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Comments on radiating fluid spheres in general relativity
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We discuss the boundary conditions for interior solutions of general-relativistic radiating fluid spheres .

which were found by Vaidya, and others which were found by us. We also present a class of new solutions
that could be connected to an exterior solution analytically.

I. INTRODUCTION

The existence of objects with large energy out-
put, either in the form of photons or neutrinos or
both in some phases of their evolution, is well
known. In this regard we have recently studied
radiating fluid spheres in general relativity where
the effects of changing gravitional fields of the
matter as well as the forces on the matter due
to escaping radiation were considered, and four
new analytic solutions corresponding to interiors
of such objects were given. ' The energy-momen-
tum tensor we used was that for a perfect fluid
plus the energy-momentum tensor for radially
expanding radiation. The second tensor was or-
iginally derived by Tolman' and generalized to
curvilinear coordinates by Paidya. 3 Even though
this tensor is derived for plane-polarized radia-
tion it is also true on the average for incoherent
unpolarized radiation, both for photons and neu-
trinos. 4

In general, to solve the problem of radiating
fluid spheres in general relativity we need two
auxiliary relations to add to the field equations:
One corresponding to an equation of state, and the
other representing the law of energy generation
within the object. However, to obtain analytic
solutions we used the method discussed by us. '
One problem we faced concerned the boundary con-
ditions. In general, the coordinate system in
which it is advantageous to obtain analytic interior
solutions is not so useful in representing the ex-
terior solution.

In this short communication we discuss boundary
'

conditions and present a class of new solutions
that could be connected to a suitable exterior so-
lution analytically.

II. BOUNDARY CONDITIONS

+ S —2h2 22k3 (2.2)

and

2m/g=s. (2.3)

As we mentioned, one has to supply two rela-
tions among f, h, and l corresponding to an equa-
tion of state and the law of energy generation. By
assuming various relations we gave four solutions
in the previous article.

From (2.2) it is also apparent that if we assume

fI l~ 1—+—+-=0f l r (2.4)

the system will be solved immediately, giving
h and f in terms of l as

f(r) = c,/lr, (2 6)

where c, is an integration constant and s is a sep-
aration constant. Hence, if we assume l(r) as our
second relation all the physical quantities will be
determined.

This solution has to be matched to Vaidya's
radiating exterior solution, which could be given
as

where e =h'm', e~= 12m', and e" =f 'g' in Vaidya's
notation. Note that in general, time-dependent,
spherically symmetric space-times can be re-
duced to a form with only two unknowns. How-
ever, introducing this additional freedom allows
us to separate the field equations in x and t and
give the following differential equations to be
solved'.

+f(r )'g(t)' dt', (2.1)

The metric used by Vaidya' and us' is of the
form

ds' = -h(r)'m(t)' dr' —l(r )'m(t)'(r' d 8'+ r' sin'Hdg')

ds2= — 1 — dr"-x" d8'+ sin'Hdr'&:('-'"')"' (2.V)
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where E(M) is an arbitrary function of M given by

MI 1-- =EM2M
(2.8)

0 —
V P VvTlt v

rad ~ (2.13)

and M is a function of x i and t.
This metric could also be expressed in a more

convenient form by introducing a retarded time
coordinate u as' (2.14)

where T„~=Ore'gg" and se„se" = 0. From this it
can be shown that the luminosity measured by an
observer at rest at infinity is just

dML„=——.
du

ds'= 1 —2, du'+ 2du&'M(u)
J

r"(d 8'+ sin28d$2) . (2.9)

The luminosity at finite xi will be

dML(r ', u) = 47(r i2a =—
du (y+v')'' (2.15)

We will use the form obtained by replacing u = t- r'
in (2.9) which is'

2M I'2M 2M
ds = 1 ——dt+ 2 dt dy' — 1+ - - dy'"

yl y I

r "-(d8'+ sin'8dg') . (2.10)

r =l(r)m(t), (2.11)

The line element (2.1) can be transformed into
the above form, most easily, without the necessity
of an integration factor as follows: If we define a
new radial marker as

where

M dr'y= 1+ v''-2 —"'
d7' (2.16)

L(r', t) = — [I+v'(y+ v') j
dM i 1

y+v (2.17)

