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Using extrapolation of the fit to all the available data on forward slope and the scaling of all the available
data on the differential-cross-section ratio in the variable ¥ proposed recently using the convergent
polynomial expansion, the cross-section ratio is predicted as a function of [¢| for higher energies.

I. INTRODUCTION

Experimental data on the differential cross sec-
tion for pp scattering at extreme high energies
will be available in the near future from accel-
erators, some of which are now under construction
at various places in the world. Itwillbe interesting
if some predictions can be made before these ex-
perimental results come out. If agreement of the
predicted results comes out to be at least rea-
sonably good, there is a possibility that the method
.of prediction can be used to compute differential
cross sections at asymptotic energies, depending
upon the desired accuracy, as an alternative to
highly expensive experiments with the accelerators.

Several scaling variables have been proposed
both by geometrical models and in model-inde-
pendent methods.' In no other variable has the
scaling been shown to be exhibited by the cross-
section-ratio data for diffraction scattering pro-
cesses in such a remarkable fashion as in the
variable ¥ proposed recently using Mandelstam
analyticity and the convergent polynomial expan-
sion (CPE).”? Whereas the scaling variable pro-
posed in Ref. 2 for all the elastic diffraction scat-
tering processes introduces spurious cuts in the
mapped plane and requires the information of at
least one real zero on the physical region of the
x =cosf plane, the variable proposed in Ref. 1 is
much simpler; it neither introduces any spurious
cut in the mapped plane when applied to pp scat-
tering, nor requires any information on zeros.

As one of the important applications, it hasbeen
pointed out in Refs. 1 and 2 that it is possible to
make partial-wave analysis at high energies, even
in the diffraction region, with economy of com-
puter time, using the phenomenon of scaling,
demonstrated using the CPE.»2 In this paper,
as a more important application of the method,*
using scaling of the available data on the differen-
tial-cross-section ratio in the range 50 <P ,,
<1500 GeV/c in the variable x proposed in Ref.

1, we predict the cross-section ratio for pp scat-
tering at higher energies as a function of |¢|. Our
predictions are based on the extrapolation of the
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excellent fit to the forward-slope-parameter data*
onto higher energies.

The paper is divided into four sections. In Sec.
II a summary of the CPE approach to scaling, as
described in Ref. 1, is presented. Section III
contains the results of our predictions. Several
aspects of the predicted results are discussed in
Sec. IV.

II. CONVERGENT POLYNOMIAL EXPANSION AND
SCALING IN pp SCATTERING

Neglecting pole contributions and using Mandel-
stam analyticity of the s and cosf planes, the
method of approach to scaling in pp scattering by
means of CPE, has been sufficiently well de-
scribed in Ref. 1. In this section we summarize
the method. Two different forms of CPE have
been proposed® for the differential cross section
for pp scattering:

—=e*%3YC,(s)P,202) 1

valid for finite energies, and

do

L p=aZ
e o "Zan(s)L"(ZaZ) 2)
valid for asymptotic energies, where
Z = (sinh"WVw)? (3)
with
1-x2
w= x+2_ 1 ) (4)
and
; a(s)=dy+d,n +d,n? (5)
with?®
SR s —4m2\t/2 .
n(s) =sinh (——4m,2 ) (6)

In Eq. (4) x, (-x,) is the start of the right (left-)
hand cut in the x plane, which is related to the
boundary of the double spectral function p,, or
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x,=1+15/2¢%, (7a)
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(s — 4m?)°’ (7b)

tg=4m %+
where the value A=m_ corresponds to the the-
oretical elastic boundary. An effective value of
A different from m , as determined by the slope-
parameter data, has been termed as giving rise
to an effective shape of spectral function.!» %5
By the conformal transformation Z, the cuts in
the x = cosf plane are mapped onto the boundary
and the entire domain of analyticity of the x plane
onto the interior of a parabola with focus at the
origin in the Z plane.!s*

