the Steinmann
relation"'" forbids simultaneous discontinuities
in overlapping channel invariants, the integrals
in (5.9) and (5.10) must contain singularities that
exactly cancel the overlapping cuts. If we sweep
the helicity contours to the left in Figs. 13(a)-
13(d), it turns out that the locations of the poles
in the complex helicity planes are fixed by the
"kinematic" I' functions in such a way that the
Steinmann relations are satisfied. As pointed out
in Ref. 5, due to considerable resummation of
ser ies, etc. , the der ivations of representations
such as (5.9} and (5.10}are not entirely convinc-
ing. Indeed, the fact that the extraction procedure
leads to a representation that satisfies the Stein-
mann relation is one of the main justifications of
the procedure.

To illustrate the points raised in the last para-
graph, let us invoke the Steinmann relation to
show that in M,&, we must choose Z» =q» and

Z23 f23 To see this, cons ider the contr ibutions
from the leading helicity poles at XA =+A and A. B
= ec that arise when we sweep C z and C z to the

A
left in Fig. 13(a) and 13(b). These poles give rise
to a term

Me", ',c -(-s,) "(-s„) s(-s«)"cr(—ac)r(ac —as)
I

x r(as —a„)(—Z») s(—Z„)'cb,(as, ac; 4, ) .

(5.12)

The choice Z» =q» and Z23 =q23 leads to simulta-
neous discontinuities in s, and s» and in s1 and

s, . On the other hand, the choice g» =q» and

Z23 f23 gives a leading behav ior in the invar iants
of the form

The above gives rise to an admissible cut struc-
ture since from Fig. 8(a) we have that s„s»,
and s» do not overlap. The locations of the helicity
poles in (5.9) are such that they produce terms
that exactly cancel the overlapping cuts. Similar-
ly, if we examine the contributions to (5.10) from
the helicity poles at XA=cxA and XB =o.~, we see
that we must set Z12 ~12 and Z23 023'

Pursuing the analogy to the eight-particle am-
plitude still further, we wish to compute the piece
of M,"B that has a discontinuity in s~. It is
necessary, by the Steinmarin relation, to consider
only those terms that have XB =eB-n, where n is
a non-negative integer, so that we have terms
with no discontinuity in s». If we look at (5.10),
we first sweep C~ to the left, picking up poles
due to r(Xs —as). The resulting contribution to
M,'A&'B' is given by

CASBtC ( 1) ( S15) ( «)
6& 2mi

1)nx, dk„r(X„—a„)r( X„)r(as ——ac -n)1(X„—as+n)r(a —X„+1 n)-
n=0 +' Q~

A

In the above, we have written

( )x„)xs r(as +1) b, (X„;as -n)
r(a, —X„+I) r(a -n+1) (5.13)

, = r(x„-~,)r(x, —~„+1) .sinzj) „—XB~

If we sweep C~ to the left, we pick up poles from r(X„—a„). We can see from Figs. 13(c) and 13(d) that
we also pick up poles from r(X„—as+n) due to a pinching of the C'„contour between the poles of r(As —as)
and m/sing(Xs —X„) [in order to visualize this, it may be helpful to imagine moving C&„and C'„ to the left
simultaneously in Figs. 13(c) and 13(d)]. These poles occur at X„=a n,sa~ —n —1, as —n —2, . . . , a~
—m, . . . , where m ~n. Note from Fig. 13(c}that C'„ is not pinched between the poles at A~=a~ nand at-

B
Xs =A.„—1, X„—2, etc. After some algebra, the pole expansion of (5.13) may be written
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(-q„}A(-q„)" g + F(m-n„)F(n„-a, m-) F(n —n )I"(a —n n)-
F( nB) O„o m! n ~

g„"b)(aA —m; a B -n, 4, )

( q»—)'B( q„-)'B ~ ~ I'(m —nB)I'(nB —n„—m) F(n —nB)I"(aB —nc —n)
mf nl

xvl» rl2~ "b)(aB™;aB —n; C'2) (5.14)

We pay special attention to the limits on the summation in the second term in (5.14). The restriction
m ni-s directly due to the fact that in Fig. 13(c) the poles at A.„=X„X„+I, LA+2, etc. , lie to the right of
C~, while the poles of Fp.B —nB) lie to the left of C1, .

We next turn our attention to M, ", B c in (5.9). If we sweep C'„ to the left in Fig. 13(a}, we obtain the
A

following contribution from the poles of F(XA —nB):

x Q dXBF(nB —aA —m)F(-&B)F(&B—o.c)F(XB—aB+m+1)I'(nB —XB —n)
" (-1)

mtm=O
B

„( I )~B-~( . )&B 1"(aB+1) b, (ns-m, XB;4,)
I (n B —XB + 1) F(nB —m + 1)

(5.15)

We next sweep the C1', contour to the left in Fig. 13(b). The only poles that produce terms with a dis-
continuity in sz come from the factor F(XB —nB+m+1), and occur at XB=nB —m —1, nB —m —2, aB —m
—3, . . . , aB —g, . . . , where n) m+1. At these poles, the C„' contour in Fig. 13(a} is pinched between the

A
poles of F(XA —nB) and the poles of w/sinw(XA —XB) at RA=KB+I, KB+2, etc. , in Eq. (5.9). We can complete
the pole expansion of (5.15) and get

~alai

MABc ( s) A( B )+B( s )
c( 1»& 'L "123&

I (m —aB)I"(nB —n„—m) F(n —nB) I'(a B —nc —n)
X

m~O n ~ m+1 m. nt'
x(-q'») "(-q2,) "b,(aB -m;nB-n, ;41,). (5.16)

If we examine the limits on the summation, we see that the condition n ~ m+1 arises from the fact that in

Fig. 13(a) the poles of F(XA —n„) lie to the left of the contour C'„„, while the lowest pole of m/sinn(XA —XB)

lying to the right of C„' occurs at A.„=A.~+1. We remind the reader that the helicity contours have been
A

carefully chosen in Figs. 13(a)—13(d) so that when the contours are closed to the right, the terms in Eq.
(5.4} with LA=KB are not counted twice. If we combine (5.14) and (5.15), we get the following pole expan-
sion for M,",for the piece with a discontinuity in sx:

(-q») "(-gas) g g I (m —n„)F(a„—nB —m) F(n —nB —ac —m)
F(-n B) ml nf

x@11»„"b)(a„—m, nB —n;4, )

(-1i») (-q„) g g I'(m —nB)I'(aB —a„—m} F(n —ns}1(aB—ac —s}
«-nB} .=0.=o nest n&

x q» 11~ "b(nB —m, aB —n; 42)

We have defined the quantity

b(n B —m; a B n; 41,) = e—(m —n) b, (nB —m; nB —n; 4,) + 8(n —m +1)4," "b,(n B —m; n B —n; C, ) .

(5.17}

(5.18)

Let us now consider the multi-Regge limit of (5.16). We recall from (5.2) that in the multi-Regge limit,
4, = l. If we assume factorization of the residues in (5.8) in the multi-Regge limit, ""we then have that
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(a„—m;a —n;4 =1)=P (t„)P (nA —m; tA, tB)P (ns —n;ts, tc)P (tc),

b(ns —m;aB —n,'42=1) =P"(t„)P" (aB —m;t„, tB)P (nB-n, ;ts, tc)P (tc).

