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The noninstantaneous and nonlocal interactions which follow from Weinberg-type dynamics are found to
produce v/c relativistic corrections to potentials which are nonrelativistic limits of certain field-theoretic
dynamics. Such corrections may be applicable in, for .example, phenomenological models of charmonium.
These interactions are driving terms in a covariant three-dimensional two-body integral equation derivable
from field theory. For bound systems this equation is a fully covariant Schrodinger equation, with spacelike
relative momentum and a proper angular resolution. We study this equation, including its systematic
relativistic corrections, in various limits based on scalar-particle-exchange dynamics. We compare and
contrast it to a related but different three-dimensional equation derivable from field theory which represents
an equal-time projection. We also comment on other approaches to the relation between relativistic and
nonrelativistic dynamics.

I. INTRODUCTION

The connections between relativistic quantum
field theory and the nonrelativistic Schrodinger
equation have always been an issue of great inter-
est. The recent activity in charmonium' and
other quarkonia, and in particular the necessity
of understanding relativistic corrections to a non-
relativistic potential-model phenomenology, has
made this issue of even greater importance. In-
dependently of this, the extreme accuracy of mea-
surement' of the positronium spectrum has de-
manded a systematic account of the theoretical
relativistic corrections to the binding in high or-
ders of the coupling.

Although we know the Lagrangian both of elec-
trodynamics and of chromodynamics, and although
both charmonium and positronium are essentiaOy
nonrelativistic, the similarities between the tw'o

cases mentioned above end there. The relevance
of perturbation theory is doubtful, and we have at
best only hints of how chromodynamics works at
the long distances which govern the confinement
of quarks and hence the dynamics of quarkonium.
These hints motivate the choice of the nonrela-
tivistic potentials which form the basis of quar-
konium phenomenology. However, as we shall
discuss in some detail, such a choice leads to
unique relativistic corrections' only if the non-
instantaneous aspects (i.e. , the time dependence)
and the nonlocal aspects of this potential are
specified.

This general approach does not lead to a unique
and well-defined set of kernels ordered by the
coupling constant, as is the case in positronium.
For positronium' perturbation theory is a useful
tool, and the system is well enough understood to
provide a useful cross check for our approach.

In quantum field theory the full Bethe-Salpeter
equation' is the proper tool for dealing with the
bound-state problem. Beyond the interpretational
difficulties connected with the relative time vari-
able, the necessity of performing the Kick rota-
tion for an angular momentum decomposition and
the existence of anomalous solutions' present
problems. For these reasons, many methods have
been developed over the years for reduction of the
Bethe-Salpeter equation from a four-dimensional
to a three-dimensional space.

In Sec. II we give a partial critical review of
these methods, singling out the equal-time method
proposed by Logunov and Tavkhelidze. ' This
method is truly three-dimensional; that is, cor-
rection terms contain no four-dimensional pieces.
As we shall see, an equal-time interaction and
equation, which follows from straightforward in-
tegration over energies of the Bethe-Salpeter
equation, is quite different from an instantaneous
interaction and equation, where time dependence
is essentially dropped. This distinction is a cru-
cial one and one which can lead to errors if not
properly observed. Equal-time interactions are
necessarily noninstantaneous.

Our focus is on the Green's functions, which are
the primary objects in quantum field theory. From
the full and free equal-time Green's function fol-
low the equal-time interactions and t matrix.

Section III contains a systematic treatment of the
equal-time method, with a primary example of
scalar exchange as an underlying dynamics. The
resulting equation, while of interest, has certain
disadvantages. Among these, we have that, first,
many of the interpretational disadvantages remain
in that there does not appear to be a simple graph-
ical version of the theory. Second, the nonspace-
like character of the relative momentum makes an

2406 1980 The American Physical Society



21 NONINSTANTANEOUS O(e/c) RELATIVISTIC EFFECTS IN. . .

angular analysis valid only for a given frame.
However, a simple variant on the procedure, name-
ly, integration over the minus rather than zero
component of the momentum, i.e. , an "equal-x+
component" theory, eliminates these disadvantages
without great cost by giving the Weinberg equa-
tion. ' We call the resultant on-mass-shell dy-
namics luminal (referring to the fact that we pro-
ject on the null plane), treat it in Sec. IV, and give
a reformulation in Sec. V. This reformulation is a
covariant form of the Schrodinger equation itself.
The potential for this "Weinberg-Schrodinger"
equation is generally nonlocal and noninstantaneous
(energy dependent}.