At finite energies the physical region,
x€[-1,+1], is mapped onto a finite segment of
the right half of the ReZ axis, which determines
the orthogonal polynomials for expansion to be
{P_(Z)}.* Since the length of this segment varies
with energy, the nature of {P,(Z)} and the cor-
responding domain of convergence also vary.
Further, since the domain of convergence of
{P,(Z)} at any finite energy does not contain the
whole interior of the parabola, the convergence
of the expansion (1) is not maximum.®® However,
as s —~=, the image of the physical region spreads
onto the entire semi-infinite line, 0 < ReZ <,
like (Ins)?, which is the correct physical region
for Laguerre polynomials {L,(Z)}, and the domain
of convergence of expansion in terms of {L (2)} is
the whole interior of the parabola. Thus at asymp-
totic energies the polynomials determined by the
image of the physical region in the Z plane are
uniquely {L,(Z)}, and the rate of convergence of
the expansion (2) is maximum.5® As s-—~c,
{P,(z)}~{L,(Z)} and CPE (1) approaches the
optimized polynomial expansion (OPE) (3).

The conformal transformation (6) maps the
left-hand cut of the s plane onto the boundary and
the rest of the s plane onto the interior of a strip
in the 7 plane. The physical unitarity cut is mapped
onto the semi-infinite line 0 <Ren <, The
whole series expansion in (5) has been truncated
only after three terms because of the restriction
imposed by the unitarity upper bound on the for-
ward slope parameter.”!° The formula for the
forward slope parameter computed using Eq. (2)
or (3) is

valid for all energies. The asymptotic behavior
of b(s) is the same as that of a(s). This formula
has given an excellent description of all the avail-
able data on b(s) with the following parameters,’

t
__tp
4q2+tR) (8)

-dy=0.659,
d,=0.050, 9)
A=0.424 GeV,
which are consistent with 1lns type of asymptotic
behavior of the slope parameter. Defining
X(s, )= a(s)z(s,?), (10)

we obtain from (2)
f(s,t)=‘;—‘;(s,t)/g;i(s,o)=e-x;e,,L"(zx), (11)

where
a(s)

"3 a,6)L,0)

e (12)

Analogous expressions can be obtained from (1)
in terms of P,(x).

Some important convergence properties of the
polynomial expansion in the x plane, for physical
values of s, are noteworthy. Since, for s =,
a(s)—~ (lns)” with M =0, 1, and 2, the image of
the physical region in the X plane spreads onto
the right half of the Reyx axis like (Ins)”*2, Thus,
if M>0, as the case is for pp scattering, the
CPE in terms of P,(x) approaches the OPE (11)
in terms of L, (x) faster in the energy scale, as
s—o in the X plane. Further, the images of all
the singularities in the X plane are pushed onto
infinity like (Ins)” as s —; this implies that
f(s,?) is an entire function of x at asymptotic en-
ergies.

Certain attractive properties of x, expressing
its potentialities as a scaling variable, have been
pointed out.! For high energies and all values of
[t [, X~b(s)Z. For high energies and small values
of |t|<«<t,=0.078 GeV?, x~tb(s)~t(Ins)¥; but for
larger |¢ I, with lt| >1p and |t| «s, the kine-
matical region where a large number of data points
exist, x~b(s)nz)* —~ (Ins)¥(Inf)?. The scaling
variable £b(s) has been obtained by model-inde-
pendent method,!° and also in geometrical models'!
for small |¢| and large s. The variable #(Ins)? to
which x has the potentialities to reduce for
|¢] «<0.078 GeV?, if the future data on b(s) sat-
urates the unitarity upper bound, has been ob-
tained by Auberson, Kinoshita, and Martin.}? It
may be noted that except for small |¢|<<0.078
GeV?, the variable  is completely different from
other scaling variables.

