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In this and a following paper we generalize the method of approach by the convergent polynomial
expansion (CPE) for both elastic diffractive and inelastic nondiffractive hadron-hadron collision processes at
high energies. The presence of spurious cuts in some of the conformal mappings used earlier is pointed out.
A conformal mapping of the unsymmetrically cut cos0 plane, which does not develop any spurious cut or
require any knowledge of zeros, is combined with that of the s plane to construct a variable g(s, t) which

has the potentialities to reproduce some known scaling variables and Regge behavior and to provide
information about asymptotic behavior of slope parameters of the type —(lns)", with n = 0,1,2. Away from
the diffraction peak the variable becomes b(s)(lnt)'. Because of the absence of spurious cuts in the mapped

plane, the variable has the potentialities, to provide information on the possible existence of entire functions
for the differential-cross-section ratio f(s,t) at asymptotic energies. However, the rate of convergence and

the nature of the polynomials in the proposed CPE are not uniquely fixed at finite energies. Only at
asymptotic energies the polynomials are uniquely the Laguerre polynomials and the CPE goes over to the

optimized polynomial expansion. The possible existence of a scaling function for the differential-cross-
section ratio at asymptotic energies as a series in Laguerre polynomials in the variable y is pointed out. The
first term in the expansion in the CPE gives a good description of the energy dependence of the forward

slopes for different processes without needing any effective shape of spectral function. From the asymptotic
behaviors of slope parameters obtained from data analysis we find that qualitatively the forward slopes for
m+p and K+p scattering grow at the some rate, like —lns, as shoo. Quantitatively there is also a positive
indication that asymptotically the forward slopes for m+p scattering may be equal. Available data on the
cross-section ratio for any elastic diffraction scattering process at high energies with P~,b & 50 GeV/c and all

values of it~ exhibit scaling in a remarkable manner and lie on a scaling curve. However, for lower
values of P„b, experimental data with larger values of ~t

~

deviate from the scaling curve. Because of the

simple structure of the variable k, the possibility of predicting f(s,t) as a function of t
~

and for higher
values of s is pointed out. Our data analysis reveals that the differential-cross-section ratios for pp, m+p,
and K+p scattering are entire functions of the corresponding g's for s ~ ao.

I. INTRODUCTION

Recently some scaling variables have been pro-
posed for the differential-crass-section ratio of
elastic hadron-hadron collision processes at high
ener gies. Brief reviews of the works on s caling
have been reported in Refs. I (paper I) and 2 (paper
II). In no other variable has scaling been shown to
be exhibited by the experimental data in such a
remarkable fashion both for small and large mo-
mentum transfers as in the variables proposed in
I and II, constructed using conformal mapping and
the convergent polynomial expansion (CPE). Sig-
nificance of scaling in the context of the CPE has
been discussed in I and II. Usually the optimized
polynomial expansion (OPE) for scattering ampli-
tudes' involves unknown parameters which depend
upon energy. While analyzing the differential-
cross-section data by means of OPE, a set of
parameters at every energy has to be determined
with the help of a computer. Although this program

has been found to yield. meaningful results, "it
is definitely cumbersome and may even be untract-
able for data analysis at high energies. However,
if scaling can be shown to be exhibited in QPE in
a suitably chosen conformally mapped variable,
the scaling function and hence fits to the data at
all high energies can be known once the parameters
are determined by fitting the experimental data at
any single energy in the scaling region. Thus,
realization of scaling in the context of OPE is
very important from the point of view of economic
use of computer time in fitting the high-energy
data. An important consequence of scaling which
missed our earlier observations, "but which has
been discussed in this paper, is that even without
fitting the scaling curve, the cross-section-ratio
data for higher energies and as a function of ~t ~

can be predicted from the knowledge of the scaling
curve and the scaling variable, particularly in
the cases where the latter is a simple function of
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In I the conformal mapping of the x=cos8 plane
developed earlier" has been combined with the
conformal mapping of the s plane for constructing
the scaling variable for Pp scattering for which
no spurious cuts are introduced by the mapping
functions, However, when the method adopted in

I is applied to processes possessing unsymmet-
rically cut x planes of analyticity using conformal
mapping of Ref. 7, spurious cuts are introduced in

the mapped plane. Although the presence of such
cuts has been discussed in I and II, a fully correct
picture about their locations has not been supplied.
In II a conformal mapping of the x plane developed
in Bef. 8, whigh guarantees a convergent expan-
sion in I,aguerre polynomials for all energies,
has been used to construct a scaling variable for
pp, pp, K'p, and m'p scattering. Apart from ex-
plaining shrinkage-antishrinkage of forward peaks
at all energies, ' early onset of scaling is exhibited
by the cross-section-ratio data in this variable. '
There are other beautiful features of this variable
which have been sufficiently well discussed in II.
But two of the several limitations' of this approach,
which are important for the present paper, are
the following: First, for the construction of the
conformal mapping which guarantees CPE in
terms of Laguerre polynomials for all energies,
existence of at least one real zero on the physical
region of the x plane has to be assumed. While
fitting the slope-parameter-data, equations to
real zero trajectories have to be taken either
from experimental information or model predic-
tions or else they have to be assumed. Undoub-

tedly such a prescription has yielded a universal
description of the slope-parameter data for all
energies' and the real zero trajectories, which

get theoretical support from the predictions of the
Veneziano model, ' might be really existing for
several processes, ' but recent computation of zero
trajectories' ' indicates that they are, in general,
complex at least for certain processes. The
main problem is that, except for m P scattering, "'"
the presence of real zero trajectories has not
been established yet for other processes from
data analysis. ' " Second, the variable used in
Ref. 8 and II develops spurious cuts in the mapped
plane, which may be an objectionable feature from
the point of view of the correct analytic represen-
tation and the CPE. As clarified in Sec. II of this
paper, since the spurious cut is present in the
mapped plane for all energies and for all the elas-
tic scattering processes considered in II, the
possibility that f (s, t) may become an entire func-
tion for s- ~ in the scaling variable X suggested
in II is ruled out for all those processes. ' A

third limitation arises when an attempt is made
to predict the cross-section-ratio data for higher

energies in the scaling region as a function of t,
because of the complicated t dependence of the
mapped variable. " Further, if a method of
representation of scaling is developed for pro-
cesses with unsymmetrically cut x planes of
analyticity, but without requiring any knowledge
of zeros, it mill be easier to generalize it to
include scaling in inelastic process" "such
as w P-won and w P-gg.

Since the OPE has been found to be extremely
useful in numerous applications, both in particle
and nuclear physics, ' where emphasis is given on
convergence and correct analytic representation,
it is important to know the location of the spurious
cuts introduced by the mapping functions used by
others. In this paper we point out that spurious
cuts are present in the conformal mappings used
by some authors" "who did not mention the
presence of such cuts in their works. For the
sake of completeness we also supply further
clarification on the spurious cut present in the
conformal mapping used by Deo and Parida, ' and
provide a brief summary on the spurious cut in
the conformal mappings used recently. ""

Energy dependence of the slope-parameter data
and scaling of the cross-section-ratio data for PP
scattering have been described effectively in the
context of the CPE in I without introducing any
spurious singularities. In view of the presence
of the spurious cuts in the variables used in II
and Ref. 8, doubts may be raised whether an un-
questionable representation of the scaling of the
data in the context of CPE exists for processes
possessing unsymmetrically cut x planes of analy-
ticity. In this paper we show that it is possible
to describe the energy dependence of the slope-
parameter data and represent scaling of the
corss-section-ratio data for such processes at
high energies by means of a simple conformal
mapping which does not introduce any spurious cut
in the mapped plane or require any knomledge of
zeros of the amplitude. Whereas it was necessary
to fit the slope-parameter data at both forward
and nonforward angles in order to know the un-
known parameters in the scaling variable in II,
the parameters in the present variable, whose
number is one less than that in II, are determined
by fitting the slope-parameter data at forward
angles only. Since the construction of the variable
proposed here does not require any'knowledge of
zeros, it is easy to generalize such an approach
to inelastic processes for which the variable also
succeeds in a remarkable manner. "

The formula developed for the slope parameter
has the potentialities, as in I and II, to yield
asymptotic behaviors of the type -(ins)", with