Systematic calculation of relativistic corrections
to an infinite-mass nonrelativistic limit, where the
potential becomes local and instantaneous, are
possible and are discussed in Sec. VI. In addition
to new O((v/c)') corrections, we find O(v/c) cor-
rections whose origin is the noninstantaneous na-
ture of the potentia, l. Finally in Sec. VII we review
the main results and discuss various questions
which have been raised.

II. FROM FIELD THEORY TO POTENTIALS

In this section we review various attempts to re-
duce the bound-state problem in local quant~
field theory (QFT) to a nonrelativistic form with
relativistic corrections. Generally speaking the
starting point for such a problem is an appropri-
ate equation and its kernel; in nonrelativistic
physics this is of course the Schrodinger equation
and its corresponding potential. Systematic inclu-
sion of relativistic corrections, however, requires
us to go beyond the Schrodinger equation.

As shown by Gell-Mann and Low, ' solution of
the full Bethe-Salpeter (BS) equation is the cor-
rect solution to the bound-state problem of a QFT,
where "full" means representation of both the
particle propagators and irreducible kernels by
the full Green's functions as well as use of an in-
finite series of these kernels. The resulting
bound-state wave function depends on the relative
energy-momentum (or equivalently the relative
time-position), which describes the relative mo-
tion of the constituents. In practice, of course, we
must approach the BS equation with various ap-
proximations in hand, such as free-particle prop-
agators or a truncated set of kernels. To assess
such approximations it is useful to have some
point of reference. The Schrodinger equation can
provide such criteria, as well as the reduction"
to the Dirac or Klein-Gordon equations for a rela-
tivistic particle in a static field, i.e., the two-body
problem with one body infinitely massive, or the
case of two equally massive constituents.

y$) =
Jl dp, y(p, p,), (2.1)

where g(p, p,) is the full BS wave function. By it-
self, this is all that is required if the irreducible
kernel is independent of P,. Generally speaking
this is not the case. Moreover, simply dropping
the P, dependence in the kernel is correct neither
in principle nor in practice. (For example, Sal-
peter and Bethe' found that in the loosely bound
deuteron, the effect of this procedure was as
large as 10% in an effective coupling constant or
50% in the binding energy. ")

Salpeter' has studied the hydrogen a,tom as the
solution to the BS equation. (This system, and in
particular the one-photon-exchange kernel, has
been a testing ground for many of the methods re-
viewed here. } By using the radiation gauge, he
separated photon exchange into an instantaneous
Coulomb part —independent of P,—and a nonin-
stantaneous transverse part. Schwinger" also
gives a systematic account of the relativistic
corrections to the H spectrum in a different for-
mulation: the use of an equal-time free Green's
function analogous to the one-time wave function
in Eq (2.1), a. nd an intermediate Green's function
obtained from the equal-time free Green's func-
tion and the instantaneous part of the interaction.
The noninstantaneous part of the interaction is
treated separately (see action 5-3 in Ref. 12).

What is relevant for our purposes in Salpeter'
and Schwinger" is the observation that the non-
instantaneous part of the interaction contributes
to the binding O(n'm(m/3d)'} and O(o. 'm(m/iM}},
where m and M are the electron and proton mass-
es. This should be compared" to the spectrum
from the Dirac equation with the Coulomb poten-
tial p

(Z 2 i/2
Z„=m 1-l

& n

1 (Zot&' 1 &Zn't'
=m 1--I

I
--I

I
+"

2En j 8En j
Since the corresponding Schrodinger equation
would give only the second term on the right-hand

(2.2)