In view of the uniqueness of the polynomials in
(11) and the maximal convergence of the series,
it may be possible that the same number of ¢,’s
with the same values account for the ¢ dependence
of f(s, ) at least in the peak region, for different
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FIG. 1. Scaling of the available high-energy data on
the differential-cross-section ratio. The solid line is
the scaling curve obtained by a fit done by eye.

values of s in the asymptotic energy region. Fur-
ther, because of the properties of x, some of
which are similar to those of known scaling varia-
bles, it is tempting to hypothesize scaling of
fls,#) in x; this is possible if the e,’s are in-
dependent of s. From (12) it is clear that one of
the ways in which this can happen is that all
“partial waves” possess the same asymptotic
behavior. At present, although we do not know
any theoretical proof as to why e,’s are inde-
pendent of s, our hypothesis on scaling has been
strongly supported by the existing data at high
energies. With the parameters occurring in x

being known from the fit (9), all the available data '

onfl(s,t) for P ,, >50 GeV/c were plotted against

X as shown in Fig. 1. Scaling is surprisingly well

exhibited even by those data points existing outside
the forward peak, around the secondary maximum,
and the region beyond it for |#| <10 GeVZ Such

a scaling has not been observed in any other vari-

able.

III. PREDICTIONS FOR HIGHER ENERGIES

In this section we predict (s, #) as a function
of || for several higher values of s at which
experiments have not yet been performed. Al-
though as has been mentioned in Ref. 1 the scaling
curve can be obtained by fitting the data in Fig.

1 with the formula (11), it may not be possible to

get the acceptable value of total 2 or a x2/DOF
~1, Nevertheless, it is required to fit the data -
with (11) to know the scaling function. But here,
without going to the complicacy of data fitting with
the help of a computer, we take the scaling curve
as that obtained by a fit to the eye, passing through
the mean positions of the data points of Fig. 1, as
shown by the solid curve. Since the spread in the
data points in Fig. 1 is less (there is a little
spread in the region of secondary maximum), the
error committed in drawing such a curve by eye
estimations is supposed to be less.

It has been observed' that scaling in ¥ improves
for larger values of P,,,. As energy increases
the spread of the data points decreases and the
limiting scaling curve is almost reached even for
P,,,=200 GeV/c. For higher values of P,,, upto
1500 GeV/c, the departure of the data points from
the scaling curve is negligibly small. With the
observationthat almost the limiting scaling curve has
been obtained as shown by the solid line of Fig.

1, it is safe to assume that all the future data on
f(s,t) for P,,,>1500 GeV/c will fall on this scal-
ing curve.

Equation (3) can be rewritten for all values of
s and f as

~t (s—4m2+¢)

Y e (s = am2+ty)” . (13)
From Eq. (7b) we note that for high energies
tp=4m % For large s and all values of |¢|<s,
Eq. (13) reduces to the simple form

w=—t/4m?. (14

Using Eqgs. (3) and (14) we note that the resulting
conformal transformation

Z =[sinh™ (- ¢/4m 2)}/ 2]? (15)

is the one that would be obtained by mapping only
the right-hand two-pion cut in the ¢ plane onto

the parabola and with the region — < Ret <0 being
mapped onto 0< ReZ <, In other words, the
conformal mapping used in Ref. 1 and earlier
ignores the presence of the left-hand cut at high

135 T T T T T vrrT T T
-
>
3
(43
e
)
0
120l Il 1 1 | S BT S 1
2000 10000 20000
P (GeV/c)

FIG. 2. Extrapolation of the forward slope parameter
to higher energies using the formula described in the
text,



2566 M. K. PARIDA 21
energies. This is understandable since, for s should have dominant contribution to scattering,
-, the physical region in the ¢ plane tends to be at least in the forward hemisphere. Using (15) in
the entire left half of the Ref axis and the start (10), we obtain

of the left-hand cut is also pushed onto infinity,
making its influence on scattering in the forward
hemisphere negligible. At such energies the

|| =4m, 2{sinh[x/a(s)]*/ 2}? (16)
which is satisfied by all the points on the scaling

right-hand two-pion cut, being the nearest one, curve. It may be noted that the above expression
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FIG. 3. (a) Prediction of the differential-cross-section ratio for different higher energies as a function of |¢| up to
the region of the secondary maximum. (b) Prediction of the differential-cross-section ratio for different higher en-

ergies for larger-|¢| region.
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for |t) in terms of x has been possible because

of the simple nature of the transformation vari-
able Z or . No such expression is possible with
relatively more complicated variable of Ref. 2.
However, recently scaling has been shown to be
exhibited in terms of a simple variable for other
diffractive!® as well as nondiffractive processes,*
in which case the relation (16) has also been ob-
tained.

