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We formulate a gauge model for basic interactions based on the symmetry group G = G, X G., where G,
is the chiral symmetry group [SU(3) X SU(3)]. in color space. G,, is taken to be the left-right-symmetric
model SU, (2) X SUg(2) X U(1). The chiral color symmetry is spontaneously broken in such a way that quarks
acquire a common mass and an octet of axial-vector gluons become massive but an octet of vector gluons
remain massless. In this way quark mass arises from spontaneous color-chiral-symmetry breaking. The
experimental consequences of the left-right-symmetric model are discussed and it is shown that one version of
this model gives results similar to the Salam-Weinberg model for the currently available energies. There is
also another version, where the results are again similar to the Salam-Weinberg model except that the y
dependence for the asymmetry parameter for the deep-inelastic scattering of polanzed electrons is completely
different although its value at y = 0.21 is compatible with experiment.

I. INTRODUCTION

There is now convincing evidence that neutral
weak currents, as predicted by the unified gauge
theory of weak and electromagnetic interactions,
exist in nature. The unification of weak and elec-
tromagnetic interactions based on the gauge group
SU,(2)x U(1) seems to be well established.!

It is now believed that quarks carry color and.
that fractionally charged quarks are confined in
colorless hadrons. The interactions between
colored quarks are mediated by massless vector
colored gluons. The underlying theory for these
interactions is a gauge theory called quantum
chromodynamics (QCD). It is believed that QCD
is the best candidate for a theory of the strong
interactions.

Each quark carries three colors, blue {b),
yellow (y), and red (r). Thus the color gauge -
group is SU,(3) and QCD has a non-Abelian charac-
ter in contrast to QED, which is Abelian. If the
gauge group of QCD is an exact local symmetry,
the color-triplet quarks and color-octet gluons
of the theory are not expected to exist as real
particles—only color-singlet hadrons exist. QCD
has nothing to say about the origin of masses of
the quarks. '

It is believed that the underlying theory for the
three basic interactions, strong, electromagnetic,
and weak, is a gauge theory based on some sym-
metry group G. The symmetry group G contains

G X G.. It seems that G, contains the group
SUL(2)X U(1). For G,, it is common belief that
G,.=8U,(3).

In this paper, we take the color gauge group

G, to be a chiral group® [SU(3)x SU(3)],. The elec-
troweak gauge group G, is taken to be SU,(2)

X 'SUg(2) X U(1). This group has been extensively
studied by mahy authors.® In order to give masses
to weak vector bosons, the electroweak gauge
group G, = SU; (2) X SUR(2) X U(1) is spontaneously
broken by introducing three Higgs scalars, ¢, ¢/,
and ¢, belonging to representations (2, 1), (1,2),
and (1, 3) of the group SU, (2) X SUL(2). So far,
charged weak vector bosons W3, and W%, are
eigenstates of mass matrix and there is no mixing
between them.

The quarks are also massless. In order to give
mass to quarks, the Higgs scalar Z belonging to
the representation (2, 2) of G, must be introduced.
The quarks then acquire mass, and this in general
leads to mixing between W3, and W%,. There is
no way to estimate the parameter (£)/{¢) in order
to see whether the mixing between W%, and W%, is
negligible in order to have u-decay and B-decay
universality. In this approach, the symmetry of
the strong-interaction Lagrangian cannot be chiral
because the quark mass matrix explicitly breaks
this symmetry.

Our approach is different in three aspects from
these authors.

(1) We take neutrinos to be left-handed so that
they are massless and remain massless even after
radiative corrections. With this restriction, we
must assign leptons® to the gauge group SU,(2)

X SUg(2) in the following way: (v,, 1,), etc., be-
long to representation (2,1) and ey, etc., are
singlets. The left-handed and right-handed quarks,
however, belong to representations (2,1, 3, 1)

and (1, 2,1, 3) of groups [SU,(2) X SUR(2)], X G,.
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(2) Leptons acquire masses by spontaneous
breaking of the gauge group G,,; in particular,
by giving a nonzero expectation value to the neutral
component of the Higgs scalar ¢.