The presence of the relative energyp, in the
argument of the BS wave function makes it diffi-
cult to compare with the nonrelativistic wave func-
tion in which this variable is absent. Moreover,
associated with this is the fact that the BSequation has
extra anomalous solutions' which have no non-
relativistic counterparts. It is therefore impor-
tant to have a way to eliminate this extra variable
to make contact with the nonrelativistic problem.
Salpeter and Bethe, in their classic paper, con-
sidered such a possibility by the definition of a
one-time wave function,
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side, the first relativistic corrections are
O(o. 'm). Thus while in H the noninstantaneous
part gives only a small correction, it is as impor-
tant as the Coulomb part in computing the rela-
tivistic effects for equal-mass systems such as
positronium. This fact has a,iso been emphasized
by Feldman et al. ' and by Feinberg, ' the latter in
the context of speculations about quantum chromo-
dynamics (QCD). In particular, for QCD extension
of the above ideas may lead to the following in-
terrelated problems: (i) An effectively large
coupling constant may accentuate the role of all
relativistic corrections, both instantaneous and
noninstantaneous (nonlocal). (ii) The nonrelativis-
tic (m- ~) limit of kernel iterations may not be
iterations of the nonrelativistic kernel. (iii) The
bound states of QCD may not be threshold bound
states, which would allow Foldy-Wouthuysen
transformations to determine a nonrelativistic
Hamiltonian operator.

For noninstantaneous kernels, the required ex-
tension of the one-time wave function was provided
by Logunov and Tavkhelidze. ' It is ba, sed on the
systematic equal-time treatment of both the free-
particle and full Green's functions. We shall pre-
sent details a.s well as applications of this approach
in Sec. III. Here we note the following comments:
(i) The equal-time approach is equivalent to the
full BS solution if one includes a.ll terms in the
equa, l-time interaction, which is general is differ-
ent from an instantaneous interaction. (ii) Just
as for the BS photon ladder approximation, the
equal-time photon ladder has the drawback that

, in the static limit, when one of the two consti-
tuents ha.s infinite ma, ss, it does not produce the
Dirac equation result (or for a scalar exchange
the Klein-Gordon equation result). (iii) For par-
ticles with spin the inverse of the equal-time
Green's function does not exist." To circumvent
this problem" one ca.n use the Breit-type free
Hamiltonian, but one then must introduce an ap-
propriate unitary transformation"'" on the states.

There are several more ways to deal with the
relativistic bound system. Perhaps the method
most closely related to the Logunov-Tavkhelidze
method is that of Tamm and Dancoff, '4 which has
continued" to provide useful insight.

A second way is to develop relativistic quantum
dynamics as in recent work by Leutwyler and
Stern. ' They subdivide their approach into five
subclasses, out of which the instant form, the
point form, and front form are well known. "

A third way is to approach the bound-state prob-
lem by the use of old-fashioned perturbation the-
ory, certainly satisfa, ctory if one knows the La-
grangian and from it develops a definite sequence
of kernels. Ka,dyshevsky" and his collaborators

have studied this approach extensively. The major
difficulty here lies in the very large number of
diagrams in a given order, which, however, can be
dramatically reduced by evaluation in the infinite-
momentum frame. '" This leads to the Weinberg
equation, ' which ha.s many advantages for dealing
with the relativistic bound system. Details and
discussion of this scheme are given in Sec. IV.

A fourth way is the use of the BS equation with
one intermediate particle always on the mass
shell. This was originally proposed by Gross, "
and more recently applied by Lepage2a to the posi
tronium spectrum. Such a procedure leads to the
correct Klein-Gordon or Dirac equation in the
static limit. While this scheme is certainly sys-
tematic, one must keep in mind that the equal-mass
constituents are not treated symmetrically. In
addition, one saves time-reversal invariance only
if both positive and negative-energy states of the
off-shell constituent are included. Finally, the
relative momentum is no longer necessa, rily a.

spacelike four-vector, so that the angular momen-
tum analysis is restricted to one frame of refer-
ence, usually taken to be the center-of-mass sys-
tem. Thus manifest Lorentz invariance is lost,
in spite of the fa,ct that the mass-shell condition
for one pa, rticle is itself invariant.

Blankenbecler and Sugar" developed a well-
known method which is superficially like that of
Logunov and Tavkhelidze. ' However, in addition
to a rather remote connection to field theory, off-
shell continuation in this approach is not uniquely

defined. "' Woloshyn and Jackson" and Love"
also have approaches which are however not truly
three dimensional; rather there are correction
terms which are four dimensional in nature. Fi-
nally we mention the work of Partovi, "whose ap-
proach seems to be applicable only for fermionic
systems.

The recent literature' on the charmonium spec-
trum and its relativistic corrections contains
many different applications of the ideas discussed
above. Many of these have been quite valuable,
although we shall concentrate on some of the nega-
tive aspects in the brief review of these. We em-
phasize that this criticism (as the applications
themselves) is not based on any fundamental un-

derstanding of the QCD Lagrangian, but rather on

lessons learned from model Lagrangians and in
particular from QED.