Using (16), the coordinates f(s,?) and x for dif-
ferent points on the scaling curve of Fig. 1 are
noted. To know where a given value of (s, ),
with a known X, would fall in the f(s,?) vs |¢]
plot, for any higher value of s, it is necessary to
know a(s) occurring in the right-hand side of
(16). For this purpose we extrapolate the formula
for a(s) to higher energies, retaining only the
first two terms with the values of parameters
given by the fit (9). This is equivalent to extra-
polating the formula for the slope parameter to
higher energies, as shown in Fig. 2. Since the
formula for the slope parameter has been con-
structed using analyticity and the CPE, such an
extrapolation, like many other extrapolated results
used extensively in the literature™® is expected to
be stable. Of course objections might be raised
to the fact that the pole contributions have not
been explicitly retained in our analytically ap-
proximate formula for b(s), but as has been al-
ready mentioned,' the theoretical upper bound on
the absorptive part of differential cross section
has been shown to saturate the data in the peak
region®!® and the pole does not contribute to the
absorptive part. In view of this, it makes almost
no difference to neglect the pole contributions.

Using the extrapolated result on a(s) in Eq.
(16), we compute the values of |¢| corresponding
to the points on the scaling curve for a higher
fixed value of s. This process is repeated for
several fixed values of s to yield the expected
curves in the f(s,t) vs |t| plot, as shown in Figs.
3(a) and 3(b). In Fig. 3(a) the predicted curves
have been shown for P, =2000, 5000, 8000,
20000, and 30000 GeV/c up to the region of the
secondary maximum. In Fig. 3(b) the variation of
f(s,t) as a function of ¢ has been predicted for the
same energies beyond the secondary maximum
region with |¢| <9 GeV.? From these figures we
note that, although energy dependence of f(s, )
for smaller |¢| is slower, it becomes gradually
prominent as we move away from the region of the
forward peak. The energy dependence is quite
remarkable for larger |¢| away from the sec-
ondary-maximum region. The positions of the
dip and the secondary maximum approach the for-
ward direction as the energy increases, although
slowly, and the secondary maximum becomes
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FIG. 4. Prediction of the energy dependence of the
position of secondary maximum at higher energies.

sharper. Noting the positions of the secondary
maximum in the scaling curve of Fig. 1 at x,,
=5.125, we predict its position ¢, (s) to vary with
energy as

|t,.(s)| =4m Hsinh[5.125/a(s)]*/ 2}, (17)

This has been shown in Fig. 4. As a test of how
reliable these predictions could be, the value of
X =Xo=4.35+0.05 was computed' corresponding to
the dip in the 200-GeV/c data of Akerlof ef al.®
The prediction of the dip done in this manner

|t,(s)| =4m *sinh[4.35+0.05/a(s)]*/ 2 (18)

was found to be in excellent agreement with all the
available dip positions at higher and lower en-
ergies.! This fact enhances our confidence in the
reliability of the predictions presented in Figs.
3(a), 3(b), and 4. "

IV. DISCUSSION OF RESULTS

In this paper we have preditced the differential-
cross-section ratio f(s, ) as a function of |#| for
several higher energies. We have also predicted
the energy dependence of the secondary-maximum
position. The energy dependence of f(s,?), al-
though very slow near forward angles, gradually
becomes prominent for longer |¢| values. The
dip and the secondary maximum approach the for-
ward direction with increasing energy, although