~ =.0, 1,2. In fitting the slope-parameter data at
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high energies, no effective shapes of spectral
functions are needed. Data analysis indicates that,
qualitatively, the slope parameters for K'P and
m'P scattering grow asymptotically at the same
rate as -lns. Quantitatively also, as an evidence
in support of model-independent predictions, we
find that there is a positive indication that the
slopes for p'P scattering may grow at the same
rate. Contrary to the analysis of II, where f(s, t)
is not an entire function of X for s- ~ because
of the presence of the spurious cut in the mapped
plane, we conclude here from the information on
the asymptotic behavior of slope parameter that
the differential-cross-section ratio becomes an
entire function in the scaling variable X(s, f) for
s -~, at least for pp, K'P, and v'p scattering. Unlike
the situation in II, here the nature of the poly-
nomials is not uniquely fixed for all energies but,
as in the results of I, the length of the physical
region and the nature of the polynomials vary
with energy for finite energies. Only at asympto-
tic energies the polynomials are uniquely the
Laguerre polynomials and the CPE goes over to the
OPE. Scaling of the data on f(s, t) in the variable

X is similar to that in II for the cases of g P and
m P scattering. For the cases of PP and w'P scat-
tering, scaling is almost similar to that in II,
except for the fact that there are a few more
deviations from the scaling curve for lower
values of Ph,b. There are significant deviations
of the data from the scaling curve in K'P scatter-
ing, as compared to that in II, for lower values
of P~,b and larger values of ~t~. However, all the
available data for every process with P„b ~ 50
GeV/c scale in the variable X in a remarkable
manner. If the present variable and CPE are
applied for PP scattering, the same results as in

I would be obtained for high energies. Several
limitations of this approach are pointed out. Ap-
plications of this method for inelastic processes,
the success of which has been demonstrated in a
subsequent paper, "and predicting f(s, $) for higher
values of s have been pointed out.

This paper is organized in the following manner:
In Sec. II we report a brief review of the spurious
cuts present in different conformal mappings. In
Sec. III we propose conformal mappings of the s
and cos8 planes and discuss scaling of the differ-
ential-cross-section ratio by means of the CPE.
Section IP is devoted to the analysis of the experi-
mental data on forward-slope parameters at high
energies, obtaining information on the asymptotic
behavior of slope parameters, realization of the
possibility that f(s, t) may be an entire function of

y for some processes, and demonstration of scal-
ing of the cross-section-ratio data. In Sec. V we
summarize. the results of this paper and discuss

several limitations and applications of this ap-
proach. In Sec. VI we state our conclusions
briefly.

II. SPURIOUS CUTS IN CONFORMAL MAPPING METHODS
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FIG. 1. A schematic picture of the analytic structure
of the amplitude in the x=cos8 plane. The solid circles
represent poles. (b) Conformal mapping of the x plane
onto the Z plane as proposed in Ref. 6 for pp scatter-
ing. The solid circle represents images of the poles.

The OPE for scattering amplitudes and form
factors' has found its successful and extensive
applications in many areas of particle physics.
From the time of inception' of optimal convergence
by conformal mapping, many mapping functions
have been proposed and approximate forms of
amplitudes constructed, but not all of them go
without flaws. In this section we point out that
spurious cuts are present in the conformal map-
ping used by Dumbrais and Chernev, "Dumbrais,
Chernev, and Zlatanov, " and Deo and Mahapatra. "
Although these cuts clearly violate analyticity
properties, no mention of these has been made by
the authors. " " For the sake of completeness we
also provide further clarification on the nature of
the spurious cut present in the mapping of Deo
and Parida' and a brief summary of the spurious
cut in the mapping function used recently by
Parida" and others. "

According to Mandelstam analyticity a schema-
tic picture of the general analytic structure of
scattering amplitude for a process a+b- a+ 5 in
the x =cos9 plane has been shown in Fig. 1(a).
Here x, (-x ) denotes the start of the right- (left)-
hand cut and x~ (-x~ ) denotes the image of the f-
(u-) channel pole. Generally, the cuts are un-
symmetrically placed with respect to the origin
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exceptfor afewprocesses. In the case of pP scat-
tering there is t- u symmetry which imposes
x, =x and x~=x~. The first attempt towards
understanding the already existing phenomenologi-
cal fits to differential-cross-section data was
proposed by Deo and Parida' by means of a para-
bolic conformal transformation onto the Z plane,

(a) ~p
///// ////////J

(b)

~ / ///////////// u/s //////////////I/

QP= 2 ))
+

Z=(sinh '~(o '.
(2 1)

(2.2)

T'his conformal transformation has been shown in

Fig. 1(b) which does not introduce any spurious
cut in the mapped plane. Neglecting the contribu-
tion of the pseudoscalar pion poles to the imaginary
part, which dominates the scattering data near
forward angles, a convergent expansion of the

type

d
—=e x Q C„(s)P„(2nz) (2.3)

provides a good analytic approximation for the
cross section at least in the diffraction region. It
has been shown in I that the series (2.3) conver-
ges for all energies, but only at asymptotic ener-
gies is the convergence maximum and the poly-
nomials (P„(Z)) are uniquely the Laguerre poly-
nomials (L„(Z}J.

Dumbrais and Chernev" have argued that the
convergence of (2.3) is limited by the image of the

pion poles in the interior of the parabola in the Z
plane. They claim to have proposed improved
convergence of Laguerre polynomial expansion in

terms of a mapped variable that maps the poles of

PP scattering onto the apex of the parabola by the
following steps:

1—
U= 2-1 '

Z, =(sinh VP)',

(2.4)

(2.5)

where x~+=x~ =x~ = I+m„'/2P' for pp scattering.
The authors then use the polynomial expansion

8„ s L„ Z,
n=o

(2.6)

to fit the data at different fixed energies and ex-
tract information on the slope parameter. " The
values of the forward-slope parameter obtained
by these authors are found to be very different
from those obtained by conventional methods of
parametrization. But it is very clear that the
transformations {2.4) and {2.5) introduce spurious
branch points at x=+x~, giving rise to the spurious
left- and right-hand cuts in the regions -~ &x
&-x~ and x~ ~x~~, respectively. In fact, by the
conformal transformations (2.4) and (2.5), the

FIG. 2. Spurious cuts in the x plane, shown by the
dotted contours, as introduced by the conformal map-
pings adopted by Dumbrais and Chernev (Ref. 16) and
Dumbrais, Chernev, and Zlatanov (Ref. 17). (b) Para-
bolic conformal mapping of the x plane onto the Z~
plane used in Ref. 16. The dotted lines represent the
images of the spurious cuts. {c)Elliptic conformal
mapping of the x plane onto the Z~ plane used in Ref.
17. The dotted lines represent the images of the spur-
ious cuts.

singularities are logarithmic branch points at
x=+x~ instead of being simple poles. Perhaps the
authors have missed this vital point regarding
correct Mandelstam analyticity. The spurious
cuts introduced in the x plane in this process have
been shown by the dotted curves in Fig. 2(a).
Figure 2(b) shows the confor mal mapping onto the

Z, plane, the dotted lines being the image of the
spurious cuts. Thus the conformal mapping
adopted by Dumbrais and t."hernev" directly vio-
lates the basic principle of Mandelstam analyticity.

Using elliptic conformal mapping and expansion
in terms of Tschebysheff polynomials, Dumbrais,
Chernev, and Zlatanov~' claim to have proposed a
new analytic parametrization of the differential
cross section in the diffraction region. The authors
extract new values of the ratio of the real to the
imaginary part and the forward-slope parameter
for pP, PP, Pd, v'p, and K'P scattering, which, in

most cases, are found to be completely different
from those obtained by the conventional method of
parametrization. The argument adopted by the
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2x-" -x
y

1 2

X2 xg

J —7p
1 —7'Vo

u(m) = Z, (sin 'w, 0)

(2 'f)

(2.8)

(2.9)

(2.10)

z, =-',(v+v ') =sin(
2

(2.11)

where E, and E, are incomplete and complete
elliptic integrals of first kind, respectively,
and

authors" is the same as that of Ref. 16, which is
that the presence of the pole singularities in the
interior of the figure of convergence limits the
rate of convergence of polynomial expansion. In
their conformal transformations the pole singular-
ities are mapped onto the turning points, and
other parts of the real x axis, for which Rex& x~

and Rex& -x~, are mapped onto the boundary of a
unifocal ellipse. The desired conformal mapping
is achieved through the following steps:

Z =(2+W3)(v'3+s —v 3)/Ks,

Z, = (2+&3)(2+iv's —4)/Ws.