In a formalism close to Schwinger's Celmaster
and Henyey" argue that transverse (noninstanta-
neous) pieces of an effective dressed gluon ex-
change are unimportant to the first order of rela-
tivistic correction. This seems inconsistent with

the results of Refs. 4, 5, and 12, which give n'm

corrections to the binding energy in positronium
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due to the transverse photon. IThis originates in
Ref. 4 from the noninstantaneous part of 'the in-
teraction. See also the remark below Eq. (3.16)
in Ref. 4.j This is not simply a matter of gauge
choice, since the gauge used in Ref. 2V is the Cou-
lomb gauge for one-photon exchange, and this is
the gauge used in Ref. 12.

One could similarly argue against the nonap-
pearance of noninstantaneous pieces for various
phenomenological apphcations to quarkonium that
exist in the literature. " In such cases it would
not be possible to suggest just what these pieces
should be like, since the starting point is the po-
tential rather than a covariant interaction. It may
or may not be justified, according to the field the-
ory, to tailor off-shell continuations, or equiva-
lently the choice of energy components, which in
general lead to nonlocal or noninstantaneous in-
teractions, to leave only local relativistic correc-
tions, as in Grome's work. " For example, the
gauge invariance of QED seems to make this pos-
sible up to O((v/c)'). On the other hand, as we
shall see, a scalar field theory has nonlocality in
the irreducible kernel at the level of the first
relativistic correction. Thus we henceforth ask
the reader to be aware of the potential importance
of this kind of contribution.

III. EQUAL-TIME INTERACTION

The idea of an equal-time interaction can be
traced to the classic paper' of Salpeter and Bethe,
with the one-time wave function of Eq. (2.1). As
stated in Sec. II, Schwinger" introduced an equal-
time free Green's function, which he called a "one-
time" Green's function. This name may be mis-
leading, in that in the four-point Green's function
the two-body relative times are zero in both the
initial and final states; however, the common ini-
tial time differs in general from the common final
time, and we prefer to refer to this situation as
"equal time. " Moreover, if in a covariant forma-
lism we want to consider a Green's function cor-
responding to a given fixed value of the total ener-
gy of the two-body system, e.g. , the bound-state .

problem, then more than one time is necessary,
since a 5 function in energy implies infinitely
many values of both the initial and final common
time.

Schwinger's" Green's function was defined only
in terms of the instantaneous interaction. We
are instead interested in the equal-time version of
the full BS Green's function, given by Logunov and
Tavkhelidze. ' We shall review their derivation
here and work out some examples which illustrate
various points of interest. There are various
forms of their procedure, all in principle equally

good, all leading to genuinely three-dimensional
equations. These equations, or their correspond-
ing interaction kernels are frame dependent; nor-
mally one works in the center-of-mass frame,
but by working in the infinite-momentum frame
one can show" that one recovers the Weinberg
equation from this procedure.

-To derive the equal-time Green's function, we
start from the BS equation for the full four-point
Green's function G, written in operator form as

G=GO- GOING, (3.1)

where G, is the free Green's function, written as
the product of two free particle propagators, and
I represents some irreducible kernel. Let us de-
note the initial, intermediate, and final four-mo-
menta as p„p„k„k„p,',p,', respectively. Figure
1 shows the equation and labels the lines. It is
useful to define total and relative momenta as
follows:

P =P, +P„P= (m, +m, ) '(rn, p, -m, P,), (3.2a)

x (P,'-m, '+i~)-'6&'&(P -P')
—(p,"—m, '+ ie)-'(p,"—m, '+ ie) '

x d'@p'lrl ~&&~l G(P) Ip&, (3.3)

where we have defined

&P 'I GP') IP&6"'(P-P') =&PlPl I GIP,PP (3 4)

and similarly for I.
We now define an equal-time Green's function

G which depends on relative three-momenta,

&p'IG(P)lp&-=) dP.dPl&P'IG(J')IP&, (3.5)

and similarly for the free Green's function. The
name "equal time" refers to the fact that the Fou-
rier transform of Eq. (3.5) corresponds to setting
the initial and final relative times each equal to

Ik

FIG. 1. Bethe-Salpeter equation for the four-point
Green's function, with interaction I as the kernel.

