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A phenomenological study of the rapidity-gap distribution for cosmic-ray N-N interactions at
energies X TeV has been reported. The observations indicate strong short-short correlations in rapidity gaps
which support Snider’s two-channel multiperipheral cluster model. The cluster size and cluster density at
these energies have been estimated to be 6.5 and 1.0, respectively. It is found that with increasing energy,
the cluster size practically remains constant but the number of clusters produced per collision rises slowly.

I. INTRODUCTION

It is now well known'-® that clusters are formed
in the intermediate stage of the multiparticle pro-
duction processes at high energies. Therefore,
several attempts have been made to incorporate
clustering effects within a general theoretical
framework. In the framework of the general
Chew-Pignotti multiperipheral model, two notable
attempts have been made to incorporate the clus-
ter phenomenon. One is by Quigg, Pirila, and
Thomas® (QPT) and the other is by Snider.® QPT
assume independent cluster emission for which
some support is rendered by the two-particle cor-
relation studies” ® at Fermilab and at CERN ISR.
They suggest a simple Chew-Pignotti multiperi-
pheral model with a single input trajectory o =0.5.
On the other hand, Snider has suggested a two-
channel Chew-Pignotti model with two different
input Regge trajectories, one near J=0.5 and the
other near J=-0.5.

It is useful to find out whether the single-chan-
nel or the double-channel picture is in conformity
with the experiment. The experimental distribu-
tion of rapidity-gap lengths between charged par-
ticles, adjacent in rapidity space, is a convenient
tool to make distinction between these two models.
In terms of such a distribution, Snider® has pointed
out the following distinguishing features of these
models.

(1) The rapidity-gap (») distribution dn/dv in the
central region of the rapidity space, as predicted
by Snider’s model, is of the form

dn/dv=Ae ™" + Be 2" | 1)

where the constants A and B and the slopes x, and
x, are fixed so as to give the correct total cross
section, charged-particle density (~2/rapidity
units), asymptotic energy behavior of prong cross
sections, and the two-particle correlation length,
He thus obtains

dn/dr=2.4¢ %7 +0.2e°%-% (2)

On the other hand, in the QPT model,* independent
emission of clusters is assumed, and within a
cluster the decay pions are taken as quite close to
the central position of the cluster in rapidity
space. Therefore, the rapidity-gap distribution
at large gap sizes between the hadrons measures
directly the gap distribution between the clusters.
Hence,

an/dr=e™r (3)

where p is the density of clusters in rapidity
space. At small gap sizes, the expectation is that
there would be an excess of events over those pre-
dicted by relation (3) due to the correlation ef-
fects.

(2) Regarding the rapidity-gap correlations,
Snider’s model implies® that next to a small gap
(r<0.1) is probably a small gap and next to a
large gap (0.8 < »<1.0) is probably a large gap,
whereas the QPT model leads to the prediction
that the gaps should tend to alternate, i.e., a
small (large) gap should probably be followed by
a large (small) gap. This is so because in this
model each cluster has only two charged particles
and these would generate a short gap.

(3) Another important parameter capable of dis-
tinguishing between the two models is the number
of particles into which a cluster decays, viz., the
cluster size. The QPT model,® in order to have
the correct cross section and charged-particle
density (~2/rapidity unit), assumes that an average
of two charged particles are emitted per cluster.
On the other hand, the high probability of short-
short correlations predicted by the Snider’s mo-
del requires that the average number of charged
particles constituting a cluster should be greater
than two. This is so because the most probable
occurrence of two short gaps in succession needs
three charged particles closely spaced in rapidity.

Recently we have reported studies on the above
aspects by using the p-N data at 67 GeV (Ref. 10)
and at 400 GeV (Ref. 11). In view of a rather clear
distinction between the two models at 67 GeV as
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well as at 400 GeV, we thought that it would be
worthwhile to extend our studies into the realm of
cosmic-ray energies (2 TeV).