(2.15)

(2.16)

others survive. The points zv =+K correspond to
the images of the nearest singularities by con-
struction whether they are poles or branch points.
Thus the conformal transformation introduces
two spurious cuts in the x plane in the regions
-~ &Rex&-x~ and x~ &Rex&~as shown by the
dotted curves in Fig. 2(a). The mapping onto the
ellipse along with the images of the spurious cuts
are shown in Fig. 2(c). In view of these, the for-
mula proposed by the authors" does not conform
to the correct analyticity property of the differ-
ential cross section for PP, PP, Pd, w'P, and K'P
scattering, where poles are nearest singularities.
In view of this, the claim made by the authors"
regarding correct analytic representation turns
out to be false.

In a very explicit form and clearly violating
analytic ity proper ties, the spur ious cuts ar e
present in the conformal mappings adopted by
Deo and Mahapatra" who apply OPE to propose
a scheme of parametrization for the S- and P-
wave mm partial-wave amplitudes. While mapping
of the left- (right-) hand inelastic cuts in the s
plane shown in Fig. 3(a) onto a circle in the Z
(Z+) plane, the authors use

with

O'- —V+

+Y+Y —1

V+ Y-+X-Y+
Y++ Y

(2.12)

(2.13)

Clearly these mappings introduce square-root
branch points in the s plane at s =0 and s = ~,
giving rise to the spurious cut in the region 0 &

Res ~ ~ shown by the dotted line in Fig. 3(a).
The images of the spurious cuts in the Z and Z,

y ( 2 1)1j2 (2.14)
(a)

Here x, and x, are the boundary points of the seg-
ment of the physical region in the x plane on
which the data are known. In the mapping adopted
here the x plane is mapped onto the y plane
stretching the region [x„x,j onto the region [-1,1j
The mapping from y to the se plane symmetrizes
the pos itions of the nearest s ingular ities whether
they are branch points or poles; and the points
-xI (-x ) and x~ (x, ) are mapped onto the points
-8' and S', respectively. The mapping onto the
Z, plane by (2.11) through (2.10) then gives the
desired ellipse. Whereas Cutkosky and Deo map
the start of the cuts onto the turning points of the
ellipse, these authors map the poles onto the
same points. But while doing so, spurious branch
points are introduced at the pole positions affect-
ing the analyticity property. This can be easily
checked from (2.9) where u(w) has branch points"
at so=el, w =+(1/k) =+W, and w=+~. By construc-
tion of the variable Z, through the function v(w) in
(2.10), the branch points at w=al disappear but

l /II I I I I I I I I I I II
~ ~ ~ ~ ~ ~ ~ ~ V / / / I / / / I I I / I / /

(b) (c)
I i LL Ll

~ ~ ~ ~ ~ ~ ~ ~ pC
r

~ ~ ~ ~ ~ ~ ~ o o~l

FIG. 3. (a) Analytic structure in the s plane used by
Deo and Mahapatra {Ref. 18). The dotted contour is the
spurious cut introduced by the conformal mapping used
by the authors. Q) Conformal mapping of the right-
hand cut onto the Z plane used in Ref. 18. The dotted
line represents the image of the spurious cut. (c) Con-
formal mapping of the left-hand cut onto the Z plane
used in Ref. 18. The dotted line represents the image
of the spurious cut.
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planes are shown in Figs. 3(b) and 3(c). In view of
this, the results" derived from extensive data
analysis lose their weight.

While generalizing the conformal transformation
(2.1) for unsymmetrically cut planes of analyticity,
Deo and Parida' used the following mapping func-
tions:

g =2X+X —X+,
2 2

gma
8 2 27 u Xmax

Z„=(sinh Vio, )',
where

Xmax
= 2 +x- x+ y

=x +x+ ~

(2.17)

(2. ie)

(2.19}

(2.20)

(2.21)

Then a Laguerre-polynomial expansion of the
type (2.3) in the parabolic variable Z„has been
used to describe the energy dependence of the
slope-parameter data for PP, PP, and K'P scatter-
ing. The variable Z„which reduces to Z given in
(2.2), when x, =x, causes no problem for PP
scattering. But for a general unsymmetrically
cut x plane of analyticity the transformation y2 in
(2.18) introduces a spurious cut in the y' plane in
the region 0 & Rey2 ~ ~ by folding a part of the y
plane on top of the other part. In the Z„plane, the
spurious branch point at y' =0 is mapped onto the
point

expansion. As can be easily seen from Eqs. (2'.22)
and (2.23), Z„' lies at one of the end points of the
image of the physical region which moves on the
ReZ„axis with energy. This can be verified by
rewriting Kq, (2.23) as

q' [I +(t —t, —t /s)/4q']'
[1+(tJ.—&/s)/4q ]

(2.24}

(2.25)

x.-x x-+1
1glo = '

7x +x x,-1 (2.26)

For very high energies se -s and Z„' moves onto
infinity like -(lns)', along with the end point of the
image of the physical region. Therefore, although
the spurious cuts affect the convergence of poly-
nomial expansion at finite energies, they cause
no problem at asymptotic energies. Looked at as
an analytic function of x, Z„(x) has no other sin-
gularities in the x plane except the dynamical cuts;
Therefore expansion in Z„(x) does not violate
analytic ity.

Recently, ' shrinkage-antishrinkage of forward
peaks has been related to the experimentally ob-
served or assumed real zero trajectories in PP,
PP, K'P, and m'P scattering. A convergent poly-
nomial expansion has been developed for all
energies' by means of a conformal mapping con-
structed using the following steps:

Z„'=(sinh 'vw g',
where

(2.22) Z, =(cosh '~u, ',
Z, =g'(x)Z, .

(2.27)

(2.28)

~m~=ymax /(Smm —ym ) ~ (2.23)

FIG. 4. Conformal mapping of the x plane onto the
Z„plane used in Ref. 7. - The wavy lines represent the
spurious cuts in the mapped plane.

The branch point at y' = ~ is mapped onto two
points, Z'„=~ +i~ and Z„' =~ —i~. These three
branch points give rise to two cuts starting from
the common point Z„' in the Z„plane as shown by
wavy lines in Fig. 4. Obviously, because of their
presence inside the figure of convergence these
spurious cuts affect the convergence of polynomial

Here c is a real constant corresponding to the
position of the strong behavior introduced by the
mapping, and x=-x, corresponds to the position
of the real zero on the physical region. It can be
verified that' the forward-slope-parameter data
alone cannot determine the vat. ue of c. The value
of c has been chosen to be unity in Ref. 8 for data
analysis and also in Ref. 13 where oscillation of
the slope parameter has been well explained using
this variable and zero trajectories for m P scat-
tering. In II, while demonstrating early onset of
scaling by means of this variable, the value of c
has been determined using the slope-parameter
data for t =0 and ~t ~

=0.2 GeV' for different pro-
cesses.'

lt may be noted that the occurrence of
the function g'(x) in the final transformation in

(2.28) introduces a spurious cut in the g'(x) plane
in the region 0 &Beg'(x) & ~ by folding a part of
the g(x) plane on top of the other part. The image
of this spurious cut lies in the region 0 ~ReZ,
~ ~ in the Z, plane, as shown by the dotted con-
tours in Fig. 5, covering the image of the entire
physical region in the Z, plane. Looked at as an
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trajectories is very meager, which makes such a
construction difficult. In Sec. III we discuss the
construction of a simpler conformal mapping which
neither introduces any spurious cut in the mapped
plane nor requires any knowledge of zero trajec-
tories.