p, =p+rn, (m, +m, ) 'P, p, =-P+m, (m, +m~) 'P,

(3.2b)

and similarly for the k,. and the p,'. .
From E|I. (3.1) we get after extraction of total

four-momentum conservation I' = K=I" the mo-
mentum-space equation

&P'IG(P)IP& =(P;-w'+i~) '
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zero. In position space this means

G(t ', t ) = G(t,' = t,' = t ', t, = t, = t ) . (3.6)

I by a BS-type equation,

G=G, —GQG, (3.9)

The name "one-time" may thus be mislea, ding.
Consider the iterative solution of Eq. (3.1),

which will have the iterative solution

G= Go- G+G, + GOIGQG, — (3.10)
G = Go —GOIGo+ GoIGQGo-

Applying the equal-time operation,

G= Go- [G+G,] + [GQGQGO]

(3 7)

(3.8)

Comparison of Eqs. (3.10) and (3.8) gives an al-
gorithm for calculating I from I to any order of
the interaction. In lowest order we find

(where for typographical reasons we use the nota-
tion [A] —=A), we define the equal-time interaction
I as the kernel such that G is obtained from C, and

I

I=Go '[GOGO] Go
' (3.11)

or more explicitly in terms of the matrix ele-
ments,

P'

&p'Iilp& = [&p'IG.(P)lp'&] ' dp.dp!(pl'-m, '+i~) '(p."-m.'+i~) '&P'IIlp&(p, '-m, '+i~) '

where

x (p,'-m, '+i~) ' [(plG, (P)lp&]-', (3.12)

(plG, (p)lp& =
Jl dp, dp,'(p, '-m, '+is) '(p, '-m, '+is) '5"'(p'-p}. (3.13)

By integrating over poles in p, in Eq. (3.13},we can get a.n explicit expression for the matrix element of
G,. For example, for the case m, =m, =m in the center-of-mass system where P = (W, o),

(plG. (P)lp& =- (2 ')E '(W'-4E') '6"'(p'-p),
where

E =+ (p'+m')'I'

(3.14)

(3.15)

Similar techniques will be used to evaluate (p'IIlp& once I itself is specified.
Let us now consider some further applications of the above formalism. To start, suppose (p'IIlp& is in-

dependent of p,' and p„as, for example, for the instantaneous Coulomb part of one-photon exchange. Then
from Eq. (3.13) we see that in operator language

Ifllst G
-1[Gglllst G ]-G

-1

—G -1Gg~~G G -1

(3.16)

This is the case Schwinger studied. "
As a second example of I, we evaluate the case of scalar-meson exchange of mass p, i.e.,

&P'IIIP& =g'[(Pl-P.)'- (p'-p)'- v'+i~] ', (3.17)

for equal-mass (m, =m, =m) scattering in the center-of-mass frame. In addition to W, E, and E', defined
above, we also define

~ =- [(p'- p)'+ ~']". (3.18)

The pole structure for (p'II(W) Ip& is more complicated, but not qualitatively different from that of G„and
we find, using (3.12) and (3.14),

(p'II(W)lp& = —4g ((oW ) ((E+E'+(o} '[(W —2E)(W+2E')+(W+2E)(W —2E')J

+(W+E+E'+&a) (W —2E')(W-2E) —(W —E —E' —&o)- (W+2E')(W+2E)). (3.'19)

This should be compared to the "instantaneous"
analog of scalar exchange, Eq. (3.17) with p,'=p,
=0

&p'II 'lp& =-s'I'~'.

I

In addition, there is little resemblance between
Eq. (3.19) and the corresponding old-fashioned
perturbation-theory expression, which is of course
associated with the fact that the equal-time inter-
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action is not an on-mass-shell interaction. An
important feature of (p'~I(W) )p) is the nonlocality,
expressed in the separate dependence on E and
E'. This is not a nonlocality which can be easily
argued away by approximation, since in the inte-
gral equation an infinite range of all three-mo-
menta is allowed, and the importance of the terms
in Eq. (3.19) is comparable in different regions.

In addition, (p'~I(W) ~p) is noninstantaneous, i.e. ,
its Fourier transform has time dependence, mani-
fested in the dependence on the total energy. This
is connected with the cluster decomposition prop-
erty present in field theory, ' which for a two-
body problem means that at infinite separation in
space or time the two constituents do not interact.
An instantaneous interaction violates this proper-
ty in an arbitrary frame of reference, even if it
is forced to hold true in one particular frame.