(3) In order to give masses to quarks, we break
the symmetry group G in two steps. For this
purpose, we introduce scalar fields Il belonging
to representation (2, 2,3,3+3,3) of G. The
symmetry is now spontaneously broken in such a
way that 9 - (1/V2) IX M, where I is a unit matrix
in the space of the group SU,(2) X SUg(2) and matrix
M represents a nonet of scalar and pseudoscalar
mesons belonging to the representation (3, 3) +
(3,3) in color space. In this way, we can have a
chiral-invariant strong-interaction Lagrangian.
The chiral symmetry is then broken spontaneously
in such a way that the octet of vector gluons re-
mains massless, but the octet of axial-vector
gluons acquires a common mass. Before sym-
metry breaking the quarks were massless, and
quarks acquire their common mass after sym-
metry breaking. It is shown that by means of a
chiral transformation, the nonet of colored scalars
and pseudoscalar mesons can be decoupled from
quarks. The extension of the color gauge group
SU,(3) to the chiral group [ SU(3) x SU(3)], is at-
tractive in the sense that quarks are massless be-
fore symmetry breaking, but they acquire their
massbybreaking local color symmetry. Our pomt
of view is that lepton mass arises from spontaneous
breaking of G,,, but quark mass arises also from
spontaneous breaking of chiral color gauge sym-
metry. We realize that we still do not understand
how each quark flavor acquires a different mass.
This may arise due to breaking of the flavor SU(n)
symmetry (n=3,4,...).

Another advantage of the octet of axial-vector
gluons is that it may be helpful in understanding
the hyperfine mass splitting of charmonium states.
It is well known that the effective potential obtained
from a single vectoi'-gluon exchange cannot ex-
plain hyperfine splitting of charmonium states
(especially the mass difference between S, and
1S, states).

It may, however, be noted that by breaking the
symmetry in this way, there is no mixing between
flavor space and color space. But weak vector
bosons W, and Wy, acquire an additional term in
their masses and it also introduces mixing bet-
ween W, and Wg,. It is shown that this contri-
bution to the weak vector-boson matrix can safely
be neglected. The advantage of our approach is
that the mixing parameter turns out to be naturally
small. -

Finally we show that the spontaneous breaking
of the electroweak gauge group SU,(2) X SUR(2)

X U(1) through Higgs scalars can be adjusted in

such a way that it reproduces all the results in
the standard model of Salam and Weinberg® (SW)
for the currently available energies. A version of
the spontaneous symmetry breaking can also be
found where only the asymmetry A= (0g~0,)/

(0g +0;) for the scattering of polarized electrons
on the deuteron or the proton is different in its
dependence on y from that in the SW model, al-
though the value of A is compatible with its ex-
perimental value at y=0.21.

II. THE FERMI LAGRANGIAN

The local gauge symmetry group we consider is
a direct product of G, and G:

Gy X G,=[SUL(2) X SUR(2) x U()]y,
x [SU(3)x SU(3)],.

Under the above group, quarks transform as (as
far as the non-Abelian part of the group is con-
cerned)

(2,1,3,1)
1+ Uy, U, U =
aie==g (0 )=z L3,
d dy 4 \y_q/3
2,1,3,1)
1+y./¢, ¢, C =
(2) _——7f5f%b ~y “r\=
a8R="5 ( , ) 1,2,1,3),
So Sy Sy Y=1/3

where d’=d cosf; +s sinf;, s’=dsinfg+s cosf,.
The leptons are assigned to the following repre-
sentation of the above group:

L,=(”’>s(z,1,1, 1), Y=-1,
-

R,=1;=(1,1,1,1), Y==2,
l=e,u,T,...,
l”_le’zz

For quarks, the gauge -invariant Lagrangain
is given by

== 2 Tr(g{ "Yu Luqm +q ”'Yu Rqu)); (1a)
where

Viu=9,—igWp,~ 3i 3gB +rga Lus “(1b)