(5.19)

(5.20)

In the multi-Regge limit, we may write (5.15) as

M," ' '=P"(t„)P'(t,)r(-n„)(-s,) "r(-a,)(-s„) 'r(-n, )(-s„) '
[( }12) VA(tA& tst 112) + ( 112) VB(tA& tB& }12)]( l—23) VB(tB& tC&$23) ~ (5.21)

The standard double Reggeon-particle couplings"" are defined by

I (m —n„)I'(n„-nB —m)
VA(tA& tB& 112) ' y & y Lgr 112 P (aA ™)tA) tB) )

1 I (m —n B)I (n B —n A
—. m}

VB(tA) tBt 112) r& %ri mt f12 P ( B t A& B}) (5.22)

1
"

r(n —nB)r (aB —ac —n)
VB(tB, tC; 'l}23) l23 P (aB n tB tc) 'r -a„jr'~&-e, & „, Pl 0

Let us temporarily turn our attention back to M, .
We wish to evaluate M, in the asymptotic limit
appropriate to Fig. 1, in order to obtain the in-
clusive cross section given by Eq. (2.7}. If the
invariants have the behavior (3.37), then Eqs.
(3.13)-(3.20) yield the following behavior for the
group variables:

its-i~, $A-+i~, $c- —i~, with ldAB, )B finite.

(5.23)

If we restrict ourselves to the MFD, from (3.31)
and (4.12) we get

XB- i~, )B--+i~, with l1l», )B finite. (5.24)

34
~45

4 25

45
~35

X 34
4 —045 ~23

145 ~23
(5.26}

In the multi-Regge limit of I„
I

t45 045 &

I
f35 f35) C 5 1 ~ (5.27)

In the HPRP limit of M„given by (5.23) and (5.24),
the relations (5.2) and (5.5) break down. In par-

It is evident from Figs. 10-12 that not only do the
continuations of the polar angles $A, $c, and (B
become large, but also the continuations of the
azimuthal angles X~ and gz become large. From
(3.11) and (3.20), we see that

(5.25)

Now in addition to the quantities in (5.1), we de-
fine the analogous quantities for Fig. 9(b), namely

I

ticular, from Table VI we see that if we first con-
tinue to the MFD, then

2/'g
g

='g ™/ splat ~ (5.28)

By examining Tables III and IV, it is apparent that
even away from the MFD py2 and 'f45 do not depend
on co» and co» in the HPRP limit. As a result,
any integral representation of M, that contributes
to the inclusive cross section of Fig. 1 cannot in-
volve the primed q's. '2 Finally, we note from (5.1)
and (5.6) that in the HPRP limit, 42 —~, C, —~.

Let us now consider in detail the analogous case
of the HPBP limit of M„ the six-particle ampli-
tude of Fig. 8(a). The HPRP limit is given by
(5.23). As noted in Ref. 10, the only representa-
tion of M, that contributes in the HPRP limit is
that for M, ", B c given in (5.7), since we have
shown that the Steinmann relation implies M, ", ~ ~

involves q» and A/3.
I.et us proceed to determine the asymptotic be-

havior of M, A&
B c in the HPRP limit. From (5.7),

we see that the leading behavior as g»- ~ is due
to the leading singularity in the complex A. ~ plane.
This limit is then termed "mixed, " for the leading
singularities are Regge poles in J„and J~, and
helicity poles in XB. From Fig. 13(c), we see that
the leading singularity in A. ~ that produces a term
with a discontinuity in sx results from a pinching
of Cz againt the kinematic" pole at A.~ =o.a. If

8
we sweep back the contours in (5.7}, we obtain a
pole expansion analogous to (5.14); however, since
q»- ~ in the HPBP limit, .the leading behavior is
given by only the ~ =0 terms, and we write
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M " (HPRP) =M'"' (HPRP)

=(-s,) "(-sr) cr(ns —ac)

X
m1 ~12 &~ A & B& 2

Sx m=o

+ ~12& m! 012 &(+B & +B& 2g) m0

In (5.29), we have denoted any possible C, dependence of the b)'s. We note that we have no dependence to
leading order on "small" invariants, such as s„. Such dependence does not appear because we have kept
only the leading term in g23. On the other hand, since f12 is finite in the HPRP limit, it is necessary to
keep all terms with m~ 0.

Now let us take the HPRP limit of our multi-Regge expression for M," s c, given by (5.17). Again,
since )(t»- ~, we keep only the n =0 terms, so that (5.17) becomes

M,'"'s'c = (-s,) "(-sr)"cr(ns —nc)

( )
„s, ~ r(m —n„)I'(n„—n — )

( 1)X 012 S rnl ~12 & A™&B& 2
g m=o

(
s,
) g F(m —a )F(a —a„—m)

l ~12 B ™&B& 2
Sx m-0 m

Since m) 0, we have from (5.18) that

b)(as —m, ns;4), =1) =b)(ns —m, ns; (b, =1).

(5.30)

(5.31)

If we compare (5.29) and (5.30), then we see that the conditions for the identity of the couplings in the
HPRP limit and in the multi-Regge limit are

b (n„—m, as;C, =1)=b, (a~ —m, as;4, =~), b, (as —m, ns;4, =1)=b, ( ns—m, ns;C, =~).

These will of course be satisfied if

b) (X„,l).s; C 2
= 1) = b) (X~, Xs; 4 2

= ~) .

(5.32)

(5.33)

The condition (5.33) is considerably more simple than those given in Ref. 10. This is due to two facts.
First, we have carefully chosen the contours of integration in Figs. 13(a)-13(d) so that the terms in the
partial-wave sum (5.3) with X„=As contribute to M, ", s c. This has the effect that when the contours are
swept to the left, M, ", B ~ is down by a power of @23; the two terms are of the same order in the multi-Regge
limit, but different order in the HPRP limit. Second, we have recognized that the identity of the two cou-
plings is a statement that is true only to leading order in the large invariants. This is analogous to the case
considered by DeTar and %eis20 of the single-Reggeon couplings for the six-particle amplitude with a
triple-Regge vertex in the dual resonance model.

From (5.19), (5.20), (5.31), and (5.32), we have

b)(n A ™)as% @2 ) P (tA)p (aA ™)4) B)tp ( Bats)) tc)p (tc) l

b, (as —m, as; C, =~) =8(m)P" (t„)P" ( snsm; t„, ts)Psc(ns; ts, tc)Pc(tc) .

Then in the HPRP limit, (5.30) becomes

(5.34)

&& I(-n„) "V (t, t, ;n„)+( n„) 'V, (t„,t„-q„)jr(n, —a,)p"(n„t„t,). (5.35)
TAT BTg%'e remind the reader once again that the above is the piece of M," with a discontinuity in sx. The dis-

continuity structure of (5.35) is identical with that of the five-particle amplitude of Fig. 5,""and hence
is considerably more simple than that of the full six-particle amplitude. " To leading order in g» in the
HPRP limit, the two-Reggeon-particle coupling factors off, due to the assumed factorization of the resi-
dues of the linear six-particle amplitude in (5.19) and (5.20).
. We now turn our attention back to M, . In analogy to (5.4), we can break up the partial-wave sum in

(4.18) so that the partial-wave amplitudes may be redefined in a singularity-free fashion. We let



MICHAEL J. PUHALA

00 00 O0 00 00

B— A — AABBE— D — ~DDEECBE
x d)E„(~E+v/2)d, c. ((c+v/2)A)A. ..p (t„~ ~ ~ tE)), . (5.36)

The double subscript "»" indicates that A.B o XA and XE -XD. Since we are only concerned with that part ofI, with a discontinuity in s» we have set Xc =0; the loss of terms containing powers of q» will not affect
our results.