Finally let us consider the nonrelativistic limit
of this example, by which we mean here m- ~,
while all other quantities, including the binding
energy B and the three-momenta )p~ and )p') re-
main finite. Then 8'=2m- B 2m, and

(p'~I(2m) ~p) —-g'&&'«&'. (3.20)

At the same time the reader will recall our argu-
ment above that all regions of k in the integration
may be important. Since at least for finite p, , ~
is finite, the region ~k~ = 0 is not a singular region
of the integrand, and it is reasonable to take m-~ before we do the k integration.

With the technique of picking up poles in p, and

p,' we could easily add some form factor I ((p '

-P)') to our scalar exchange (3.17). If it had no

poles i.n, say, the upper-half p„p,' planes, then
generalization of (3.19) is straightforward.

As a third example of I we may consider the
scalar exchange, but in a frame other than the
center-of-mass frame. Here we refer to the paper
of Feldman et al. ,"where J is evaluated in the in-
finite-momentum frame of reference. Their re-
sult gives the Weinberg equation, ' just as the in-
fi, nite-momentum limit of the old-fashioned per-
turbation theory is the Weinberg equation. In par-
ticular, in the infinite-momentum frame we get
projective properties for the Green's. function,
which restrict the domain of internal momenta
to positive p, =p, +p, for each constituent, inclu-

ding the intermediate states. We shall discuss
the Weinberg equation in detail in the next section.

IV. LUMINAL INTERACTION

In this section we follow the reasoning and
methods of Sec. III with the difference that the
privileged component is not time but the light-
cone' ' ' ' ' or luminal variable x, =—z+ t. We
shall see that this procedure leads us to the Wein-
berg equation, ' which is a completely on-mass-
shell equation, even for particles in the inter-
mediate states.

Kinematic labeling is as in Sec. III, with the
additional definition of the z axis by the direction
of motionE, of the bound state, i.e., K, =O, where
-L labels perpendicular components. Note 0, = 5,'
= 0. We also introduce luminal variables v, vo
+ v„where v is a four-vector. These will apply
in both configuration space or momentum space.
We have the usual scalar product

1
Q ' v = g (Q~1J +s v~) —ug

' v~ . (4.1)

The luminal Green's function C is defined in
complete analogy to the equal-time Green's func-
tion G,

or in configuration space

G (x.', x.) = G (x,'. = x,'. = x,', x,.= x,.= x, ) .
'Ihe luminal condition expressed in Eq. (4.3),
namely

I
Xg+ X2+ —Xg+ X2+ —~

p

(4.3)

(4.4)

is invariant under Lorentz boost in the z direction.
This crucial property should be contrasted with
the frame dependence of the zero- relative-time
condition of Eq. (3.6). The z-boost invariance of
Eq. (4.4) allows us to choose K, at will; in parti-
cular we could just as easily choose the center-of-
mass frame, whereK, =K = W, as the infinite-
momentum frame.

The luminal free Green's function can be eval-
uated from Eq. (3.13) by Cauchy's theorem for
p poles. We find

(P,'P,'la&&(W) (P, P,) = JtdP dP'(P, .P, -P„'-m, '+i&) '(p,.g, --p»' —m, '+i@)-'6"'(p'-p)

m t p 1
2miw ' (P-, — ' W&l]P. + ' Wl+P, '+—'(m, '-m, ')+m, m, -ie

xei W+p,
i 8( W p, i5'"(p,'- p, )5(p.'-p. ).

~m, +m, 'p ~m, +m, (4.6)
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The projective 8-function factors in Eq. (4.5) are now features of the luminal free Green's function. This
property has been discussed previously" in connection with the use of the plus-minus variables. They ap-
pear because of the linear dependence of the propagator on p, and p, so that the poles in, say, P lie above
or below the real line according to the sign of the e-function factors. 'The 8 functions mean that both con-
constituents must have a positive plus component, as comparison with Eq. (3.2b) shows. This projective
property allows us to reinterpret the fully off-mass-shell BS theory as an on-mass-shell, off-minus-
component-shell Weinberg theory; note that for initial- and final-state on-mass-shell particles the plus
component must be positive, and plus-component conservation at any vertex enforces positivity of the
plus-component for the intermediate state.