III. CONFORMAL MAPPING VGTHOUT SPURIOUS CUT
AND SCALING BY CONVERGENT EXPANSION

FIG. 5. Conformal mapping of the x plane onto the Z~
plane used in Refs. 2, 8, and 13. The dotted contour is
the spurious cut. The slashed (crossed) line indicates
the image of the left- (right-) hand cut.

analytic function of x, the mapping function Z, (x)
possesses no other singularities except for the
dynamical branch points allowed by Mandelstam
analyticity. Therefore the CPE in terms of this
variable does not violate analyticity properties.
It has been pointed out that this spurious cut would
not affect the convergence of polynomial expansion
either, since the cut is confined to the physical re-
gion of the g, plane about which the polynomial
expansion is being made. "" Since the theoreti-
cal basis of such an argument is notyetclear, '

the presence of the spur ious cut would not make
the proposed CPE go without any criticism. Fur-
ther, as pointed out in Sec. I, the presence of this
spurious cut in the X plane, as defined in II, may
spoil the prospects of obtaining information on
the possible existence of entire functions from
data analys is.

In spite of the presence of the spurious cut in
the variables used in Refs. 2, 8, and 13, these
works justify their importance in view of their
several novel features such as the description of
shrinkage-antishrinkage, ' oscillation' of the
slope parameter, and scaling of the differential-
cross-section ratio. But since QPE' and CPE"'
emphasizes correct analytic representation, and
accelerated convergence by conformal mapping and
polynomial expansion, it will be extremely use-
ful if a CPE can be devised to represent scaling
without introducing any spurious cut. There exists
a CPE in I which has been successfully used to
describe energy dependence of the slope-parameter
data and scaling of the differential-cross-section-
ratio data remarkably well for PP scattering. So
far no CPE has been developed by means of a
parabolic variable for any process possessing
unsymmetrically cut x plane of analyticity which
does not introduce any spurious cut. Further, the
variable of II also requires the knowledge of at
least one real zero trajectory for its construction,
b«at present, both the theoretical and experi-
mental information on the existence of such zero

The method of construction of CPE by using both
the s- and the cosL9-plane analyticity has been dis-
cussed in sufficient detail in I and II. In this sec-
tion we will emphasize some aspects of conformal
mapping of the x plane without introducing spurious
cuts and scaling by convergent expansion.

A. Conformal mapping of the s and cos0 planes

For fixed energies above threshold the right-
hand cut is closer to the forward direction in the
x plane, whereas the left-hand cut is farther away.
The right-hand cut is considered so important that
while exploiting analyticity of the x plane by
conformal mapping the presence of the left-hand
cut has been ignored by I,ovelace. " The confor-
mal mapping of the x plane onto the Z, plane de-
fined by (2.26) and (2.27) has been shown in Fig.
6(a). By this mapping the entire x plane, exclud-
ing the cuts, is mapped onto the interior of the

L~-—&„sl

h+I~(lns)

FIG. 6. (a) Conformal mapping of the x plane onto the
Zo plane which does not introduce any spurious cut. (b)
Conformal mapping of the x plane onto the X plane for
physical values of energy and for (Ins)" type of asympto-
tic behavior of the slope parameter. The slashed
(crossed) line indicates the image of the left- (right-)
hand cut.
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ReZO+ =ReZ, =
4 +(cosh Vw )',

ImZ,'= pcosh Viv„,

ImZ, =-mcosh 'vm„,

4q'+(

(3.1)

(3.2)

(3.3)

(3.4)

parabola, and the image of the start of the right-
hand cut is placed at the apex of the parabola lying
closest to the image of the forward direction
which, in this ease, is the origin and focus of the
parabola in the Zp plane. The whole of the right-
hand cut is mapped onto the forward portion of the
parabola surrounding the focus like a crescent.
The rest of the boundary of the parabola is formed
out of the images of the left-hand eut. The points
@=~+i& on the right-hand cut are mapped onto
the points Zp and Zp, where

4q'+& -- I»I&I,s) (3.8)

1-—
p (3.9)

and

Zp Zf i (3.10)

The condition (3.8) can be achieved for small
momentum transfers even for intermediate ener-
gies and for larger ~t~ for high energies. In this
kinematical domain a convergent expansion in Zp
would make the effects of the left-hand cut neg-
ligible as compared to the right-hand cut and the
distant parts of the right-hand cut less important
as compared to its nearer parts. The convergent
expansion for the differential cross section can be
written as

-aZ—=e zog a„(s)p„(2az,). (3.11)

-t
%y = —

~

tR

Zz =[sinh '~&]'.

(3.5)

(3.6)

A comparison between Zz and Z, can be made if
we rewrite ~~p as

t
~~

(4q'+t~ —6/s)
f ) (4q'+t +f —b, /s)

' (3.7)

For values of s and t such that

Because of the closer vicinity of the image of
the right-hand cut to that of the forward direction
in the Zp plane, it is possible to maintain the
relative weights between the two cuts. For s- ~,
ReZO and ReZO approach infinity as -(lns)',
ImZ,' and ImZp approach infinity as -lns, and the
image of the right-hand cut covers the entire
parabola. At high energies the images of the
distant parts of the right-hand cut are farther re-
moved from the image of the forward direction,
making them less important as compared to the
nearest parts. Such a picture agrees with the
general notion that scattering of hadrons at high
energies is mainly peripheral and due to long-
range forces. Looking to the analytic structure in
the t plane for s-~, the start of the left-hand cut
is pushed to -~, the physical region is in the re-
gion -~ ~Ret c0, and there is only the right-hand
cut in the region t„&Ret & ~. Such an analytic
structure becomes identical with that of the pion
and the nucleon form factors, and also the deuteron
form factor in the absence of the anomalous cut.
The ideal conformal transformation for convergent
expansion for form factors is"'

At this stage it is necessary to clar'ify the nature
of the polynomials (P„(z)) and the rate of conver-
gence of the series (3.11). For any fixed but finite
energy the physical. region in the x plane is mapped
onto a finite portion of the right half of the real
axis in the Z, plane, although the image of the cuts
forms the parabola with focus at the origin. The
length of the image of the physical region increa-
ses with energy arid only at asymptotic energies it
spreads onto the entire right half of the Regp
axis as -(lns)'. It is well known'4" that the length
of the physical region decides the nature of a se-
quence of orthogonal polynomials and the correct
physical region for Laguerre polynomials, in terms
of which an expansion of the type (3.11) converges
within the entire parabola in the Z, plane, is the
whole of the right half of the ReZ, axis-. Since the
length of the image of the physical region in the Zp
plane varies with energy, the nature of the poly-
nomials (P„(z)) also varies. " In general, the do-
main of convergence of a polynomial expansion de-
pends upon the nature of the polynomials'~ which in
turn are determined by the length of the physical
region. Thus for different finite energies the
polynomials and the corresponding domains of
convergence in the Zp plane are not uniquely fixed
and the domains of convergence may not coincide
with the parabolic figure of convergence in the Zp
plane. According to the theory of QPE, ' maximum
convergence of a polynomial expansion occurs
only if the domain of convergence of the polynomial
expansion coincides with the figure of convergence
in the mapped plane whose interior is the image of
the entire domain of analyticity of the x plane.
Thus the rate of convergence of (3.11) is not maxi-
mum at finite energies, but varies with energy.
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However, for asymptotic energies the polynomials
are uniquely the Laguerre polynomials and the
domain of convergence of (3.11) coincides with the
parabola in the Zo plane, thus making the rate of
convergence maximum. Although the rate of con-
vergence of (3.11) may not be maximum for finite
energies, it may be faster than that of the conven-
tional Legendre polynomial expansion in x because
of the following region: We are considering con-
vergence of (3.11}in the mapped plane and the
area enclosed by the domain of convergence at
any finite energy is likely to contain the image of
a larger portion of the x plane than the smaller
area of the Lehmann ellipse within which the Le-
gendre-polynomial expansion converges. For this
reason we call (3.11) a convergent polynomial ex-
pansion (CPE). Only at asymptotic energies CPE
goes over to OPE and (P„(z))-(L„(z)).Besides
achieving accelerated convergence by conformal
mapping the cut plane into the interior of the para-
bola, convergence of (3.11) is further accelerated
near forward angles because for ~t~« t„and ener-
gies such that ~[4q'+t~ —(6/s)]~» ~t~, Z, =-t/ts.
In this kinematical region, taking only the first
term in (3.11) yields the well-known form of the
exponential fit to the forward peak.