Now if, as in (5.8), we assume that the partial-wave amplitude has the J-plane poles

J'A'''JE b»(~At'Bt ~Dt ~Et @2t @5)

(~A —n A)(~B nB)(~c —nci~~D —nD)(~E —nE)
(5.37)

(5.38)

The helicity contours C~, C~, C~, and C„are shown in Figs. 14(a)-14(d); they are drawn so that the
A D B

sum in (5.36) will be reproduced when all the contours are closed to the right. We can sweep the helicity
contours to the left, and in Table IX, we give the pole expansion of (5.38) for the terms that have a dis-
continuity in sx.

We can define the continuations of the following sums, in addition to that of (5.36):

z z z z 2 z z
A B— A A B B E— D D D E E C B E

we can write an integral representation for (5.36) similar to (5.7). If we then sweep back the angular mo-
mentum contours, we obtain the result

TA'''TE ( Sg) (—Sg5) (-Sx) (-S4) (-S25)
8» (2vi)'

X dXA dAD dA, B d~E
r(x„-a„)r(-x„) v

I nB —LA+1 slnv XA —A. B
A hD XB XE

rp.,—a,)r(-~,)x ' D 'r(z, —a) .I'(nE —XD+1) E E sinn(XD —XE)

I(n, +1) I(a, +1)' r(x +1) r(x +1)

( 045) ( 035) b&)(~At'Bt'Dt "Et@2t@5)'

z z z z
B A A A B B D E D D E E C B E

Z Z Z Z ~ Z Z
A B A A J'B B D E D D E E C B+ E

Now as in the case of M„ from (5.28) the only sum that has an integral representation that remains valid
in terms of the O(3) variables in the HPRP limit is M„, . In addition, the only continuation that con-
tributes to leading order in @23 and q35 in the HPRP limit is again that of M, ",

& . From (5 ~ 25), the leading
contribution comes from those terms in Table IX with g =m=0. As in the discussion of M„our conditions
for the identity of the couplings in the multi-Regge and the HPRP limit are

b (aA™,as, nD —v, aE,'C2=45=1) =b (nA™,ns, nD —v, nst42=45="), etc.

The above, and three similar conditions will be satisfied if

At Bt'Dt'E c2 @t5 1) b»(~At'Bt~Dt Et@2 @5 )' (5.39)

The above clearly corresponds to (5.33). Let us again assume that in the multi-Regge limit, residues as
in (5.37) factorize according to relations similar to (5.19) and (5.20), e.g. ,

b»(nA —m, aB-n, nD —v, nE-M;C, =C, =1)

=p"(t„)p" (n„—m; t , t )p (t )p (n —v;t , t )p (n —n, n —w;t , t , t )p (t ) . (5.40)

In the HPHP limit, to leading order in g» and g35 we have that
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Cfg Cg
= P"(f„)P'(f,)r(-n„)(-s,)""r(-n,) ——' (-s )"r(-n, )(-s,) r(-n, )

~

-~
Sx sx

[( 712) VA(fAi fBi 112) ( 112) VB(fAy fBy l12)]

X[(-Il„)"V,(f„t„q„)+(1i„-)"EV,(f„f„q„)]
X r(% B BE PC)P (PB& A Elf BP fEP fC)P (fC) ' (5.41)

Notice that in (5.41), the square brackets contain the ordinary double-Regge couplings" "such as those
that appear in the five-particle amplitude of Fig. 5. The new feature in (5.41) is the triple-Regge residue

p (+Bi +El fBt fE) fC) p(P' i FBI +El fBi fEi fC) ' (5.42)

The expression appearing in the right-hand side of (5.42) is the p =n =IAI=0 term in the pole expansion of
the triple-Regge coupling in the scheme of leis.""The full expansion is given by

1 r(n+p —nB)r(IB+p —nE)r(nB+aE —nc -n —50-2p)
r(-aB)r(-nc)r(-nE) „~2=, nbelP 1

123 l35 P(P& RB s PP E P& 4I& tE& tc) '
025

(5.43)

From (5.25) we expect that only the n =w =P term
survives in the HPRP limit (we might also add that
1125 =0 in the MFD). As in the case of M„we see
that if the couplings have the trivial 4, and 45 de-
pendence of (5.39), the multi-Regge and HPRP
limits are equivalent to leading order in g23 and f35.

Having established the connection between the
multi-Regge and the HPRP limit, we now wish to
develop an intuitive picture of the latter. In Sec.
VI we will do so, and show the plausibility of (5.39).
In addition, we will show the connection between
(5.39) and the commutativity of the limits.
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FIG. 14. Helicity contours used to define M8&'" &. AQ contours are chosen so as to reproduce the partia1-
wave sum for X~ ~ X~ and A,g ~A().
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TABLE IX. Helicity-pole expansion of M8»

+A C Otg
1g (-s) (-sg) (-s4) s2

r(-n~) r(-n~)

W 1(n - na) -, j (w - nz)
f %3

n 0 e0 m' Wa

0'.~(
m=0 v=0

I (ng+ n@—nc —n w)

r(m- n„)r(n„- n~-m) r(v —nD)r(nD- n~-v)
m~ v1 ~45

xb»{n~-m, ng- n, nD-v, n@- w, 4'2, @'5)

1(m —n~)&(n~- n~-m) ~(v —nD)I'(n —n -v)+ ( 7/12) ( A)45)
1 12 f45e~n v=0 m 1

xb»(ng —m, ng -n, nD- v, n@-w; 4'2, 4'5)

z 1 (m —n&) F(n&- n& —m) I'(v —n&) I'(n&- na- v)+ (-F12) (-@45) 1 12 l45
m=0 M~ v&

xb»(n~ m~ n~ n& n& v& n& w&4'2&@5)

~(m —nay) ~(ng —ng- m) — 1 (v —n/) 1"(n/- nD- v)+ (-n12) (-@45) 112 145m~n v&~ ml vt

&&b»(ng —m, ng-n n@ v~ n@ w~ 4'2&c'5)

VI. INTERPRETATION OF THE HPRP LIMIT

In order to gain some insight into Eq. (5.41), we
shall consider the behavior of the O(3) variables
as we approach the MFD. For definiteness, let us
consider the following limit of M„where the limit
is determined by the invariants, as opposed to the
group variables:

S12, Sgp Sgi Sry S2jS» ~ ™,
4o~ ~& 5~ o~Sx~

t2 j3 t4 t5 7l 12 045 fixed .
(6.1)

In analogy to the case of the six-particle amplitude
considered by Jones, Low, and Young, "the limit
(6.1) does not uniquely determine the asymptotic
behavior of the group variables. However, the
different group-theoretic limits consistent with
(6.1) give rise to different types of power-law be-
havior in the invariants. Now from the discussion
of Secs. 11 and III, the limit of interest of the O(3)
variables in the HPRP limit is the following:

sion with a discontinuity in sx. The expression
(5.41) bears a strong resemblance (to within multi-
plicative terms) to the multi-Regge expansion of
the amplitude in Fig. 5."' This resemblance be-
comes more remarkable when we recall from the
end of Sec. II that in the MFD, the SO(2, 1) para-
metrization of M, becomes identical to that of a
set of "naive" momenta given by (3.41}. Since
this latter parametrization is identical to that of
a five-particle amplitude given by (3.40}, it is not
surprising that (5.41) contains factors correspond-
ing to the product of two five-particle amplitudes.
In fact, from Eq. (3.42}, it does seem surprising
that helicity poles, rather than Regge poles, would
control the asymptotic behavior of the inclusive
cross section in X, and X, (or equivalently iXs and
iXs}. It is inviting to take a closer look at the O(3)
parametrization of M, as we approach the MFD.
For our purposes, we will regard the MFD as the
following submanifold of the O(3} parameters:

MFD: t&=t~, tz=tz, tc =0,
y iao, $ iao, g iao, z =0 g~= $~~ Xs =X

(6.3)

«$00

(dies

40@@,$s, (@ finite .
(6.2)

Although other limits of the O(3) variables are
also implied by (6.1), we see from our result
(5.41) that the limit (6.2) gives rise to an expres-

It will become apparent that conditions such as
(5.37) that guarantee the identity of the double-
Regge couplings in the HPRP limit and the multi-
Regge limit, in addition to their obvious simplicity,
are suggested by the kinematics in the MFD.