VRu=au"'ngRu_%z%g,Bu"'T_z—'gsGRu' (1c)

Here g is the weak coupling constant and W, and



Wr, are weak vector bosons

WLuE%f'W.Lu

w. PR

=%( 3Lu 2 Lu) , (22)
‘/?W;.u —"WsLu

WRuE %? * WRH ’ (Zb)

g 1s the coupling constant associated with the
color group G, and G, and Gg, are color-carrying
gluons '

1 - =
GLuz‘/—z— ¢ Gy
e [GV. . BA V., A
()
- V_GA
GRu= _é_)\c . GRHE_G.LZ_EIL’ (3b)

where A¢ are the usual eight Gell-Mann X matrices
in color space. G} and G# are octets of vector and
axial-vector gluons, respectively, written as 3 X 3
matrices.

The gauge-invariant Lagrangians for weak vector
bosons and gluons are given by

- - - -
WVvB _ 1 . 1 . 1
"Bo = ‘4WLuv WLuv" 4WRuv WRuv— 4B B

wrBup
where a)
WLuv = 8VV-‘.ZL;»' auWLv _ngux WLy s (4b)
W guy = av‘;V.Ru" 3, Wy, - gWp, X ‘-ﬁny ) (4c)
BHVEBVBL;—BBBV , (4d)
and
£8 -+ Tr(G},GY,+GL,G4), (5a)
where

i i
GIV = avGIY - 8MGI +7§—gs[03, G.Y]Jrﬁg,[Gﬂ, G‘:] s

(5b)
7 i
G4, =8,G -8,G} +;/—-2—gs[‘3ff: GA1 -7=2=ga[Gf, Gal.
(5¢)

In order to break the gauge symmetry of group
G spontaneously, we first introduce three sets of
Higgs scalars

e 19"
¢—[¢°]) ¢ [¢°']’
P

¢R= ¢(I)i ’
dr

(6)
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belonging, respectively, to representations (2, 1),
(1,2), and (1, 3) of the group G,,, but they are
singlets under the chiral color group. Note that
only ¢ is coupled to leptons. ¢, ¢’, and ¢y are
not coupled to quarks. Thus we introduce another
set of scalar fields 9 belonging to the representa-
tion (2,2,3,3+3,3) of the group G. We shall

not display the gauge-invariant Lagrangians in-
volving ¢, ¢’ and ¢y as they are well known, We
display below the gauge-invariant coupling of M
to weak vector bosons, gluons, and quarks

Lop==-2g, Y Tr[gPmg’]+H.c. - Tr[D,M'D,9M],

a=ly 2
(7a)
where

D, M =3, - igW,,IM+igMWpg, - —ﬁgs (GY —v,GAm

A
+—ﬁg,?m(GI+ v,Ga). (Tb)

To give masses to weak vector bosons and leptons,
i.e., tobreak G, spontaneously to the [U(1)],m

level or G to [U(1)],, x [SU(3) X SU(3)],, we now give
nonzero vacuum expectation values to scalar fields

<¢>*[i’], <¢’>»[:,] ,

o ®)
(prd=| V|,
0
and
ﬂn*—‘/—l_z-—IxM, 9)

where I is a unit 2 X 2 matrix in the space of SU,(2)
X SUg(2) and M =S +iy,P is a 3 X 3 matrix in color
space. S;and P,, ©=0,1,...,8 are nonets of
scalars and pseudoscalar fields belonging to the
representation [(3, 3) + (3, 3)] in color space. Note
that

1 . 1
i P=—¥ xP,.
S .,/2 Z A‘S‘, /2 ; Ai i

The weak vector bosons now acquire masses and
part of this Lagrangian due to breaking envisaged
in Egs. (8) is

Bl an =~ QW L Wt £ Wy
- 28¢' W3 Bu+g"°B,7)
N2 QPW 3 W+ 82 Wog?
- 2gg' Wy, B,+8"*B?)
~8 (28 W W ) - (10)
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Thus we see that in this part of the Lagrangian,
there is no mixing between W3, and W%,. The
Lagrangian (7) due to symmetry breaking as im-
plied in Eq. (9) now takes the form

Lo~~V2gLa Mty -3 Tr(D,M'D, M)
_-:'gz Tr[(WLu— WRu)(WLu" WRu)] X TI‘[M'M] >

where (11a)
@y

8o=la,|, a=c,u,d,s (11b)
a)’

and

i i
D,M=8,M —ﬁgS(GI - ysGﬁ)M+72=M(G}" +7,G4).