To fix the polynomials (P„(s)] uniquely as I a-
guerre polynomials for all energies, the physical
region of the x plane was mapped onto the entire
right half of the real axis in a mapped plane with
the assumption that a real zero exists on the phy-
sical region. "But, as has been discussed in
Sec. II, the corresponding conformal mapping in-
troduces spurious cut and also information on
real zeros are not available for several processes.
We therefore plan to test the success of (3.11) in

representing the experimental data for processes
possessing unsymmetrical cut planes of analyticity.

Before proceeding further, it is necessary to
point out certain limitations of the analytic ap-
proximation given by (3.11). Since ts(s) and t~(s)
represent boundaries corresponding to the absorp-
tive part alone, the conformal mapping Z, does
not contain the cut contributions of the real part
and also the contribution due to the poles are not
included in (3.11). However, for moderately large
values of s there is very little difference between
the domains of analyticity of the real and absorp-
tive parts of the x or t plane. If we adopt the same
conformal mapping for the real part also, a part
of CPE on the right-hand side in (3.11) can be
taken as the contribution due to the real part.
Thus the limitation of (3.11) in not representing
the correct Mandelstam analyticity is that it does
not contain the pole contributions. There is a host
of papers" "which contain the assumption that
the scattering near forward angles is due to the

S S
Ws

Sth S1
(3.14)

(3.15)

(3.16)

With the prescription (3.13}the slope parameter

absorptive part alone. It has been shown" "that
the unitarity upper bound for the absorptive part
of scattering amplitude derived by Singh and Roy"
saturates the high-energy data near forward
angles for NN and mN scattering. " Experimentally
it is found that the real part has a negligible con-
tribution near forward angles for all the elastic
diffractive processes at high energies. Taking the
view that the poles contribute to the real part
alone, our representation is expected to be very
good near forward angles. However, away from
the forward angles the real part effects may be
signif icant. Theoretically the pole contr ibution
and its interference with the cut controbution may
be significant for scattering at larger angles. The
CPE developed cannot account for such contribu-
tions, if they are present. However, the simple
picture of scaling as discussed in Sec. IV will be
spoiled if pole terms are explicitly retained in
(3.11).

Besides the "partial-wave" amplitudes a„'s being
energy dependent, the parameter n occurring
(3.11) also depends upon s. It is possible to take
into account the energy dependence of a„'s by some
conformal mapping using analyticity of the s plane.
But while approximating a„(s) it may be borne in
mind that the analyticity properties of these "par-
tial-wave" amplitudes are different from those of
the total amplitudes for unequal-mass scattering.
However, as has been demonstrated earlier and
also in this paper, energy dependence of a(s)
alone is sufficient to account for the energy de-
pendence of the forward slope-parameter data and
scaling of the cross-section-ratio data. The need
for exploiting the analyticity properties of the s
plane along with those of the x plane and the method
of construction of the CPE for n(s) have already
been discussed in sufficient detail in I and II. The
Taylor series expansion, taking into account the
energy dependence of o. , can be written as"

(3.12)

ciao +dpi' +d~'q (3.13)

where g (q) maps the left-hand cut" in the s plane
in the region —~& Res & s, onto a parabola (strip)
with focus at the origin. By these mappings the
physical region of the s plane lying in the region
s,h &Res ~~ is mapped onto the right-half axis
in the g (q) plane. In (3.12) the transformation
q (g) is defined in the following manner:
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has the potentiality to saturate the asymptotic be-
haviors of the type

(3.17)lim b(s) -(lns)", s. =0, 1,2,
where n =0 and 1 would correspond to constant
and Regge types of asymptotic behaviors, respec-
tively, and n =2 corresponds to saturation of the
unitarity upper bound. "

B. Scaling by convergent polynomial expansion

Since (3.11) is a convergent expansion in Z„ it
is useful to define

and

X(s, t) = o.(s)Z, (s, t) (3.18)

(3.19)

Then from (3.11) we get

f(s t} e Q rA( x) (3.20)

where

P„g„P„(0)
' (3.21)

The coefficients e„'s are, in general, energy-
dependent parameters. For high energies t„
= 4m,' and

x(s, t)- b(s)z, (3.22)

for all angles within the forward hemisphere.
For large energies and momentum transfers for
which (t ~

» 4m„' = 0.078 GeV', which corresponds
to the region in which a large majority of data
points exist, (3.22) yields

X(s, t) —b(s)(lnt)'. (3.23)

It may be noted that in th&s kinematical region
the variable g proposed here and also in earlier
works ' is completely different from all other
scaling variables. ' ' ' ' Only for high
energies and for values of ~t~«ts=0. 078 GeV
the present variable reduces to the known
scaling variable~ ~' tb(s). Retaining terms up
to first [second] in (3.13) yields the scaling
variable tins [t(lns)'], corresponding to the satura-
tion of Regge behavior (unitarity bound) in the
same kinematical domain.

Since one of our objectives is to propose X as a
scaling variable through CPE, but without intro-
ducing any spurious cuts, it is necessary to ex-
amine the nature of convergence in the X plane.
For large physical values of s, the image of the
physical region spreads the entire right half of
the ReX axis like -(lns)"", where s =0, 1,2, fixed
from the asymptotic behavior of slope parameter.
Then if the asymptotic behavior is either of the

Regge type or saturates the unitarity bound, con-
vergence of (3.20) approaches maximum and

{P„(2X))-{L„(2X)]faster in the energy scale than
what would have been achieved considering only
the Zo plane and the series (3.11). Since the apex
of the parabola lies at

ReX = a(s)4
(3.24)

and the real and the imaginary parts of X, corres-
ponding to the images of points on the cuts, are
proportional to e(s), the branch points are pushed
on to infinity in the y plane at asymptotic energies
for those processes for which the slope parameter
might yield& =1 or 2. As it has been mentioned in
Sec. III, the images of pole singularities are
mapped onto the interior of the Z, plane and if they
are important (which is not the case at least for
pp, pp, v'p, and K'p scattering), the convergence
of (3.11) is limited by the images of the poles.
But if yg =1 or 2, the images of the poles are also
pushed on to ReX =-~ like -(lns)" for asymptotic
energies in the y plane. Thus in the limit s- ~,
all the singularities are removed on to infinity and
the entire y plane is available as the plane of
analyticity. A schematic diagram of the conformal
mapping in the y plane for a given physical but
large value of s has been shown in Fig. 6(b).
Auberson, Kinoshita, and Martin" have proved,
using results of axiomatic field theory (AFT}, that
for an amplitude violating Pomeranchuk theorem
and saturating the unitarity bound, the amplitude
ratio A(s, t)/A(s, 0}, where A(s, t) is the absorp-
tive part, becomes an entire function of the scaling
variable r =t(lns}' for s- ~. In the present case
the function f(s, t) becomes an entire function not
only in the case when unitarity bound on the slope
parameter is saturated (n =2), but also when the
amplitude has Regge-type asymptotic behavior
(n =1), but f(s, t) scales only when e„'s are inde-
pendent of s. From the analysis in Sec. IV it will
be seen that, at least for the slope-parameter
data for K'P and w'P scattering, n =1.

At finite energies the length of the physical re-
gion in the y plane varies. Since the length of the
physical region determines the nature of the or-
thogonal polynomials {P„(2X)j, their~nature also
varies with energy. " At finite energies the domain
of convergence of these polynomials may not be
the whole interior of the parabola. But only at
asymptotic energies the physical region is 0 «Rey
«~, and the orthogonal polynomials determined
by it are uniquely the I.aguerre polynomials, whose
domain of convergence is the parabola in the X
plane with focus at the origin. Since the whole of
the cut plane of analyticity in the x plane has been
mapped onto the interior of the parabola, the con-
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vergence of (3.20) is also maximum at asymptotic
energies. It may be possible that in this kinema-
tical region the same number of coefficients e„'s
having the same values may represent f(s, t) by
(3.20} for all energies. Thus, if (3.20) defines a
scaling function at all it must be at asymptotic
energies. At finite energies scaling cannot be
achieved by (3.20), since the rate of convergence
and also the nature of (P„{2X)jare not unique.