First of all, let us consider the invariants q»
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Pcc = [,'V t~, -(tc/4 —m-„')'" s in(gc + v/2),

0, -(tc/4 —m„')'" cos (tc + v/2)] .
Since

(6.6)

P.' =R.(-8.)~.', (6.7}
p

we have that (writing pcB as a column vector)

1/2

2V t~ cosh8B+ -f -—m„' cos t'~+ —sinh8B

—~-m '~ sin g +-
4 N ) c

j./2-
—222tc sinh8B- ~-m„' cos (c+—cosh8B

(6,8)

and q„associated with the double-Regge vertices.
Now in Sec. V, we showed that (5.41) is identical
with the result obtained by taking the limit (6.1}of
the multi-Regge expansion of M, . It is important
to realize, however, that the kinematic relations
for q~ and g45 such as (3.19) break down in the
MFD and instead are replaced by (3.36). In terms
of the O(3) variables we have

m„—t„—tB +2(t„tB)' ' costs„B
~(m't t)

m —t~ —fB+2(t~tB) sin(d~B
(6 4)

X(m,', t„, t, )

and a similar relation for q45. As a result of (6.4),
if one wishes to continue (5.41) from an arbitrary
point in the HPRP limit to the MFD, it is necessary
to express (5.41) entirely in terms of invariants,
and use that form when performing the continua-
tion (the continuation is, of course, trivial). Once
in the MFD, one may reexpress the invariants in
terms of the group variables. using (6.4). The
physical significance of (6.4} can be seen from
(3.36}and (3.42). The correct form of M, in the
MFD and in the HPRP limit (6.2) can be obtained
by expressing (5.41) in terms of the O(3) variables,
continuing to the MFD, and making the extra sub-
stitution

+&a~ az- ('dg ~ (6.5)

where ~„is the Toiler angle at the double-Regge
vertex for the naive momentum set of Fig. 1. %e
remind the reader that the contribution of the
O(3) variables in the HPRP limit is given by the
SO(2, 1) expansion, so that (6.5} follows directly
from (3.42).

Let us consider the behavior of the other O(3)
variables as we gradually approach the MFD. If
we set Xc=0, then from Table VII and Table VIII,
we have

Fg
&A

«f
Pc

pFI

FIG. 15. Orientation of vectors in the E~ frame after
continuation to tz = t@ and t+ ——0. Note that P„=Qg -Pc.

If we continue tc from the upper half-plane to
the real axis below the threshold at t =4mN2, at
t=0 we have that

PcB =[-m„cos(gc+v/2), im„is(n$c+v/2), 0, 0] .
(6.10)

From Table VI and Eq. (4.12), we have

B +MN —SX
2

sin)c = (6.11)

The Eq. (6.10) becomes

P B B B w (Br x & x} 0 0 (6 12)

In Fig. 15, we show the orientations of the var-
ious momenta in the E~ frame when we continue
to the manifold t~ =t~, and tc =0. Let us consider
what happens when we impose the condition (B=0
found in (6.3}. This last restriction causes XB to
become a polar angle, defining the angle that the
vector p~. makes with respect to a new z axis de-
fined by pc~. I et us define a new submanifold of
O(3) parameters, which we call R. We define R
by

R: tB=tB, tc =0, and ( ]BOB, (6.13)

so that R contains the MFD given by (6.3). The
previous discussion suggests that if we continue
to the submanifold B, and rotate from the I'~
frame to a frame such that pc lies along the z
axis, then our original O(3) expansion is such that
the behavior of M, as cosx~- ~ is governed by
singularities in the angular momentum of the

P„P„.P& system, that is, J~. To summarize this
kinematic result, we state that on the submani-
fold A, the independent azimuthal angles X~ and

From (4.7), when tB =tB, we have

t t, -4t, '~2
cosh8 =— u, sinh8 =

~

B B . (6 9}
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X~ associated with the triple-Regge vertex become ordinary polar angles of the type that give
rise to Regge behavior.

Let us now consider what happens to the partial-wave expansion (4.17) when we approach R. If
we set ltc = 0 and let (B = )z = 0, we have

Jg= Jg= l XAI QB=-JB ~D= JDBJQ= ~DI ~@=-J@ Jg= l XP+ Xgl Xg=-Jg

xel&A~ABe&&zxze&&D~Dze&&zxzgA ($ )d B (z/2)d D
(g )dxz x (z/2)d c ($ +z/2) ~xA xz(fA. .. fz)

(6.14)

In (6.14), the terms are zero unless RE+LE+Ac =0. Now we may recombine the d functions in the following
fashion:

d XB X
(v/2)e'"B»d XB

X (-z/2) = (JB,xA Q v(w/2)R (-XB)R,(-X/2)
~JB, vz)

JB

= (JB, XA Q.(&/2)R, (XB)R (-7//2)
IJB~ &B)

e-f xAv/2 d' B ( )eivz2/2J
%yves X B

and similarly
+J

d E (7//2)e'"z "Ed E (-z/2) =e '"D""d E
(y )e'"E'"

XD X@ Xg Vg Xg)Vg g
-J~

Then

gXA=- ZA, JB= l XAI vz= /B "D-=- /D, /z = I"Dl vz= ZE ~C=- B /E -/C-= Cl

(6.15)

(6.16)

xe'"A ~AB "/' e'"D ~DE ""
doAx ((A)dx v ()tz)deco(pc+a/2)doux ()D)dx v ()fz) Bx"v x z v (fA ~ ~ ~ tz).

(6.17)

In the last equation we introduced the quantity
+J +JE

&a -Ja ~s -Jz
(6.18)

AB ~AB Z/ 1 +DE ~DE (6.19)

Now since (6.18) is just a linear combination of
partial-wave amplitudes,

pe'" Jz
X~V~X~) ~V@

has poles at J„=a„,J~ =a~, etc. It would appear
that the asymptotic behavior of M, in X~ and X~
is governed by Regge poles rather than helicity
poles. We caution the reader that this last ob-
servation is merely qualitative, due to the compli-
cated helicity structure of (6.18). In order to
make these arguments rigorous, it is necessary
to reexpress (6.17) in such a fashion that all kine-
matic singularities in helicity are displayed, as
in (5.88)."" We expect that such a procedure
can be found, since (6.17) must have the same
asymptotic behavior as (6.14).

Having seen that both Fig. 15 and Eq. (6.17) sug-
gest a purely "Regge" interpretation of the helicity
singularities in A. ~ and X~, let us pursue the
Regge analogy further. Consider the angles

If we continue to the submanifold R, then from
exactly the same arguments as those leading to
(3.42), we have that +EAB and &uEDE correspond to the
Toiler angles at the double-Regge vertices for the
"naive" sets of momenta shown in Figs. 16(a) and

FIG. 16. Diagrams corresponding to the O(3) para-
metrization of "naive" sets of momenta that result on
continuation to the submanifold R.
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16(b). We see that &u"„s and u&gs are precisely the
angles that appear in (6.17). From (6.4), we see
that if it is possible to rigorously take the limit
(6.2) of (6.17), the correct dependence on the O(3)
variables will be obtained quite naturally. From
both the kinematics of Fig. 15 and the partial-wave
sum (6.17}, it appears that the question of whether
the double-Regge couplings in the HPRP limit are
identical with those in the multi-Regge limit is
related to the question of whether or not the limits
may be approached in any fashion. In particular,

if we can rigorously continue to B and then take
the limit (6.2), the O(3) parametrization itself
"factorizes" into two pieces appropriate to 16(a}
and 16(b).