(11c)

Note that (11a) is invariant under the chiral color
group. We shall come back to the third term in
(11a) in the next section.

III. THE STRONG-INTERACTION (COLOR) LAGRANGIAN
From Eqgs. (1), (7), and (11) we have

1 —_
£c=a Za —‘/Tgs(ga7uGK§a + E“Y“YSGﬁga)
=Cy Uiy dy S

-V2g8aMy -5 Tr(D,M'D,M). (12a)
We note that
-z Tr(D,M'D,M)=~5Tr(D,SD,S+D,PD,P),
(12b)
where

[ 1
D“s=a“S——@:g,[GZ,S]——J?—g,{Gﬁ,P}, (120)‘

i 1
D,P=8,P ——\/—_2—-gs[GK,P]+ ‘/—-é.:gs{G‘:, St (124)

To the Lagrangian (12a) we must add a term
V(S, P)=-3u2 Tr(mm') - f,[Tr(mm")]?

~f> Tr(mm'mm?') - f,(detm + detm') ,

(12e)
where

m=S+iP. (12f)

Although only Tr(mm') is in general chiral in-
variant, but as has been emphasized in Ref. 6, a
realization of the chiral symmetry can be obtained
by assuming that :

mm' =m'm (13)

which implies
S :Z C,P", or[S,P]=0,

and we may set
mm' =m'm =82+ P2=R?, (14)

where R is constant and chiral invariant. Under
these circumstances, and noting that [(1 — 4y &)/
(1+14y,£)] transforms in the same way as S +4y,P,
we can, by means of chiral transformation, trans-
form” '

8o S +iyP)Cy ~RTLLL, (15a)
where
144
bt (15)
, . 14d
ﬁ%%(snysp)ﬁ%%f& (15¢)
1 c -—
g=77—2‘) Ak, e2=3{¢, £} (154)
From this it follows that
S +iyP=R[(1 - iy §)/(L+iv,E)], (16a)
S =R1—‘—£i (16b)
1+82°
_ 28
P=-Ri7m, (16c¢)

- i _
~La7u8, 80 +ﬁgaca7u(cz + 'VsGﬁ)ga

— i —
"’gayuaugc’x +\/—:2~gs£;yu (GLV+‘}’5(;LA)§; ; (173)
where

GLY +7,GIA =U(GY +v,GA + ﬁé—au)U* . (17b)

8

1—4yk 1+dy.&

_ t_ .
U—W, U —(1+§2)‘ 5 (17('5)
vut=1. (174d)

From Egs. (16a) and (17c) we have
S+iy,P=RU?2, (18a)
S —iy,P=RU. (18b)

In terms of new fields,
-+ Tr(D,SD,S+D,PD,P)+V(S,P)
- —3R*Tr(D,U?D, U?)+ V(£), (19a)
Where
D, U?*=8,U?+ivVag,Uy,GAU - (8 ,U)U +U?(3 UNU,
(19b)
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DU =08,U” + iVog Uty GIAU"
- (3 UNUT+ U (a,U)UT, (19¢)
V(£) = —31%(3R) - 9f,R? - 3f,R® ;
—fRldet(1 = i&)/(1 +4&) + det(1 +4£)/(1 - 3¢)].