This has to be matched to the luminosity obtained
from the interior solution at B,I. We can define
the interior luminosity in analogy to (2.15) as

If we transform u to the normal time coordinate
t defined by u = t -x', we get

the metric (2.1) will be cast into the form L„,(r', t) = 4(/r 12@„,(r', t) . (2.18)

ds =—,(dr')' r"d8 --r" sin28dg2(l'r+ l)'

(l r + l)' (l(r + l)'

(2.12)

where from (2.11)r as a function of r' has to be
substituted into the metric (2.12). This metric
could further be transformed into the form of
(2.7) or (2.9), but that would require evaluating an
integration factor, which might not be possible
to do analyti. cally. Note that after the transfor-
mation (2.11) space and time coordinates are
now mixed in the new metric.

From the field equation (2.2) it is seen that in
the solutions there will be five independent inte-
gration constants. f(r) and l(r) each will have
two, while h(r) will have only one constant. Re-
quiring the continuity of the metric, the contin-
uity of the pressure, and the luminosity at the
surface, the five integration constants can be
determined in terms of the radius, the mass,
and the luminosity.

The radius R of the star is defined as the radius
of the surface over which pressure drops to zero.
The definition of luminosity is somewhat difficult,
due to the fact that 0 in Tf","~ is only determined
up to a Lorentz transformation. Following Misner
et a/. ' we define 0 measured by an observer mov-
ing with the four-velocity v' so that u/" =(1,1,0, 0)

0 in terms of the old coordinates was given as'

o(r t) s-(3aM)/2y 4 (2.19)

where gg' =1 according to our normalization and
T

y
wi 11 b e obtained from the fie ld equation as '

87(T,4(r, t) = sf'/f 3g', (2.20)

where r'= l(r)m(t)r. .
Hence, continuity of the luminosity at the sur-

face will be achieved by the continuity of a(r', t):

(/„2(A', t)= L(ft l, t) (2.21)

L(R', t) is the luminosity at the surface and can
be given in terms of the luminosity observed at
infinity as

L(Z, t) = L,.[1+v, '(y, + v', )]
1

j 2 (2.22)

where a subscript s denotes the value of that
quantity at the surface. 'The velocity of the ob-
server will simply follow from definition (2.13)
and normalization of (v", as gv" =(1,1,0, 0),

O'= V V 0'28 $0 (2.23)

—V +V =1 (2.24)

Considering radially moving observers this gives
two conditions on v":
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V V1+V V4

This determines v" as
2

V
1 Z«4 Z41 (4 41 g44811 +811+F44+ g41)

g11+g«+ 2g

2 1/2
V
«+ g41 +811 (F41 tF«4811 +F11 844+ 4 41)

F11 g44 +41

(2.25)

(2.26)

(2.27)

Partial derivatives of M(r, t) are given as
M' = 4''( T,'R' —T, 'R), where R = Emr

and

M=4' (T, R —T4 R').
Finally, using Eqs. (2.5) and (2.6) we give a new

solution that has a sufficient number of arbitrary
constants and can be connected to the exterior
solution analytically for special cases. We take

at infinity v' —0 and v'-1.
In our paper' we have used a different normaliza-

tion of zo . However, we prefer this new definition
because it is easier to evaluate the integration
constants in terms of the luminosity observed at
infinity. Note that with the old definition, lumin-
osity for the interior is independent of time. For
a different way of handling boundary conditions we
refer the reader to Misner' and Misner and Sharp. '
We have also shown that in comoving coordinates
the time dependence of the pressure and the den-
sity is unique for separable solutions and has the
form e" where 8 is a separation constant.

For the sake of completeness we would like to
define a mass function within the Quid as"

iw(~, t) =I(«*f ('((( ~+ ()(p +~a'(f'(")

+ solrE'k/f 'g']4vr'dr.

&(r) = «„(a,+ a,r'),1

which leads to

)
Car

(a, + a,r')« '

k r}=- +1

2~44 1/ 2
x 1~ 1-

where

A = a,Pq —a, (k+ 1), B= -ao(k+ 1) .

We have a„a„q,P, k, c„and's as constants;
five of these will be determined from the boundary
conditions leaving the rest arbitrary.
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