Now that we have developed an intuitive under-
standing of the HPRP limit and related our group
parameters to physical quantities in the reaction
of Fig. 1, all that remains is to completely specify
(5.41) in terms of measured quantities. In Sec.
VII, we will show that the Regge residues are
fixed by unitarity and factor ization.

VII. DETERMINATION OF THE RESIDUES

In order to determine the residues in (5.41), we will return to the SO(2, 1) notation of Sec. III so that our
final result can be easily compared with the exclusive Deck model of Ref. 1. We then let t„-t„n„-n, ,
etc. Now (5.41) corresponds to a signatured amplitude containing only right-hand cuts in the large invari-
ants, so that the full amplitude is obtained by summing over the allowed cuts." If we perform such a sum-
mation, the final result, to leading order in g» and g», may be expressed neatly in terms of the factorized
quantities of Weis":

disc, M, = p, (t,)r(-o.,)r(-a, )[g,~„s,"'s„~g»"'q„~V,(t„t„&„)+~,g„&, '&„"„»"„„"'V,(t„t;„»)]
x p, (t,)I (-a,)r(-~, )[g,g„s,~s„"q„q„"V,(t„t„q„)+ g, g„s, 's„~q„'q„"'V,(t„t„q„)]

27/$ a3 8inw((vs —cÃg —tx5)' r(n, +1) r sinwa, (7.1)
I

The signature factors ]„],& give the phase of the amplitude in terms of the trajectories a, and the singu-
larities g, . For the terms in the first bracket of (7.1), we have (, =e " ~+~„$,& =e " ' ~ +7;&q, «c,
but for the terms in the second bracket, we have $, =e "

& 7„+$;&=e '
~ "&+~~r~, «c.

the fact that M, is evaluated above the cuts in the subenergies of Fig. 8(a), and below the cuts in the sub-
energies of Fig. 8(b) (Refs. 12 and 24) (note that since we are taking the discontinuity' in sz, we must

evaluate M, both above and below the cut). We also remind the reader that V» = V» is the general triple-
Regge coupling appearing in (5.43); in the HPRP limit, we only keep the n =a=p =0 term. Now in the MFD
in the HPRP limit, we have

disc, M, =2i[p, (t,)r(-u, )]' lg, (»s, 's» 'V, (t„t„q») +(,f.„'s,"' 's„V,(t„t„'q)I'»

&&P (0)s + f(0, t, t ). (7.2)

In the above, f (0, t„t, ) is a standard form for the
triple-Regge coupling [see Eq. (6.39) of Ref. 4].
Note that (7.2) represents the contribution to
disc, M, from a particular set of poles ey &58r
for the special case Qy Qg and o., =a,. As in the
case of the exclusive Deck model, "' the pion and
Pomeron trajectories dominate, so that Qy Q4 Q,
and a, =e, =a~.

Now as we have discussed in Sec. V, and made
plausible in Sec. VI, if the Reggeon-particle cou-
plings have the trivial C„C, dependence of (5.39),
the double-Regge couplings V, (t„t~; q») and

V,(t„t„q») appearing in (7.2) are, to leading
order in the HPRP limit, given by (2.13) and (2.14).
From Ref. 1 we have

where P„~„(t,) is the pion-Pomeron-pion single-
Begge coupling.

The function M(t„ t, ) necessary to guarantee the
convergence of the hypergeometric series in
(2.13) and (2.14) is now given by

M(t„ t, ) = 12

S&S3~~(S»y Spy Sxy tQ)

where in terms of the quantities in (2.5),

(7 4)

s~ max s& +mfr +2gso@o
N N.

+2 j qP( ) tP[(cos8, cosP, '+sin8, sing, ) . (7.5)

In the HPRP limit, since s,/s»-0, and sx/s, -0,
we have

&(4 4) =-.&.~.(4» (7.3) M(t„ t, ) =[m,' —t, —t, +2(t,t,)]-'. (7.6)
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As described in Ref. 1, M(t„t,)/q» ~ 1 in the
physical region of the reaction, so that V,(t„t„'q»)
and V,(t„t„'q») are free of cuts in q». We note
that due to (7.4), our double-Regge couplings are
slightly different from the exclusive case, ' but by
(7.6) they agree to leading order in the HPRP
limit, as we desire.

Now if we recall that M„ the five-particle
amplitude for the reaction of Fig. 5, is given by

M, =H, +H„where H, and H, are given by (2.11)
and (2.12), then we may rewrite the contribution
to disc, M, from a particular trajectory o., as

e3-2 0',2

(7 7)(r(-a, )p„„(t,)]'
In (7.7) P„p„(t,) is the ordinary single-Regge

proton-Pomeron-proton coupling. As we dis-
cussed in Sec. Vl, (7.7) resembles the square of
the amplitude for the exclusive reaction, modified
by a "form factor" that depends on sx and t, . We
remind the reader that this expression cannot be
trivially obtained by extrapolating down to s~
=m„', since as we mentioned in the discussion

FIG. 17. Six-particle amplitude obtained by continua-
tion to poles at t~

——m, and t4
——m

following Eq. (2.6), the proton-pole contribution
is singular.

I.et us consider the contribution to I, from the
trajectories at cy, =a~ and n, =o.„, where o.„is
some effective meson trajectory with intercept —,'.
These are shown in Fig. 17. The resultant contri-
bution to (7.7) is given by

~M ~2
(Purser( )&x fj JJ (0 4~ t2)+PNun(0)sx fs»(0 2~ 2)]

t.r(- .)p...(t.)l' (7.8)

The triple-Pomeron coupling' f»~(0, tI, t, ) and the Pomeron-Pomeron-meson coupling f~»(0, t„t, ) are
simply related to the inclusive distributions. As in Ref. 1, we take I, to be the helicity amplitude for
which the p s have zero helicity in the t, and t, channel; the residue of our Reggeized form of I, at the
pion pole is then given by

resM, ~,, = —g „(m ' —4m, ')"'PN~„(t, )P„~,(t,)r( n, )$,s, '. -
From simple unitarity arguments, near t, = m„' and t, = m,', we have

(7 8)

(7.10)

where M, is the six-particle amplitude shown in Fig. 17. The single-pion inclusive distribution for m p
—7t X is given by'

dq 2iku2(s» m ~'~ m~')
' ~x ' ~ (7.11)

From (7.8)-(7.11), we may go to the pion poles in t, and t~ and relate f~~~ and f to the single-pion in-
clusive distribution

1-2n2 1'/2 -2 CI2' ' ' "=(p (t )& ]'
)

~ p (0)f (0 t t ) ~ p (o) ~'"' ' &' '
~S2 2 2

(7.12)

»
) M, )do„, /dq (7.13)

In the above, do," ~/dt, is the differential cross

We may now substitute (7.12) into (7.8) and obtain
that

l
section for m P - m P. The second expression,
which gives our result in terms of the inclusive
distribution for pP-PX and the PP differential
cross section, follows from the factorization of
the single-Regge residues. We emphasize that
(7.13) is only true when s, is sufficiently large so
that the Pomeron dominates over the contributions
from the other trajectories in the t, channel. Al-
though (7.1) is a completely general multi-Regge



M U LTI-REGGAE F ACTOR IZATIO N IN INC L US IV E. . . 2603

CX

dMq dt&dt&dg&dsx dMq dt&dt&dP&
V(s, t,},

where

do& y g «/dg
(4w)'s, do'„'-, /dt,

done ox/d&
(4w)'s, do,",/dt,

(7.15)

(7.16}

When s, is large, V(s», t, ) is independent of s, .
As we shall see, (7.15) and (7.16) provide a gen-
eral relation that may be used to test the condition
(5.37).