Equation (4.5) is fully equivalent to the Weinberg two-body propagator. ' To show this we need to define
a dimensionless variable q as the ratio of the plus component of one constituent to the plus component of
the total momentum, and then express q in terms of the relative momenta,

q=p, P, '= ' +p, g' '.
m] + m2

The well-known Weinberg propagator, ' which is written

1

W'q(1 —q)
P™+ ' " —W' —i~ 8(q)8(1 —q)6(q' —7))6"'(p,' —p, ),

(4.6)

(4.7)

can then be easily shown to be Eq. (4.5).
We.next evaluate the luminal interaction

I=G 'GoIGoGO

where as an example we take I to be scalar exchange, Eq. (3.17). Using the same techniques, we get
2 2

(~.', RI&Ilu. , i&=-g'I~.'-~. l-'Ie(~.'-u. &
',' "

4e + +

+ 8(p, -p') ' ', +p, +p,' —W —iE
+ +

which can be rewritten""'" as
2 -1

(e.'c.'Il~(w)ln. a)=-~'I-n' o+ ''(p --~) -~ v*+le, -s,
~

;(2+I 2w ie-)—-
m~+ m2

(4 6)

(4.9)

In this expression the quantity in square brackets
is a four-vector squared, but with the minus com-
ponent determined by the parameters of the poles
which lead to (4.9). In particular, as in Eqs. (3.2),

* — 2 pt - 1- 2«& - ~l- ~2- &

m~+ m2 ml + m2
(4.10)

where

(4.11a)
1

p~,
' '

yyz, +m2
(4.lib)

I

conditions for the constituents. 'The presence of
the absolute value in Eq. (4.9) corresponds to the
two standard x,-ordered graphs, which we draw
in Fig. 2. This equivalence thus carries with it
the possibility of the reinterpretation discussed
above in connection with the luminal free Green's
function.

In this connection it may be appropriate to point
out that this dynamics is not luminally instanta-
neous, because the result is not proportional to
6(x,'-x, ). We could call the theory a "one-x, "
theory in the sense that the intermediate states

and similarly for the primed component. Writing
the luminal interaction in this way makes the com-
plete equivalence of these results to the Weinberg
equation, i.e., to the old-fashioned perturbation
theory in the infinite-momentum frame, "or the

x,-ordered perturbation theory, more explicit.
For example, Eqs. (4.11) are just mass-shell

Fjo. 2. Weinberg (x,-ordered) graphs for scalar
exchange. A vertical cut in the x, variable is implied.



NO NINSTANTANROUS O(v/c) RELATIVISTIC E F F ECTS IN. . . 2413

considered have a given x, value, but in analogy
with Sec. III it seems more fitting to call this
approach an "equal-x, " approach, corresponding
to the differing x, scales in the initial and final
states, as in Eq. (4.3).

We now consider two distinct large-mass limits
of the luminal interaction: (1) the static limit,
when m, -, while m„p„p,', p„p,', and W-m,
are all fixed and comparable and (2) the nonrela-
ti~is tie limit, when m = m, = m -~ while p„p,',
p» p,', and W-2m remain fixed. Recall generally
S'=m, +m, -B. In the static limit we have, using
Eqs. (4.10) and (4.11), q -=(2- v)p, (k-+ v)p„

where

(5.1)

equation with an energy-dependent nonlocal po-
tential. We thus arrive at a relativistic version
of the Schrodinger equation.

For this purpose we define" new rela, tive
momenta which have the advantage of being ortho-
gonal to the timelike four-vectors P, K, and P"'.
Such vectors will be spacelike (in the BS equation,
the relative momentum is not in general space-
like) and have an angular decomposition. Thus for
P =P, +p„we define the Wightman-Garding rela-
tive momentum'6 as

mg +P mj +P v -=&(m,'- m, ')/P'. (5.2)

Using this result in Eq. (4.9) yields

.— -g'-' ' ' [)p;-p. )-(p;-p, )t
static 2 1+P+
1 imi t

-1

+ (p.'- p.)'+ u'- ~p'. -p.
l
(m, -B)

When p, and P, are on shell, it is straightforward
to verify that

q P=o, P'=[(-q' m, ')"'+(-q'+m, ')"'j'=-M

(5.2)