In the case of exact results" "using principles
derived from AFT, scaling in the variables t(lns)'
or tb(s) has been proved a Priori in the limit
s- ~ and ~t ~

lying within the diffraction peak re-
gion. Roy and Singh" have proved that upper
bound on the ratio A(s, t)/A(s, 0) scales in the
variable t(o„,'/o„). In the present case energy
independent of e„'s is hypothesized. Of course
there are sufficient reasons, as described above,
to induce such a hypothesis by CPE. Evidence for
such a hypothesis will be strongly supported by the
experimental data as described in Sec. IV. There
are other variables such as ter„, of Dias de Deus"
and (Mt/s)[o„, (s)/o'„, (so)] of Hansen and Krisch'» in
which scaling is also hypothesized.

IV. ENERGY DEPENDENCE OF SLOPE PARAMETER AND
SCALING OF THE CROSS-SECTION-RATIO DATA

In Sec. III we have developed a CPE for diffrac-
tion scattering without introducing any spurious
cut and without using any zero trajectory. In this
section we examine the success of the CPE in
representing energy dependence of forward-slope
parameter and scaling of the cross-section-ratio
data at high energies for elastic scattering pro-
cesses possessing an unsymmetrical cut x plane
of analyticity. It is not necessary to repeat data
analysis for PP scattering using the present vari-
able, "since such an analysis has already been
done in I using a better variable which explicity
preserves t- u symmetry for such a process, but
does not introduce any spurious cut or require
any knowledge of zeros. Even though such analy-
ses, as reported here for pp, m'p, and g'p scat-
tering are repeated for PP scattering, they would
yield very nearly the same results" as in I.

From the formula obtained for the slope param-
eter we first determine the unknown parameters
in X by fitting the data for forward slopes at high
energies. Fit to the slope-parameter data yields
information on the asymptotic behavior. From the
asymptotic behaviors we conclude whether, for a
given process, f(s, t) is an entire function of y.
For m'P scattering we get an indication that the
asymptotic equality of particle-antiparticle slopes
may be satisfied. From the knowledge of the un-
known parameters in lt we plot the data on f(s, t)

against y(s, t) in order to test the success of the
scaling var iable.

From (3.20} the formula for the slope b(s) of the
forward peak can be derived, i.e. ,

or

b(s) =—lnf(s, t)
d dy(s, t)
dt ' dtt=o

n(s) 1

ts 4q +tz —6/s j

t=o

(4. 1)

( }
do+d rt +d

4q + tl —6/s (4.2)

b(s) =(d, +d,q +d,q')/4m, '. (4.3}

By formula (4.2) shrinkage-antishrinkage and
the oscillatory pattern of the data observed at
low and intermediate energies cannot be fitted. '
However, it is possible to account for the slope-
parameter data for PP, K'P, and m'P scattering
at high energies even without using any effective
shape of spectral function. Since scaling is sup-
posed to be valid at high energies we will confine
our attention for data analysis at such energies.

(a) PP scattering. Available data" on the slope
parameter for PP scattering for s~4 GeV' and
with ~t ~

~ 0.11 GeV' were fitted with formula (4.2)
taking elastic boundaries of spectral functions. "'
Taking only the first term in (4.2) with only one
parameter

do = 1.045, (4 4)

a y'/DOF =8.217 was obtained for 22 data points.
The fit has been shown in Fig. 7. In this case the
asymptotic behavior is of constant type and the
formula cannot reproduce the rapid antishrinkage
observed at low energies. ' However, as has been

Y
, J.

a ~ I ~ i I

5 10 %0
s (GeV )

FIG. 7. Fit to the forward-slope-parameter data for
pp scattering at high energies.

where we have retained only the first term in
(3.20) and used (3.13) for o!(s). For all the pro-
cesses to be considered here we have used theo-
retical elastic boundaries of spectral functions,
computed from box diagrams. Even for moderate
energies t~ =4m, . Thus for high energies such
that

~(4q' + t~ —A/s)
~

» 1 GeV',

the formula (4.2) for the slope parameter becomes
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ft is clear that scaling for large ~t~ data has been
improved as compared to that in Fig. 14(b).

(e) If' p scattering Using formula (4.2) we have
fitted 38 data points" on b(s) with s ~ 5 GeV' taking
elastic boundaries of spectral functions"' and
the first two terms of o.(s) with

do = 0.593,
(4.9)

d, =0.032.
This fit, which has been shown in Fig. 15, yields
a Jt'/DOF =6.6. The asymptotic behavior is like
-lns suggesting that f(s, t) is an entire function of

y for s- ~. With the knowledge of the unknown

parameters in Jt we now plot the data" on f(s, t)
against X as shown in Fig. 16. It is found that all
the available data" for P» ~ 8 GeV/c and with

(t(~ (t~ =l.o GeV lie on the scaling curve. For
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FIG. 14. (a) -Scaling of the available data on differ-
ential-cross-section ratio for K 'p scattering for
smaller

~ t~ values and with P&,b ~ 3 GeV/c. (b) Scaling
of the available data on differential-cross-section
ratio for X'p scattering in the larger-( t~ region with.
P„b 50 GeV/c corresponding to the solid-line fit of
the slope-parameter data of Fig. 13. (c) Scaling of the
available data on differential-cross-section ratio for
Z'p scattering in the larger-~ t~ region with Pzb ~ 50
GeV/c corresponding to the dashed-line fit of Fig. 13.
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FIG. 16. Scaling of the available data on the differ-
ential-cross-section ratio for X p scattering at high
'energies.
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TABLE I. Information on the asymptotic behavior of slope parameter and scaling of cross-
section-ratio data for different diffraction scattering processes. Here ( t ( ~ denotes the
maximum range of ( t ( of the available data for Phb ~ 3 GeV/c which lie on the scaling curve.

Process

Asymptotic
behavior of

slope parameter

Range of Pab (GeV/c)
investigated for

scaling
I& lm~
(GeV )

PP
x+P
x P
x+p
E p

Const
lns
in@
1ns
lns

3-200
3-200
3-200
3-200
3-200

0.5
1.2
1.2
0.5
1.0

higher energies, data for larger values of ~f~ ap-
proach the scaling curve. In particular, all the
available data for P„b ~50 GeV/c lie on the same
curve. Unlike the case of K'P scattering, scaling
is exhibited by the data in a remarkable manner
similar to that in II.

Some of the results obtained in this section have
been summarized in Table I. Before concluding
this section we note that using analyticity of the s
plane along with that of the cos 8 plane, reasonably
good fits to the high-energy data on forward slope
parameters for PP, m'P, and K'P scattering have
been obtained without using any effective shapes
of spectral functions"'and any information on
the zeros, but using only one parameter for PP
scattering and two parameters for others. The
asymptotic behavior for the slope parameter for
PP scattering is constant type, although there is
some weak indication' that it can be like -(lns)'.
Asymptotic behaviors for z'P and E'P scattering
are like -lns, suggesting that for s —~ cross-
section ratios for these processes are entire func-
tions of y. Using (4.2) for PP scattering would
yield exactly the same type of fit" obtained in I
which reveals that the present data are consistent
with asymptotic behaviors of the type -lns or
-(Ins)' suggesting strongly that for pp scattering
also the cross-section ratio is an entire function
of y for s- ~. Such a conclusion holds for the
variable of I since it does not introduce any spur-
ious cut in the mapped plane. Because of the
presence of the spurious cuts in the y plane, such
conclusions cannot be drawn in the case of the
variable of II. Although scaling in the present
variable is almost the same as in II for PP, m'P,
and K p scattering and exhibited in a remarkable
manner by the data, deviations from scaling are
observed for the data within 3 P„b ~&50 GeV/c a,nd
with ~t~ away from forward direction for K'p scat-
tering. Even for pP and g'P scattering there are
little more deviations of the data from the scaling
curve as compared to that in II at lower values of

P~,b. If this method is repeated for PP scattering,
scaling would be very much the same as in I but
not like that in II, where early onset of scaling
has been observed for the data with P„b ~3 GeV/c.
Such a discrepancy probably arises because the
variable of II has been specifically designed to
work even for lower energies. But in that case, '
the price we pay is the presence of a spurious cut
in the mapped plane for all the processes. '

But for higher energies with P„b ~50 GeV/c,
data at all available values of ~t ~

scale in a re-
markable manner as observed in I and II. It can
be argued that the present model has been de-
veloped for near forward angles and need not work
in representing the data for larger angles. Al-
though there is no convincing explanation yet as
to why there is scaling for larger ~t~ data, some
heuristic plausibility arguments can be put for-
ward. " For the real part, which may be impor-
tant for larger ~t~ data at high energies, the do-
main of analyticity is the same as that of the ab-
sorptive part if we ignore contributions due to
poles. Hence, the same conformal mapping can be
used and also a part of the CPE in (3.20) may be
taken to represent the real part. Further, the
short-range forces represented by the distant
parts of the right-hand cut, which possibly in-
fluence scattering for larger ~t~, have been in-
directly taken into account in a crude manner by
the conformal mapping, although the effects of
very distant parts of the right-hand cut and the
distant parts of the left-hand cut have been made
less and less important. An alternative heuristic
explanation may be that the real part effects
and/or the influence due to short-range forces
are negligible for high energies and away from
forward direction.