II. EXPERIMENTAL DETAILS

A total of 465 cosmic-ray N-emulsion interac-
tions are available from ICEF data sheets,'? and
in addition 57 are available from the Chicago
stack.!® It is well known that the rapidity dis-
tributions for N-N and N-nucleus types of events
are markedly different. In order to have a mean-
ingful comparison of the experimental data with
the theory, we have therefore selected only those
events which can be classified as N-N type of in-
teractions. The main criterion for this selection
is that the number of heavy tracks (N,) in an event
should be zero. With this selection criterion we
are left with a total of 40 N-N types of events for
which the rapidity values have been compiled by
Shivpuri et al.!* Further we want to analyze the
rapidity gaps for those particles which fall in the
central region of the rapidity space. Therefore,
out of n, secondary tracks in an event, we ignore
the first and the last (when ordered in rapidity)
which may be due to the diffractive component,
Hence n has to be =4. Only one event with n =2
did not satisfy this criterion, The present study
is finally based on a total of 557 shower tracks
contributed by 39 events.

The energies of the primaries of these events
have been estimated by various methods,!?+!3
Among them Castagnoli’s formula and the E
method seem to be most popular. These two
methods give widely different values of energy.
For the present work we do not require the en-
ergy of each primary particle as an essential
parameter. However, on the basis of primary
energies calculated by various methods we believe
that a representative energy =<TeV would be quite
appropriate for the sample of events used in the
present work.

The rapidity y of a particle is defined as

1

y %hl[(E +P||)/(E _Pu)] ’ (4)

where E and P, are, respectively, the total energy
and the longitudinal momentum of a secondary
particle., Obviously a determination of y requires
not only the measurement of the angle of emission
(6) and the momentum (p) of a particle, but also
its identity. However, at the high energies of the
data under consideration, only the emission angles
of the secondary particles could be accurately
measured. Also, =~80% of the secondary particles
are believed to be pions; therefore, the inequality

p*>»>m,? (5

is well satisfied for most of the secondary par-
ticles. Under this approximation, the definition
(4) reduces to the form

y=n==Intan(6/2), (6)

where 71 is known as the pseudorapidity. We have
calculated rapidity gaps using this approximation.

III. RESULTS AND DISCUSSION

The distribution of the rapidity gaps for the to-
tal sample has been shown in Fig. 1. The distri-
bution, when fitted to an equation of the form (1)
by a least-squares method, yields

dn/dr=81.31e"%% +6.10e™-% , (7

This equation on normalization to the Snider’s
theoretical curve [Eq. (2)] becomes

dn/dr=4.39¢75% +0,33¢"1-o (8)

The fits of Eqs. (7) and (8) give a x® value of
28.6 for 36 degrees of freedom (DOF). On the
other hand, when the data are fitted to a single
exponential form, one gets

dn/dy=83.5Te™5:3% 9)

with a x? value of 56.7 for 38 DOF, which repre-
sents a very poor fit. Thus the data are in excel-
lent agreement with a two-exponential rapidity-
gap distribution as predicted by Snider’s model.
It may however be noted that although the whole
distribution cannot be represented by a single
exponential term, it is evident from Fig. 1 that
the distribution beyond 7 = 0.8 could be so repre-
sented. A fit due to a single-exponential form to

\
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FIG. 1. Rapidity-gap (r) distribution at cosmic-ray
energies. The solid curve is the best fit [Eq. (7)] to the
data. The dashed lines show the contributions of the
two exponential terms separately.
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the data with » = 0.8 yields
dn/dr ~6.1e7°" (10)

Such behavior of dn/dr is expected from the QPT
model as explained earlier. Thus we observe
that the ordinary rapidity-gap distribution does
not reveal much as to which of the two models
explains the data.

The distinction between the two models can be
effectively made if one studies another distribu-
tion, namely, the distribution of rapidity gaps
next to a small gap.®!! This has been shown in
Fig. 2. The distribution is peaked in the region
=0~ 0.12 and then falls off sharply. For this
distribution, it is interesting to study the ratio

R=N,/N,, (11)

where N, and N, are, respectively, the number of
short gaps and large gaps in this distribution. The
value of R for the present data is ~26. This
clearly shows that the probability of a short gap
(r <0.1), occurring after a short gap, is consid-
erably higher than that of a large gap (0.8 <#
<1.0), occurring after a short gap. These obser-
vations, therefore, strongly favor the model due
to Snider. At 67 (Ref. 10) and 400 (Ref. 11) GeV,
the values of R are ~5 and ~10, respectively.
This indicates that the dominance of short-short
correlations appreciably increases with increas-
ing energy.