(19d)
Now dropping the prime, we have from Eqgs.
(17a) and (19) the strong- (color) interaction
Lagrangian

- i =
£ch _; (ga'ruauga +Tz——gs§ayu(cz+yscﬂ)ga)
—V2 g RE, L,

LUD U+ V(E). (20)

It is now clear from Egs. (20), (19b), and (19c)
that quarks have acquired a common mass ﬁqu
vector gluons G} remain massless, and axial-
vector gluons G‘,‘} have acquired a common mass

mea® = 2g,2R?. (21)

—sR?>Tr(D

We have obtained the remarkable result that the
color-carrying nonets of scalar and pseudoscalar
mesons are decoupled from the quarks; the quarks
are massive and asymptotically free® as the gauge
coupling constant g, becomes smaller and smaller
at short distances. The asymptotic freedom also
leads to the fact that axial-vector gluons become
lighter and lighter at short distances. For large
distances, since vector gluons are massless, the
multi-vector-gluon exchange can supply the neces-
sary confining potential. The axial-vector gluon
can give an effective spin-dependent potential which
may be helpful in explaining the hyperfine splitting
of charmonium states, which cannot be understood
from the vector-gluon exchange alone.

Alternatively, one can understand the confine-
ment of quarks® in a hadron in that R may be small
inside a hadron so that quarks are light inside a
hadron. R may become large as the distance in-
creases, so that quarks become very massive
when the distance becomes large as compared with
the Compton wavelength of a hadron. It is con-
ceivable that both mechanisms are not mutually
exclusive and may exist together.

Finally we note that the last term in (11a) now
takes the form

1 3g°

- 2 R2(Wh,— Wh)(Wiu— Wiy

+ (WsLu W3Ru)(W3.Lu_ W3Ru)] . (22)

From this term we see that the weak-vector-
boson mass matrix has acquired a value (3g2/4)R2.
We note that the mass of the axial-vector gluon is

quz:Zas 47R? . (23a)

Taking a,~0.2 and mgsa®< 100 GeV?, we have
R*<21 GeV?. ' (23b)

In comparison, we nbte that
1
A~ Gp)'~—=10° GeVZ2.
(V2 Gp) 75 Ge

Hence we see that R?/A2<«< 1, This is true even if
mga is as large as 100 GeV. Hence we can safely
neglect the contribution given in Eq. (22) for weak
vector bosons.

IV. THE WEAK-INTERACTION LAGRANGIAN

From Eq. (1) it is clear that the weak-interaction
Lagrangian for quarks can be written as

£z"em:-—z Z [I,D(Lan)'}/u( lgWLu__lg ) (a)
n a=1,2
+ w;eun)’}/u( lgWRlL_ 6 zg,B )lp(a)
(24a)
where
u c
f.”=< "), .‘.2’=< ">, n=b,7,y. (24b)
a’ Sy

n n

From Eqgs. (24a) and (24b) we have
£W.em_ i—\/:-(JLuWLu“"JRuWRu*‘H C. )

+ %g('] gu WsLu+J%u WaRu) +éLgIVl{Bu’ (253)

where
J‘Zv Ru :Z laﬂyli(l + ys)an ’ (2 5b)
n
Jz?Ru :2 17,7u(L £75)Wq,, (25¢)
n
Vi< 0,7 un- (25d)
Here
c
q= “ ) ) (26a)
a
s
W:<0 w>, e (—sinf)c cosec), (26D)
00 cosf; sinf;
w=[w, w']. (26¢)

We now consider the weak-interaction Lagrangian
for leptons. For the representation content of lep-
tons as given previously,
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8'{' om = —Zl'yu("igWLu*' %ig'B“)L, - Rt?u(ig'Bu)R 3,