-slowly. The secondary maximum becomes sharper

with energy. These predictions can be verified in
the near future from the results of high-energy
accelerators. If agreement of these results with
experiment are found to be reasonably good, this
method of computation of f(s,#) may serve as an
alternative to highly expensive experiments with
accelerators. Our predictions are based on the
observation of surprisingly good scaling of the
available data on f(s, t) for 50 <P, <1500 GeV/c,
the fact that the data for high values of P, fall on
an almost limiting scaling curve, and the extrapo-
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lation of the excellent fit to all the available data
on forward-slope parameters to higher energies.
One of the major contributions of the theory of
analytic approximation proposed by Cutkosky and
Deo,® and Ciulli’ is its spectacular application to
the extrapolation of physical quantities onto un-
known regions which are either inaccessible to
experiments or where experimental data do not
exist. Let us examine how far our formula sat-
isfies Mandelstam analyticity. As can be seen
from Eq. (7b), for high energies there is negligible
difference between cut positions of the real and the
absorptive part. Therefore, a fractional part of
the OPE (2) or (11) may be taken as the contri-
bution of the real part and the other as that of the
absorptive part. So far as the absorptive part is
concerned, our construction satisfies its correct
Mandelstam analyticity. So far as the real part
is concerned, the pole contribution has not been
taken into account. But it is well known by now,
both theoretically®'® and experimentally,’” that the
absorptive part almost completely dominates high-
energy diffraction scattering, at least near for-
ward angles. 'In view of this, perhaps, we do not
commit significant errors in not taking into ac-
count the pole contribution in the already negligible
real part. A second argument leading to the fact
that poles should not contribute at high energies
is suggested from the excellent scaling of the
data on f(s,?) near forward angles. If the poles
in the x plane contribute, one of them should have
significant effects near forward angles. Using
Mandelstam representation, one of the pole con-
tributions in do/dt is g%/(m® - t)?, which is a func-
tion of ¢ alone. The presence of this term in the
cross section violates scaling. These arguments
suggest that only cuts in the x plane are impor-
tant for diffraction scattering.’® Since our formula
is consistent with the cut structure, the extra-
polation of the slope parameter onto higher en-
ergies is supposed to be stable. Of course it is
important to evaluate errors in the parameters
in (9) to know how far the extrapolation is stable.
Because of the complicated nature of the scaling
variable proposed in Ref. 2, it is not possible to
write a simple relation like (16) using that var-

iable. When the conformal mapping of the x plane,
used in Ref. 1 and suggested for unsymmetrically
cut x planes earlier, is applied for pp, n*p, and
K*p scattering, it develops spurious cuts in the
mapped plane. Further, the conformal mapping
of Ref. 2 introduces spurious cuts for all pro-
cesses. Because of this, it is not possible to
carry out such predictions for other diffraction-
scattering processes unambiguously. However, it
has been demonstrated recently that scaling for
both diffractive'® as well as nondiffractive pro-
cesses can be exhibited in a remarkable fashion
by means of a simpler variable which does not
introduce any spurious cut or require any infor-
mation on zero for its construction. Using the
variable proposed in Refs. 13 and 14, it is pos-
sible to obtain a simple relation of the type (16)
for any of the diffractive or nondiffractive pro-
cesses possessing the unsymmetrically cut x plane
of analyticity. Then using the similar method
adopted here, predictions can also be made for any
of the elastic diffractive processes such as 7%,
K*p, and Pp or the inelastic nondiffractive pro-
cesses such as 1p ~ 7, mn, for which available
data on f(s, t) are sufficient to yield a well defined
scaling curve. But since for high energies the
formulas for the slope parameter and the con-
formal-mapping variables of the x plane for
|t| «<s, used in Refs. 1 and 13, are essentially
the same, the scaling curve and the expected
predictions for pp scattering with the variable of
Ref. 13 would also be the same as obtained here.
In this work the differential cross section, nor-
malized to its forward value. has been predicted.
But the absolute value of do/dt can be predicted
if the available data at high energies on the forward
differential cross section are fitted by using the
technique of OPE and extrapolation is made onto
higher energies. Although in that case the errors
in the predicted values will magnify, such a prob-
lem needs attention.
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