A two exponential fit of the form (1) to the dis-
tribution of Fig. 2 yields

dn/dr=43.86¢7%% +3,23¢711r | (12)
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FIG. 2. The distribution of rapidity gaps r;,;) next
to a short gap (r; <0.1). The solid curve is the best fit
[Eq. (12)] to the data. The dashed lines show the con-
tributions of the two exponential terms separately.

with a x2 of 12.1 for 26 DOF. A comparison of
Egs. (12) and (8) reveals that x, (=p) remains ~1,
whereas the slope x, increases from 6.5 to 9.8.
It emphasizes that the three-particle (or short-
short) correlations are quite significant, and the
average cluster size should be greater than two.

Thus one can conclude that the observed rapidity-
gap distribution and the inferred characteristics
of the three-particle correlations for the cosmic-
ray data are in good agreement with the predic-
tions of Snider’s model. On the other hand, al-
though the QPT model can very well describe the
rapidity-gap distribution for large gaps and yields
a simple method to estimate the cluster density,
it yet fails to explain the observed features of the
three-particle correlations. In view of the agree-
ment of our data with Snider’s model, we now in-
vestigate the various other features of this model.

According to Snider’s model, one expects a dip
in dn/dv around »=0.0. As is evident from Fig.
1, no such dip is observed for the present data.
The absence of a dip has also been noted at 67
(Ref. 10), 200 (Ref. 6), and 400 (Ref. 11) GeV.
The fact that the occurrence of the dip has not been
marred by the choice of the rapidity interval in
Fig. 1 can be ascertained by splitting the first bin
(0-0.04) into two bins, viz., (0-0.02) and (0.02—
0.04). The numbers of gaps in these two bins are
42 and 34, respectively. This again indicates a
rising trend of the distribution at small gap sizes.
Therefore, following Snider,® it may be presumed
that, in case of particle production in the central
region of the rapidity, the effects of hard-core
repulsion are not important. It may also mean,
as Snider® states, that “complex-poles” concepts
are not important in the central region of rapidity.

It is interesting to study the variation of the
constants A, B, x,, and x, (or p) occurring in
Eq. (1) with energy. The values of these constants
for p-N interactions at 67 (Ref. 10) and 400 (Ref.
11) GeV along with those for the present cosmic-
ray data are shown in Table I. There appears to
be a tendency of these constants to increase with
energy. The increase of x, implies the increase
of two-particle correlations in rapidity space, and
the increase of x, (or p) indicates that the process
of cluster formation gets stronger at higher ener-
gies.

It is worthwhile to understand, through an altern-
ative approach, whether, with the increase in en-
ergy, the clusters grow heavier or their number
increases. Adamovich et al.'® have shown that the

" rapidity-gap distribution, in the limiting cases,

can be usefully parametrized in the following way:
dn/dv ~e*™ (for small 7) , (13)

and
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TABLE I. The values of A, B, x,, x; (or p), and m at different energies.

Energy
(GeV) A B x4 Xy m Reference
67 2.40+0.04 0.030+0.001 2.60+£0.03 0.50+0.02 5.2 10
400 2.98+0.12 0.18 £0.01 3.90£0.08 0.70+0.06 5.6 11
21000 4.39+0.20 0.33 +0.03 6.50+£0.20 1.00+£0.12 6.5 Present
(cosmic rays) work
dn/dr ~e™ (for large 7), (14) predicted by several authors.!”'® On the other

where w denotes the total number of particles
(including the neutrals) constituting a cluster and
p is the number of clusters produced per unit
rapidity invertal, The values of these parameters
- for the present cosmic-ray data along with those
for the 67-GeV (Ref. 10) and 400-GeV (Ref. 11)
p-N interactions are shown in Table I. Ludlam
and Slansky,'® through a fluctuation analysis, have
estimated m ~5-6. This is in good agreement
with the values of m (shown in Table I) for a wide
energy range from 67 to <1000 GeV. This shows
that m has a very weak dependence on energy, as

hand, ptends to grow logarithmically with energy.
Thus it seems that the cluster size practically
remains constant but the number of clusters pro-
duced per collision rises slowly with increasing
energy.
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