= zf/g? [T+ v )W, + Hee ]+ 2iglTvuQ + o)y = Tv,(L+ %)W, .,

~Lig' [V u + vy, + Ty, (L + ¥)l]B,, = 3ig’[ly, (1 = ¥)I]B,. (27
r
By neglecting the term (22), as discussed in the my2=0, (30a)
previous section, the Lagrangian for the masses
of weak vector bosons is given in Eq. (10). Ac- m Lg_z_()\2 A"2)
cordingly, Zp2z Ty T
1 2 in2 2
my,?=4g2, [ 1+sin®a_ cos?a “/2]
(28a) sirfa sinta (L+4p%)"2|,  (30D)
. mWRZ = %gZ(hIZ + VZ) ,

where
while for the neutral vector bosons, the mass

matrix is given by tang =1~ a fflpz)‘ 5 (80c)

and
g2>\2 0 "gg'>\2
1 sino
neutral =7 0 P —-gg'\'? . (28b) p= _'c_()s‘ia-?7 ’ (30d)
_ggIAZ -gg'\'? g'z(kz +1'2) with
2 _ 32
. n=2z"2. (30¢)
Let us denote the physical neutral vector bosons A

byA, Z d Z,,:
V&w Zaw AN Lau Thus the vector boson A, can be identified with

the photon. The electric charge e is then given

A,=cosaZy, - sinaB,, by
. . 4
Z ,=cosf(sinaZy,+cosaB,) +sinBZ,,, (29a) €= eI (31a)
Z,,=-sinB(sinaZ,,+ cosaB,) + cospZ,,, with
where tana = = —S—. 31b
. . an 7o (31b)
W+ -
Z,,= 3“:/_ RE. 7 u= 3‘;_2_ 2k, (29b) In terms of physical vector bosons, the weak-
2 and electromagnetic-interaction Lagrangian for
The diagonalization gives quarks is given by

2
V2

s:’.’m= (J¥“WEM+J%“W'R‘;+ H.C.)+€J:mAu

+Z—}-2_— {- (@ +2g")" 2 cosBl(¥o+ I%,) — 4 cos?a®™] + g sinp[ (¥ - T%)T} Z,,

+:1—}/§.— {(@®+2g")2 sinB[(¥"+I%) - 4 costaT @] +gcosB(Jﬁ—JZ?,)}» Z,,, (82a)
where
J =LY TN + A VE, (32b)

For leptons, the interaction Lagrangian in terms of physical fields is given by
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i _ .
o= DL+ 7 )IW 3, Hoc.] — ieT v, A,

+ﬁ§— {= (g% +2g"2)" 2 cosp[T,¥u(1+ v5)vy = Tyuysl + (4 cos?a - 1)T 0]

+g SinB['ﬁ,'Y,,(l + 75)11[ - Z:YM(l +7 5)l]} Zl.ll

i

I {(g%+22"2)" 2 sinB[T, 7, (1 + ¥,)v; = Ly, sl + (4 cos®a = 1)y 1]

+gcosfTy.(L+ v v, =Ty, (L+ )]} Z,, . (33)

First we note from Eqs. (32) and (33) that for
charged currents

HY¢ =g;={['ﬂ“7u(1 +vs)uller, (1 +v,)v ]} + Hee. ,

(34a)
iG o (e
H{i:. = 1—_\/ZF{[Z Yu(l + Ys)VI]J%u"' H. C‘} ’ (34b)
where
G & 1
=2 - 4
y 2 8”1WL2 2x* o)

From Eq. (32), the effective Hamiltonian for weak
hadronic decays is given by

am-Se (J'L"J e 0 (N H.c.) . (35)
V2 My

This Hamiltonian is parity conserving if m,,*

=my,°. This cannot be true; on the other hand, to
reproduce the experimental result, we must have
My 2> my, 2 (36a)
or
(242>, (36b)

From Eqgs. (34a) and (34b), we see that for
charged weak currents we get exactly the same re-
sult as in the standard model. This is a conse-
quence of the fact that we have taken the neutrino
as two component left-handed objects. We have
the result that, irrespective of whether the had-
ronic (quark) sector is parity conserving or not,
the basic semileptonic weak Hamiltonian has
(V = A) structure for ordinary leptons.

We now discuss the neutral weak-current Hamil-
tonian. We consider two cases: (i). A’2> 2%, i.e.,
n=1; (ii) A2=2%, i.e., 1< 1. In the former case,
we show that we can make

2 2 2
Mz, >Mg, Sy,

but m; * may be smaller than myp?. In this case

we get for the currently available energies exactly
the same results as in the standard SW model. For

r

case (ii), mzfzmzlz, and again we get the same
results as in the SW model except for the y de-
pendence of the asymmetry parameter A = (0 —0;)/
(0g +0y) for the scattering of polarized electrons
on nucleon targets.