V. SUMMARY, DISCUSSION, LIMITATIONS, AND
APPLICATIONS

In this section we summarize the results ob-
tained in this paper and discuss their relevance.
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We point out other processes for which this ap-
proach can be effectively applied. Several limi-
tations of this method are also discussed in this
section.

A. Summary and discussion of results

In this paper we have pointed out the presence
of spurious cuts introduced by the conformal map-
pi ngs adopted by several authors' "who proposed
analytic approximations for scattering ampli-
tude by OPE. In view of the importance and wide
applications of OPE, such information on the
spurious cuts is necessary so as not to mislead
readers in the future. We have supplied correct
pictures of the spurious cuts in the conformal
mapping used by Deo and Parida' earlier and re-
cently by Parida. " In view of the presence of
spurious cuts in these works, "' there exists no
other unquestionable representation by means of
CPE except the one proposed in this paper for
scaling in diffraction scattering processes posses-
sing an unsymmetrically cut x plane of analyticity.
Further, in addition to developing spurious cuts in
the mapped planes, the conformal mapping used
in II requires the knowledge of real zero trajec-
tories about which experimental information is
very meager. In this paper we have proposed a
representation for diffraction scattering at high
energies using conformal mappings of the unsym-
metrically cut s and cos8 planes, but without in-
troducing any spurious cuts. To construct the
conformal mapping no knowledge of zeros is nec-
essary. However, the convergence of the series
and the nature of the polynomials are not uniquely
fixed, but vary with energy, at finite energies.
For s- ~ the convergence of the series is maxi-
mum and the polynomials are uniquely the Laguer-
re polynomials.

It is argued that scaling of the differential-cross-
section ratio f(s, t) may occur at asymptotic ener-
gies in a variable y(s, f) Several sc.aling variables
exist in the literature and some of the successful
ones are to&,t'/o„of Singh and Roy," to„, of Dias
de Deus, " tb(s) of Auberson and Roy,"and ufo„, (s)/
[so~„(so)] of Hansen and Krisch" which mainly

apply for small ~t~ and asymptotic values of s. All
these variables reduce to the scaling variable 7

=t(lns)', obtained by Auberson, Kinoshita, and
Martin. " If the unitarity upper bound is saturated
for s- ~. The variable y proposed here reduces
to tb(s) for high energies and for ~t~«4m, 2 =0.078
GeV' and has the potentia]. ities to reduce to the
variables tins or t(lns)', depending upon the
asymptotic behavior of b(s), but for ~t~»0. 078
GeV', a condition which is satisfied by a large
majority of the presently available differential-
cross-section data at high energies, our varaible

reduces to b(s) (1nt)', which is a completely new
prediction of our hypothesis on scaling. For th6
processes for which the slope parameter satis-
fies Regge-type asymptotic behavior or saturates
the unitarity upper bound, f(s, t) becomes an entire
function of y for s-~.

The formula developed for the slope parameter
has the potentiality to yield asymptotic behaviors
of the type -(lns)", with n =0, I, 2 and gives a very
good account of the slope-parameter data for PP,
m'p, and K'p scattering at high energies with theo-
retical elastic boundaries of spectral functions
and less number of free parameters as compared
to the fits of II, although it does not possess the
potentialities to r eproduce shrinkage-antishr ink-
age of forward peaks for PP, K P, and g'P scatter-
ing observed at lower energies. The asymptotic
behaviors of slope parameters for m'p and K'p are
of -lns type and the asymptotic behavior of the
slope parameter for pp scattering is of -const
type, although there is some weak indication' from
the pp data that the asymptotic behavior can be of
-(lns)' type. If the present formula is applied for
the slopes of PP scattering, "the fit wil be exactly
similar to that of I consistent with the asymptotic
behaviors -lns or -(lns)'. These asymptotic be-
haviors supply the important information that for
pp, g'p, and K'p scattering, the differential-
cross-section ratios are entire functions in the
corresponding g's. Such a conclusion is also true
for the pp differential-cross-section ratio in the
variable proposed in I. For very high energies
and for

~
t~«s, the present variable reduces to the

one proposed in I for pp scattering. " It may be
remarked that no conclusion regarding the possible
existence of entire functions can be drawn in the
work of II, because of the existence of spurious
cuts in the mapped planes for all the processes.

It follows" from exact results based upon
principles laid down by axiomatic field theory that
the forward slope .parameter for particle-particle
scattering should be the same as that for anti-
particle-particle scattering. In the present analy-
sis such a result is seen to be satisfied qualitatively
for K'P scattering. From (4.8) and (4.9) it is
clear that values of d, for K'p and K p scattering
are of the same order of magnitude. From the
values of the parameter d, given in (4.5) and (4.6)
it is clear that such a result also tends to be
qualitatively satisfied for m'p scattering. " How-
ever, for pp and pp scattering there is no strong
evidence of such a result being satisfied even
qualitatively.

Whereas it was necessary to fit the slope-
parameter data at both forward and nonforward
angles to know the parameters in y in II, in the
present case the forward slopes are sufficient to
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supply information on the parameters. Scaling of
the cross-section-ratio data for pp, m'p, and K p
occurs in the corresponding y's almost in a similar
manner as observed in II, except for the fact that
at lower values of P» and higher values of ~t~, the
data deviate a little more from the scaling curve
for p'P and PP scattering. For PP scattering,
scaling is similar to that in I. For K'p scattering,
the value of ~t~, within which all the data for
P„b ~3 GeV/c scale, is nearly one fourth of the
corresponding value in II. Significant deviations
from the scaling curve are observed for the E'p
data with 3 «P» & 50 GeV/c and with (t ~

& (t ~~~
=0.5 GeV'. But all the data points for all the pro-
cesses considered here with P„„~50 GeV/c lie on
the same scaling curve as in II. The onset of
scaling later in the energy scale for pp and K'p
scattering and a little more deviation of the data
for lower values of P@b observed for pp and m'p

scattering as compared to the analogous cases in

II, may be due to the fact that the variable in II
has been specifically designed to be applicable for
all energies. But as we have already re-
marked, such a gain is possibly at the cost of
the convergence for some values of g. Even
though scaling sets in a little later in the
energy scale in PP and m'P scattering, and sub-
stantially later for pp and K'p scattering as corn-
pared to that of II, it is certainly better than the
average scaling in the variable'~ to„, '/v„, and

scaling in the variables" gg„, , at least as observed
from Figs. 8, 10, 12, 14(a)-(c), and 16 in this
paper, and Figs. 2(a)-3(b) of I. Cornille" has
defined a class of scaling functions in which are
included series in orthogonal polynomials includ-
ing Laguerre, but excluding Hermite polynomails.
In the present case we find that a series in I.ag-
uerre polynomials in the variable X is a good can-
didate for scaling function for s- ~. From the
analyses performed in this paper it is clear that
scaling functions for various processes can be
obtained with the help of (3.20) by replacing P„(2X)
by L„(2X) and fitting the scaling curves. An alter-
native method would be to fit the data for a high
value of P&,b above 50 GeV/c covering a sufficiently
larger range of ~t~. In this paper no attempt has
been made to obtain scaling functions by actually
fitting the data. Even without the knowledge of the
scaling functions, it is possible to predict the
values of f(s, t) as a function of ~t

~

for any higher
value of s from the knowledge of the scaling. curve
because of the simple structure of the variable
X(s, f). This problem, which will be discussed
later in this section, will be attacked in a separate
paper. In this respect the variable suggested in
this paper has a definite advantage over that in II,
by means of which no such predictions are possible.