In order to calculate the amount of diffractive
p-g production in the reaction of Fig. 1, we write
the gp total cross section as"

R
tot
7r'P 71P VS2

(7.17)

where v,~ =21.3 mb and oR~ =19.7 mb GeV. Then
using the optical theorem, we may write'

P. .(4)P, (4)=( '.,/ ) '" (7.18)

with 25 =6.75. As in Ref. 1, we take for the pion
trajectory

a, = -(m,' —t, )/(m, ' —t, + 1),
and for the Pomeron trajectory

(y2 = 1.0+0.275 t2.

(7.19)

(7.20)

For the proton-proton elastic cross section, we
write

(7.21)

wit ~=6.84oeV-', 0",' =40 mb.
For the inclusive proton distribution, we use the

favored "solution 1" of Fox and Field. The Pom-
eron-induced contributions" are given by

s dion nx G (t )
& ~+GJsu(4) )(&

'dtds ~~p ' s vs ~sX 2

(7.22)

expression (7.13) will also be of direct importance
to us due to the limited number of multi-Hegge
couplings that have been determined.

Now the distribution for the exclusive reaction
m P- p p P of Fig. 5 is given in terms of the quan-
tities in (2.5) by

do'" 1

dMq„dt, dt dP, 2'(2w)'X(s„, m„', mw') ~p,"~ '

(7.14)

If we substitute (7.13) into (2.6) and (2.7), we ob-
tain the following result for the differential dis-
tribution of the inclusive reaction:

where

G (t ) = (2.32e~ & +0,33e~ 2) mb/Ge+

(7.23)

G»„(t,) =(0.95e """+3.45e"' '~) mb/GeV',

V = S~ —$2 —Slg2

In the above, the Pomeron trajectory is given by

ep =1.0+0.36 t„which is slightly different from
the currently accepted (7.20).

At finite incident energy, in arbitrary regions of
phase space, (7.8) will receive contributions from
terms other than PPP and PPM. In the absence of
any cuts on the data, this will have two effects.
First, in order to calculate the inclusive distribu-
tion in (2.7), we must consider terms where either
e2 or n, is not the Pomeron trajectory; this is
unfortunate since the fit to PP-PX that we shall
use contains only diagonal terms, and in addition,
we must deduce other double-Regge couplings be-
sides (2.13) and (2.14). Second, the factorization
condition (7.15) will break down. Since (7.15) is a
useful test of the identity of the double-Regge
couplings in the multi-Regge and the HPRP limit,
we would like to perform cuts on the data to
guarantee that only the PPP and PPM terms con-

tributee.

With the above goals in mind, we shall have the
following plan of attack. First, we will calculate
the inclusive distribution using (7.15)-(7.23), so
that the diffractive contribution from PPP and
PPM is known. Second, we will estimate the con-
tribution from nondiffractive production, and then
perform kinematic cuts on our result in order to
isolate a region of phase space where these non-
diffractive effects are negligible. Finally, having
isolated such a region, we shall compare (7.15)
with real data and check for agreement.

In order to estimate the total p-m production,
diffractive plus nondiffractive, we can recalculate
the mass spectrum, replacing (7.18) with

tot

P~J~(4)Pwpw(4) = ' e "~

where o„"~ is given by (7.17). (This procedure is
for estimation purposes. %e will ultimately try
to minimize the nondiffractive effects that we have
inserted in a "non-Regge" fashion. ) For the in-
clusive PP-PX distribution, we include the MMP
and MMM terms of Fox and Field" (note that w

exchange does not contribute due to G-parity
requirements). From their solution 1, the non-
diffractive contribution is
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l4-

where

(7.24)
l2—

IO—

Q „„P(f,) = (26.81 e' ~' '2 +4.80e """) mb/GeV',

G „(f,) =(18.1e"'") mb/GeV',

o.„=0.5 +t, .
In Fig. 18, we show the results of some pre-

liminary calculations, using an incident pion with
laboratory momentum 147 GeV/c. Using a simple
Monte Carlo program, we calculated a sample of
events in the missing-mass interval 4 & s~ & 25
GeV', and p-pion mass interval 0.95 &M, & 1.50
GeV. As in Ref. 1, we demand that lt, l

~ 2.5 GeV'
and lt, I~1.0 GeV'. In Fig. 18, curve A shows our
estimate to total p-g production. Curve B shows
our calculation of the diffractive p-vr production.
We remind the reader that in comparing with real
data on m P- m ~'71 X, one should multiply our
results by a "standard" factor', "of about 2. This
is due to the fact that the p does not fill up all
m'm partial waves. As we can see, the pure dif-
fractive contribution is about —', the total cross sec-
tion in this kinematic region.

Since we have the expressions (2.14) and (2.15),
we would like to isolate the kinematic region where
the cross section is dominated by the diffractive
contribution (i.e. , Pomeron exchange). It is in-
structive to look at Fig. 19, where we see the dis-
tribution in missing mass squared, sx. Again,
curve A is our estimate to the total p-p production,
and curve B is our calculation of the diffractive
contribution. We see that the diffractive contribu-
tion dominates in the region where sx is small,

30-
A

25—

~.20-

c 8 l5—
b

10—

0.90 I.O I.l I.2 I 3 I.4 I.5
M (Gev)

FIG. 18. Calculated p-7I. mass distributions for P»
=147 GeV/c; curve A, estimated total p-z production;
curve 8, diffractive p-7I production. 4&'s„~25 GeV2 for
both curves.

8—

b)
sc

2-

0 5
I I

I 0 I5

S„ (GeV')

I

20 25

FIG. 19. Distribution in missing mass squared, s„;
curve A, estimated total; curve 8, diffractive cont|. ibu-
tion; curve C, large st nondiffractive contribution from
MMM term.

as one may verify by comparing (7.23) and (7.24).
The largest nondiffractive contribution comes from
the MMP term, and is given by curve C in Fig. 19.
We see that it produces a flat distribution in sx
and dominates for large sx. If we recall that from
(3.36) and (4. 12), we have le'"&I = ~e'"&I-s, /s» in
the HPRP limit, we see that our approach to the
HPRP limit is governed by the value of this ratio, "
rather than the individual values of s» and s, (as-
suming that both are sufficiently large so as to be
out of the resonance region). As a result, if we
select only those events in which the ratio s, /s» is
large, we isolate both the HPRP limit of M, and
the diffractive contribution. Since the diffractive
contribution continues to rise as sx becomes small,
if we also consider inclusive events where s~&4
GeV', the diffractive contribution to the cross sec-
tion should be proportionately larger, even though
the multi-Regge expansion appears to break down"
for s»& 2 GeV' [in this region, our expression for
M, remains valid, but our expression for V(s», f, )
breaks down].

In Fig. 20, we see the resulting p-p mass spec-
tr um that results when we keep only those events
in our original sample satisfying s,/s» ~ 8. We
see that the relative fraction of diffractive events
has increased markedly; as before, we expect that
the relative contribution of the diffractive events
can be further increased by including those events
with sx ~4 GeV. ' In Fig. 21, we show the missing-
mass distribution for events satisfying our cut;
we see that we have suppressed the nondiffractive
contributions at all values of sx.