We now discuss case (i), where we set € =%/)\"?
<< 1. Then to first order in €, we see from Eqgs.
(30d) and (30b) that

gzklz

2—-—————-
Mz221 =16 sinfa (1+e€)
X[(1+sin2a)
i 02
21— sina ):’
:F(1+Sll'l a)< 8m€ y (373)
so that
m zz——-2——1'}1 2 (37b)
Z2 1+sin?a "L
m 2z—-—-z‘—"rz———)\""(l+sinzoz)>>m 2 (37c¢)
Z1 16 sin*a Z2

but smaller than my.% Note that the relation

(37b) is the same as the Salam-Weinberg relation
if we identify cos®a with 2 sin?6,. Because of rela-
tion (37¢c), for “low” energies, in writing the ef-
fective Hamiltonians, we need to consider neutral
weak interactions mediated by the Z, boson only,
and these Hamiltonians, as derived from Eqs.
(32a), (33), (30c), (37b), and (34c) in the limit

€ -0, are

G —
Hlovt(;x” = 21/% [V;Y,;(l +'}’5)Vx]

x [@cos®a - )yl -Tyn1], (38)
i = i [+ vw]
X (3J% - cos?aJgem), (39)
HegM = —i%[—l—‘rml + (2 cos?a - 1)l7,0]

X (377 - cos?as®). (40)
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These are the same as in the SW models if we
identify cos®a with 2 sin®6,,.

For case (ii), <1, so that p -0 and hence
angle -0, and we get from Eq. (30b)

2
m
Z.l -

1
27 qin2y
mlz sin“o

(41a)

G _ —
HY w0 = 2%2 (1 =Py.Q +v)vl-evy.e+ (2 cos’a - 1)ey,e],

. .G —
HY@M =~ —1%2?-— 1=V, + ys)v,][éJﬁ— cos?aJem],

Gp
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with

1 1
=(1-m) .
mz; me2

(41b)

In this case, we get “low energy” effective Hamil-
tonians for neutral weak interactions from Eqs.
(32a), (33), (41), and (34c) in the limit -0, as
follows:

HifW = ~ie= (1L =m)i[@2 cos’a - ey, e - Trursel J¥, — cos?ale™)

+[@2 cos?a)ey,ell3 7%, - cos’aem]}.

V. EXPERIMENTAL CONSEQUENCES OF THE SYMMETRY
GROUP G, = SU; (2)XSUR (2) X U(1)

We now make the assumption that the matrix
elements of bilinears containing s and ¢ quarks
between protons or neutrons are negligible as com-
pared with matrix elements of bilinears containing
u and d quarks. Thus in neutral weak and electro-
magnetic currents we retain terms containing
and d quarks only. With this approximation

TY eu= iy, (Lt v u = Ay, (L2 v)d], (45a)

Jem = Gy, u—5dy,d). (45b)

If we write the effective Hamiltonian®

Gp -
Hfr(;m Z'L[Vﬂ’u(l +75);]

Vo
X [ gy, (L + v u+dpdy, (1 +v9)d

+ugty,(l =y u+ dgay“(l —v.)d], (46a)

then several authors have determined, from the
experimental data on deep-inelastic scattering of
v, on the deuteron target, u,, ug, d;, and dg.
Their results are given below':

(42)
(43)
(44)
I
u; =0.35+0.07,
d,=~0.40+0.07,
(46b)

#g=~0.19+0.06,
dp=0.0+0.11.

For the L-R model with 7= 1, we have from Egs.
(39), (45), and (46)

u; =5(1 =% cos?a),

up= (-3 cos?a), <
e an

d;=-3(1 =% cos?a),
dr=4%cos?a.
For the case 7<< 1, we have from Egs. (43), (45),
and (46)
uy=(1-1)3(1-%cos?a),
ug=(1-1n)(=3 cos’a),
(48)

dy==(1-n)3(1-%cos’a),
dg=(1=n)cosfa.