B. Limitations of the method

Several limitations of this approach are sum-
marized here. The first limitation of this approach
is that the present approximation to the differential
cross section fails and the simple picture of scaling
hypothesized in this paper is spoiled if pole singu-
larities contribute significantly. But experiment-
al data near forward angles at high energies sug-
gest that the absorptive part dominates scattering
and the ratio of the real to the imaginary part is
small. Since the absorptive part comes from cut
contributions and poles contribute to the real part,
the CPE suggested here is a good approximation to
the eros s-section ratio near for ward angles. There
is an enormous amount of literature which either
proves' ' "'3' or hypothesizes" scaling by ignor-
ing the real part completely as compared to the
imaginary part. Even though poles themselves
may not contribute significantly, their interference
with the cut contributions may be significant
away from forward angles. In our representation
we have not been able to include such contributions.

Second, although it has been pointed out that the
expansion in orthogonal polynomials in the mapped
variable Z, (or equivalently in X), for any physical
value of s, is possible for all energies with an ex-
ponential weight function, the polynomials and
hence their domains of convergence in the mapped
planes are not the same for all energies. " In
particular, there exists ambiguity 3nd danger in
using a Laguerre-polynomial expansion at finite
energies because the coefficients in the expansion
cannot be determined for lack of the correct phy-
sical region. ' However, because of the choice of
the exponential weight function, which comes in a
natural way at asymptotic energies, the same
formula for the slope pa,rameter holds for all
ener g ies.

Third, it can be argued that the present model
has been developed for scattering near forward
angles and the representations (3.11) or (3.20) may
not work for the data for larger values of ~t ~.

There is no convincing reason why scaling is ob-
served for the large angle data, but some heuris-

~ tic plausibi]. ity arguments can be put forward. At
larger angles the real parts may contribute sig-
nificantly along with the absorptive part. As h'as

been already mentioned earlier in this subsection,
cut contributions to the real parts can still be
represented by a part of the right-hand side of
(3.11) or (3.20). In fact, one can adopt separate
parabolic variables and construct CPE for the
real and imaginary parts separately, as has been
done by Chao. But at high energies, the start
of the cut for the real part is the same as that for
the imaginary part and the mapping variables for
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both the parts are the same. " The alternative
plausibility argument may be that real part effects
may be negligible in the range of ~t ~

for which the
data exhibit scaling. It is natural to believe that
shorter-range forces'may contribute to the ab-
sorptive part and the real part if it is also impor-
tant. Although the distant branch point structures
corresponding to shorter-range forces do not exist
in our conformal mapping, their effects have been
indirectly taken into account by conformal mapping
by bringing the distant parts of the cuts to closer
vicinity of the image of the forward direction in
the mapped plane.

The fourth limitation of this method is that the
scaling in the variable X has not been derived from
rigorous physical and mathematical reasonings,
but rather scaling has been hypothesized. The
main support in favor of a scaling hypothesis is
the remarkable manner in which the cross-
section-ratio data scale in X. There exist other
papers in which scaling in goemetrical models has
been either hypothesized or assumed. 3"""But
scaling of the cross-section-ratio data in other
variables has been proved", "" rigorously using
principles laid down by AFT.

w, = (cosh[x/n(s)]'~']',

we get using (5.1) and (5.2)

lf I
= f„(sinh~X ~n(s)]'I']'.

(5.2)

(5.3)

For any of the processes considered, since the

C. Other applications of the method

The method outlined in this paper can be used
to predict f(s, t) as a function of ~t~ at higher ener-
gies for elastic diffraction scattering processes.
This method can also be used to account for the
energy dependence and asymptotic behaviors of
slope parameters for several inelastic diffractive
and nondiffractive processes and to examine scal-
ing of the cross-sectiori-ratio data.

(a) Predictions off(s, t) as a function of )t (. The
scaling variable X constructed using conformal
mapping and CPE in this paper is much simpler
than the corresponding variable in II. Because of
simplicity of the variable, it is possible to predict
f(s, t) for any higher value of s as a function of ~t

~

from the knowledge of the scaling curve obtained
in this paper. Looking to the scaling curve for
any of the processes the value of the ordinate
f(s, t) and the corresponding y can be read from
the graph. Since for large s and for ~t~«s, within
which scaling is observed at high energies, we
can rewrite (2.26) as

(5.1)

and using (2.27) and (3.18) we can write

value of X has been read out from the scaling
graph corresponding to a known f(s, f) value, n(s)
is known from the fit to the slope-parameter data,
and ts is a known function of s, the value of ~t~

corresponding to a given value of.f(s, i) is known
from Eq. (5.3). In this manner a different lt and
hence the value of ~t~, for a given s, can be known
corresponding to a different value of f(s, f) and
the curve of f(s, t) vs (f

~

can be plotted. In fact,
this method can be adopted for any process, elas-
tic or inelastic, in which scaling is exhibited by
the cross-section-ratio data in the simple vari-
able y. It may be noted that such a prediction is
not possible in the variable of II because of its
complicated ~t ~

dependence, but such a prediction
is possible in the variable of I since the variable
proposed there is the same as the one proposed in
this paper for high energies and values of ~t[«s
(Ref. 35). Predictions of f(s, t) as a function of ~t~

will be carried out in a separate paper. Such pre-
dications can be verified by the results of furture
experiments. Since the parameters in CPE are
known to be stable against extrapolations to un-
known regions, ' scaling in X and predictions of
f(s, t) as outlined here have definite advantages.

(5) applications to inelastic processes. So far
no rigorous proof based upon. principles of AFT exists
for scaling in inelastic nondiff ractive processes, but
recently, average scaling, in a weaker sense, has
been proved and observed for the cross-section-
ratio data for the inelastic charge-exchange pro-
cesses" m P- m n and m P-q~. Foundations of
model-independent results on scaling for elastic
processes have been criticized and a generalized
scaling law has also been proposed" which yields
different scaling variables for both elastic and
inelastic processes. Since the main requirements
for the application of the present method is the
Mandelstam analyticity of the s and cos8 planes
and the method has been generalized for asymme-
tric cut planes without developing any spurious
cut, it will be very interesting to see if scaling of
the cross-section-ratio data exists in a similar
variable in inelastic charge-exchange scattering
processes. It may be noted that it is very difficult
to apply the method developed in II for inelastic
processes, since that would require knowledge of
real zeros, slope-parameter data even at lower
energies, and both at forward and nonforward
angles for the construction of the scaling variable.
The pr'esent method is much simpler and more
important is the fact that it does not introduce any
spurious cut in the mapped plane.

The method developed in this paper has been
applied to inelastic charge-exchange scattering
processes such as m P- m'n, m P-qn, K'n-E'P,
K p-K'n, ' K'p-K'b, "(1236), and K-n
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in a separate paper. " It is found that the energy
dependence of the slope parameters at high ener-
gies can be very well accounted for and the infor-
mation on the asymptotic behaviors, and the exis-
tence of the entire functions can be usefully ex-
tracted by means of similar formulas developed
here. In particular, scaling of the cross-section-
ratio da, ta are shown to be exhibited in a remark-
able fashion. "

VI. CONCLUSION

From the results of the present paper it is very
clear that the CPE proposed here is potentially

useful in accounting for the energy dependence of
the slope-parameter data for all the elastic diff
raction scattering processes at high energies with
less number of parameters, but without requiring
any knowledge of zero trajectories, effective
shapes of spectral functions, and at the same time
without developing any spurious cut in the mapped
plane. The formula developed for the slope param-

eter has been potentially useful in obtaining in-
formation on the asymptotic behaviors of forward
slopes for several processes. Scaling of the
cross-section-ratio data at high energies, in the
variable X, is exhibited in a remarkable fashion
for all the elastic diffraction scattering processes
considered. Our analysis yields further definite
information that the cross-section ratios for the
processes pp, m'P, and K'p scattering are entire
functions of the corresponding scaling variables.
From the results of a subsequent paper, "we con-
clude that this method is very successful for
similar purposes for several nondiffractive inelas-
tic charge-exchange scattering processes also.
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