Let us now apply the preceding formalism to
m P- m m'm X. Let the four-momenta of the final-
state pions p m'p be q, q„q. We can consider
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IO—

~ S0

Q~
~ S(

pa ~ ]
E

q
'

Si

7/'

q

7—
o X4 Q0

5-b o.

(a)

Sp

(b)

FIG. 22. Diagrams contributing to 7I- p m-x'7I. X
through p decay.

I I I I I I

0.90 I.O I.I 1.2 I.5 I.4 I.5
M (GeV)

FIG. 20. Calculated p-7r mass distributions as in Fig.
18, subject to the cut s&/s„~8; curve A, estimated total
p-r production; curve B, diffractive contribution.

the amplitude to be due to diagrams such as those
in Fig. 22, where a dipion is produced by p decay
(for dipion masses away from the p mass, one
expects that the interaction at the upper vertices
can be approximated by w-m scattering). Then the
inclusive cross section can be expressed in terms
of diagrams like those shown in Fig. 23, where
we perform all possible interchanges of the final-
state pions on the left side of the diagram, and of
the initial-state pions on the right side of the dia-
gram.

If we let the four-momentum of the dipion be

q, =q+ +q, the kinematic quantities in (2.5) are

l2—

IO—

o oJ 8-

4 l
th

6—

unchanged, except for the replacement m
p

where sn=(q++q )'. We can further specify the

physical-region kinematics by defining the D
frame, in which

qn =jn+iin =0,

~1 (P10 0 0

lpga

I)

qD=(q~, lit lDsi &n~, 0, lgDlcosg~),

q~ = (qn„ l
q~

I
s in8n cos Pn,

I q
D

I s in8n sinPn, I
Qn

I cos8n) .

(7.25)

The orientations of the momenta in the D frame
are shown in Fig. 24. The quantities in the D
frame are given by

pD D w 1 l~pD
I [(pD }2 ypg 2]1/2

D

—s —m
qD 1 D ™w

l
QD

I
[(qD)2 ~ 2]l/2

q'. =q'..= ',
I
~i'I = lV, I =[(q',)' -~.']'" (7 25)

20o Pro D j. a
D D

sin)D = (1 —cos'PD)'/',

M, ~ =vsi~ M~~ =~sa~

s, =(q +9 P, s, =(q, +Q )'.

I I

IO I5 20 25
s„(Gev')

FIG. 21. Distribution in s„ for s&/s„~ 8; curve A,
estimated total; curve B, diffractive contribution; curve

C, estimated MMM contribution.

FIG. 23. Typical ten-particle amplitudes contributing
to inclusive Sm production. Upper blobs correspond to
n.-n- scattering.
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FIG. 24. Orientation of vectors in the D frame
(~'~- rest frame).

Then in exactly the same fashion as we obtained
(7.15), we have the following relation between the
inclusive and exclusive distr ibutions:

S2 S3 S4——&R
7 7

Sx SX SX
(7.28)

where R is some large number (say 5 or 8). This
last condition not only isolates the Pomeron con-
tributions to all of the diagrams in Fig. 19, but it
also guarantees that those diagrams are in the
HPRP limit. In addition, (7.28) ensures that it
does not make any difference whether we use s„
s3 or s4 in eval uating the eros s sections appearing
in (7.16). In addition, we should use only the dif-
fractive contribution to the inclusive PP cross sec-
tion given by the fits" (7.22) and (7.23).

In order to appreciate the significance of (7.27)
let us state the necessary assumptions for its
validity.

(1) The amplitude is evaluated in the HPRP
limit. This is guaranteed by imposing (7.28).

(2) The amplitude receives its main contribution
from a particular trajectory where n, =a,. This
may. be satisfied for an arbitrary reaction by the
quantum numbers of the allowed exchanges; in the
ease of the Pomeron trajectory, this is automatic-

do dg

dM~, dM, dQpdt, dt,dg, ds» dM, „dM, „dQ+t,dt, d P,
x V(s», t,), (7.27)

where dQs =d(cosen)dPD, and V(s», t, ) is given by
(7.16). We point out that in order to isolate the
PPP and PPM terms at the triple-Regge vertex,
we must also demand that s,/s» and s,/s» be large.
At finite incident pion energy, we must impose
the condition that

ally achieved by imposing (7.28).
(3) Conditions such as (5.39) hold, so that the

double-Regge couplings are identical to those in the
exclusive case.

Note that condition (2) contains the implicit as-
sumption that the amplitude is dominated by Regge
poles (at least in o., and a,); this appears to be the
case for the exclusive reaction g P- p g+g P. ' '

The first two assumptions are guaranteed by our
kinematic cuts; assumption (3) must be verified
exper imentally.

If we attempt to compare our results with re-
ported data, "for v p- v v'v & at p„b =147 GeV/c
(Fermilab experiment E154), we find that a detailed
comparison with experiment is difficult, since the
cuts made on the data were somewhat different
from ours. Since the missing-mass distribution
goes like 1/s», the calculated cross section is
extremely sensitive to the lower bound on this
cut. In addition, due to the usual problems with
finite missing-mass resolution, the 1/s» depen-
dence of the diffractive contribution makes it
somewhat difficult to determine accurately the
magnitude of this contribution at low missing
mass.

In spite of these difficulties, there are several
features of the data that suggest that our analysis
is correct. We shall briefly describe their analy-
sis of the data, which came from an initial sample
of 105000 g P pictures in the Fermilab propor-
tional hybrid system. The data that were analyzed
consisted of only those events which have survived
a particular cut in the pion rapidity y. The cut
was made, in effect, by fir st meas ur ing the
rapidities of all charged tracks in each bubble-
chamber picture, ordering the'tracks so that the
first track had the largest rapidity, the second
track had the next largest, etc. Only those events
were kept in which the gap in rapidity between the
third and fourth track, hy, was greater than the
average rapidity gap between all tracks in that
event. The final criterion was that the three
leading tracks had a net total charge of -1.

We see that the net effect of the above cuts is to
group the observed pions together in rapidity
space. This is similar to, but not identical with,
the effect of (7.28). This similarity may be seen
by considering the Feynman variable x, where
x=2Pl/~s». Let x, x, and x correspond to q„
q, and q in the overall center of mass. Then if
s, is small compared to s» sy2 and s~, and if
we take the pions to be produced mainly in the
longitudinal direction,

s, =s»(1 —x, —x ),
sg = s»(l —x~ —x), (7.29)

s, =(l —x -x),



MULTI-REGGE FACTORIZATION IN INCLUSIVE. . . 2607

s» = s~2(1 —x —» —x) = S2 —»s~2

—S3 —x Sg2 S4 x+ Sy2 ~

Then s, /s» ~ ff implies

» (Z —I)(I-»,-» )/a

and similarly,
l

», - (R —1)(1—» —x )/Z,

» -(A-I)(I-», -»)/Z.

(7.30)

(7.31}

If we impose a lower cutoff on the missing mass
sx so that we are above the resonance region,
we have

x+ +» + x ~ 1 —s»;„/sg2 . (7.32)

It is easy to see that (7.31) and (7.32) tend to group
the particles together with x, = x = x. Hence,
the condition (7.28) is similar to (but not identical
with) the rapidity-gap analysis reported in Ref. 29.