The predictions for the asymmetry parameter A
for the scattering of polarized electrons on deu-
teron targets for the two cases are as follows:

~1. A=9r=9%_ _ QGqu[ _10 2 - 2 1‘(1—3’)2]
(a) n=1: A—GR+0L_ 5073 13 (1-%cos’a)+(1-2cos a)1+(1—y)2 s (49)
. . 9Gx(1-17) 10 5 R s 11— (1=yp)
(P) N<l: A=~ 5075 ra (1-%cos?a)+[(1-2cos’a)+2cos a]m . (50)
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TABLE 1. Comparison of predictions of the L-R model with n~1 and n~0 with the experimental data for deep-inelas-
tic scattering of neutrinos and polarized electrons on deuterons. Note that the case n~1 with cos’a =2 sin26W is identical

with the SW model.

cos?ax=0.4 cos?0=0.5
Experimental n=1 cos?a=0.4 na1 cos’a=0.5

values (n=0) n=0.2) (n~0) (n=10.2)

ur, 0.35+0,07 0.37 0.30 0.33 0.26

ug -0.19x0.06 -0.13 -0.10 -=0.17 -0.14

dy, -0.04+0.07 ~0.43 -0.34 -0.42 -0.34

dg 0.0 +0.11 0.06 0.05 0.08 0.06

A/q® (107° GeV~? at y=0.21 ~9.6 +1.6 -9.5 -7.0

(-12.4) (-9.9) (—10.6) (—8.5)

The weak neutral currents can give rise to parity

violation in atomic transition. The optical rota-
tion p, for the two transitions in bismuth which
have been measured is given by

Po~ —4.4 X 10°V, g4 rad (for 8757 A),

Py -6.0X 109V, g% rad (for 4676 &) OV
(Z =83 and N =126 for bismuth),

Where
Viaa =84 2Z +N)+ g} (Z +2N), (52)

where Z and N are the number of protons and
neutrons in-an atom. )

As can easily be seen from Eqgs. (40) and (44),
we have the following values for g4, gh, and g}:

(a) n=1: gh=-1, gl=3-3%cos’a,

Vv 1
g1 =-%+3% cos’a, (53)
(o] 0.2 0.4 0.6 0.8 1'0 y

nat,cos?a=0.5

-84

e __7atcos?a=04

A/q® (10% Gev3)

~16

-20

-24-

FIG. 1. The y dependence of the asymmetry para-
meter A.

(b) n<l: gf=-1, gy=(1-n)-35cos’a),
8 (54)

=(L=m)(-3+35 cos’a).

It is clear that for the atomic parity-violation
parameter p,, both the spontaneous symmetry-
breaking cases (=1 and 7<< 1) for the L-R model
give results similar to the standard SW model.

To sum up, the predictions at “low” energies
for the L-R model for both cases (=1 and 1< 1)
are exactly the same as those of the standard
model except that for the case <1, the asym-
metry parameter A for the deep-inelastic scatter-
ing of polarized electrons on the deuteron has a
different y dependence. Even the experimental
value of A at y=0.21 is compatible with that pre-
dicted in this case, as can be seen from Table L
The y dependence of A for the case n<<1 is, how-

i L i y
-4
-8.
—~
! =02
3 e
& 124
o
‘©
=
& -164
L4 2
by €08’ =0.6
< 08’

=0.5

=0.4
-204

=244

FIG. 2. The y dependence of the asymmetry para-
meter A for the case =0.2.
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ever, very much different from that in the standard ACKNOWLEDGMENTS
model or the L-R model with n=1 as can be seen
from Figs. 1 and 2.

Note added. After this work was submitted for
publication, we were informed that the recent
SLAC data seem to rule out the y dependence of the
asymmetry parameter A predicted by the L-R
model for the case n<< 1.
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