There are several features of the data that sug-
gest that our analysis is relevant in the region
(7.29). First of all, after the rapidity-gap analy-
sis is performed on the data, "one sees a clear
p signal in the m'p mass spectrum only after the
additional cut s» ~25 GeV' is made. This tends
to select the region (7.28), and also suggests pion
exchange in the t„t4 channels (and those channels
obtained by permuting the final-state pions).
Another encouraging feature of the data is that the
calculated diffractive mass spectrum in Fig. 20
(times a standard factor of 2} is roughly the same
size and shape. Owing to the different nature of
the cuts (and of course, experimental uncertain-
ties) we find this agreement encouraging. One
final bit of supportive evidence reported' is that

+w o w n w nuw-o w»-
7I' P 7T ff g g ef ~

O fr -P

The above appears to be approximately valid only
for s~&25 GeV'. This is clearly consistent with the
validity of the detailed relation (7.27) in the re-
gion (7.28).

From the preceding discussion, it seems that
the most sensitive test of the identity of the
double-Regge couplings in the inclusive and ex-
clusive reactions is to integrate both sides of
(7.27) over a missing-mass range, say 4 GeV'
~ s» «25 GeV' (assuming P„b =25 GeV/c), and

compare the resulting angular distributions.
Although the overall normalization should agree,
they are unfortunately quite sensitive to the lower
cut on s», due to the 1/s» dependence.

esting. If one finds detailed agreement between
the angular distributions in the inclusive and
exclusive reactions so that (7.27} is satisfied in
the region given by (7.28), then we will have ex-
perimental support for the identity of the multi-
Regge vertices in the inclusive and exclusive
reactions. On the other hand, if one can show that
(7.27) is clearly false, then the "Deck back-
ground"'~'"' in the 3p mass spectrum for the
inclusive case must be different from the back-
ground in the exclusive case. In this case, one
would hope that the presence of an 4, resonance
could be observed.

We also should mention that the ideas that we
have discussed might be investigated much better
in other reactions. This may be seen by consider-
ing the effect' of (7.28) in the 3» center of mass
(M frame). From (2.5), s, is given by the expres-
sion

s2 =s»+mr +200 Q»o

+2(j"( ~Q»((cosg, cosg, +sin8, sing, cosp, ).
(8.1)

If s»/s, is large, then

s, = s»+m, '+ ~2[q,"+ (q"((cose, cosg,
ySi

+sin8, sing, cosp, )]. (8.2)

Similar expressions result from considering s,
and s,. The effect of (7.28) at fixed center-of-
mass energy is to limit the angular region over
which (7.27) holds. It may turn out that PP or PP
colliding-beam experiments may provide a better
test of relations such as (7.27) in other reactions.

If (7.27) appears to be valid, it is interesting to
speculate on other experiments where the A, might
be produced by strong interactions. We remind
the reader that in the exclusive reaction» P- m m+w P, one is searching for an A., pole term
corresponding to a diagram like the one in Fig.
25. The fact that such a term is not present in the
data in an obvious fashion is due, at least in part,

VIII. DISCUSSION

In light of the preceding discussion, it appears
that a high-statistics study of m P- m m m X in the
"Deck region" of Sec. II should prove quite inter-

FIG. 25. Pole term corresponding to the A~ thought to
be present in ~ p m-x'm--p.
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FIG. 26. Double-pole term that may be present in pp
~ ~+~X.

to the nonresonant background. ' Since the ampli-
tude for the inclusive reaction in the HPRP limit
is nearly identical to that for the five-particle
amplitude [assuming (5.39) is true], it seems un-

likely that the "true A, resonance" will be seen in
the kinematic region (V.28) either. An interesting
candidate, however, is the reaction PP-m m'm X.
If we look at 3m combinations where the 3m system
has a net rapidity near zero, it may be possible
to isolate diagrams such as those in Fig. 26. In
order to be sure that we are in a kinematic region
where the expansion of Fig. 26 is appropriate,
the rapidity distribution of 3m events at fixed M, „
must exhibit a flat central plateau, just as the
single-pion inclusive distr ibution. Since we are
concerned with three-pion mass combinations with

M„»m„ the amount of rapidity space available
to the 3m system is considerably less than that
available to the individual pions; due to energy
requirements, it seems that we must, for the
present, consider either PP or PP colliding beams.
Now if one can establish that such a plateau exists,
then if Y~~ is the rapidity of the m z z system, we

expect that du/dM„~» „„after phase-space cor-
rections, should exhibit a sharp rise near the A,
mass, and (we hope) a similar rise will occur
near the real Qy Clearly processes other than
those shown in Fig. 26 will contribute to the in-
clusive cross section; however, regardless of
their size, one naively expects that their effect
should be systematically different from the usual
Deck effect.

IX. SUMMARY

In closing, let us attempt to summarize our
results. We showed that owing to the relatively
small size of the term 0, in m P- p'm P, we ex-
pect that a multi-Regge analysis of m p- p'p X
should work in the region of low p-m mass. We
showed that as we approach the kinematic limit
necessary for the application of Mueller's optical
theorem, the MFD, the SO(2, 1) group parameters

for the expansion of M, correspond precisely to
those describing a "naive" amplitude where we
treat the missing-mass four-momentum as belong-
ing to a quasiparticle. We extended previous
analysis of the six-particle amplitude to the eight-
particle case, and analytically continued the
SO(2, 1) parametrization into an O(3) parametriza-
tion. We were thus able to show that certain polar
and azimuthal angles become large in the limit of
interest, and that the amplitude is therefore dom-
inated by a mixture of Regge poles and helicity poles.

We refined previous notions of the nature of
helicity poles by showing tha. t the azimuthal angles
that give rise to the helicity-pole behavior become
identical with the polar angles for our "naive"
momentum set as we approach the "forward direc-
tion" [actually, the manifold R given by (6.13)].
Our particular group-theoretic limit is distin-
guished in this respect from other limits that give
the same asymptotic limit of the invariant sub-
energies, but give limiting forms of M, that do
not have discontinuities in s» (and hence do not
contribute to the inclusive cross section). In these
other group-theoretic limits, the azimuthal angles
do not transform into polar angles, and hence the
full parametrization does not reduce to a "naive"
one.

We also showed that due to the locations of the
complex helicity contours, the double-Regge ver-
tices are the same for the inclusive and exclusive
reactions if the Regge residues have a general type
of smooth behavior in the auxiliary variables. Our
improvement in the understanding of this problem
is twofold. First, due to the location of the
helicity contours, the identity of the vertices will
result from the residues being independent of C,
and 4, [see (5.39)]. Second, our kinematic study
of the azimuthal angles at the triple-Regge vertex
suggests that such behavior must be present;

In a straightforward manner, we have obtained
a multi-Regge amplitude for w P- p p &, where
the amplitude is fixed in terms of previously de-
termined single-, double-, and triple-Regge
residues. We were then able to estimate the
ratio of diffractive to nondiffractive production of
p-w systems. We showed that the region where
diffractive production is largest coincides with the
region where our expansion is valid. We demon-
strated that our analysis is qualitatively similar
to the standard rapidity-gap analysis, but that the
Feynman variable x is more appropriate that
rapidity. Qur prediction of the diffractive contri-
bution agrees with the data, which unfortunately
suffer from low statistics.

Lastly, we have proposed experimental tests to
verify the identity of the double-Regge couplings
for the inclusive and exclusive reactions, given by
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(7.15) and (7.16). We predict detailed relations
between the two reactions over well-defined kine-
matic regions. These relations, which may be
extended to other reactions, predict similar
angular distributions for the p-r system in the
previously mentioned kinematic region. A viola-
tion of these relations may suggest an exciting
region in which to search for the g, .
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