It is important to note that M,' depends on q'. We
also note that

(4.12) p, = q+ (—,'+ v)P, p, = -q+ (~ —v)P, (5.4)

In this limit I is not local in the variables p, ,
In the nonrelativistic limit, we note, however

(see below for the p, =0 case), that W'-4m' finite
implies (-4mB+8') finite, so that B-I/m. In
this case

and that for the invariant volume element we have

d'p, d'p, & (p,' —m, ')&(p, ' —m, ')

dp j+dp2+d p gJ d 02I
J+ 2+

P =2m, p =-p, . (4.14)
= 2I1 —(m, ' —m2 ) M,

~

d qd P
Equation (4.14) into Eq. (4.9) now gives

-g'[(pl —p,)'+ (p.'- p.)'+ ~'t ',
noarel.
limit

(4.15)

V. WEINBERG-SCHRODINGER EQUATION

In this section we recast the results of the pre-
vious section in terms of variables which are
relativistic analogs of the nonrelativistic three-
momenta. We end up with a three-dimensional
equation for the off-energy-shell two-body dy-
namics, which is fully analogous to a Schrodinger

which is a Yukawa form in the new (+, &) "three-
vector, "

a,nd is indeed local in these relative
variables. [In the special case of a Coulomb force,
where the mass of the constituents provides the
only energy scale, the energy levels, the relative
momentum, and B are all proportional to m. B is
small compared to q, however, since q=em,
B = o.'m. The luminal interaction (4.9) reduces to
the ordinary local Coulomb force because the
(P'-P)' term in (4.9) for equal masses is O(o.")
while the (p.'-p.

( term j,s O(n'). ]

x &(q 'P)5(P -M, ). (5.5)

We also define two more sets of these vectors,
one for the final state, and one for the inter-
mediate state. Following the notation of Sec. III,
we have the following sets of quantities: (q, P, M,),
(q', P', M,, ), and (P,K, M)for initiai, final, and
intermediate states, respectively.

Note finally conservation of plus and transverse
components for the Weinberg dynamics,

P, =K, =P,', Pi=Ki= P (5.6)

We next want to characterize the four-momenta
involved in a manifestly covariant form. This is
done by construction of a tetrad, a set of four-
vectors, for each of the timelike four-vectors P,
P', and K. For the benefit of the reader not
familiar with this approach, we have included an
appendix on the construction and properties of
tetrads and on the invariant tetrad notation for
four-vectors. The four four-vectors of the
tetrads, or the tetrad axes, are labeled P, l, m, n,'
P', l', m', n'; andK, L, M, N for P, P', andK,
respectively. In tetrad notation we have
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(PN, P„P,P„)= (M„0,0, 0),

(qN qt q. q. )=(o qt q. q.),
similarly for the primed variables, and

(5.7)
(qK+Nt 'qL t qiNt q» Nt -&qtt K+N~" q t 'ql t qm t

-q„P» „M, ').
Moreover, since

(5.11)

(K», KL, K„,K„)= (M, 0, 0, 0),

(k») kLt k»t kN) = (0, kL, k»t k„).
(5.8)

q-=(q„q, q„)
=—(q sin8 cosQ, q sin& sin&]&, q cose) . (5.9)

q is not a true three-vector but can be manipulated
as if it were.

In order to express the Weinberg dynamics in
tetrad notation we need to express four-vectors in
terms of the tetrad projections of q and P. For
this purpose we use the inversion formula (A6) to
find

We emphasize that the subscripted components
above are invariants, in that they are projections
on the appropriate tetrad, as in Eqs. (A3) and (A4).

Since in the tetrad notation the relative momenta
have no first component, we write angular de-
compositions in terms of them. For example,
we define"'" q and two proper angles e and Q by

(K»,N„tKK N) = (M, M),

and since the conservation laws, Eq. (5.6), hold
in any particular tetrad projection, we have
P K+N P K+N M and hence

(5.12)

(P„„,P, „)= (M, M;M-').

Equation (5.13) allows us to rewrite

('qK+N qL 'qlf q»-N) (qrr™ ql 'q qP

(5.13)

(5.14)

Similar expressions hold for the primed variables.
We now turn to the Weinberg dynamics. Qur

objective is to present it in the K tetrad. This
will make our results manifestly covariant and
will lead to a covariant form of the Schrodinger
equation. We first write the interaction in terms
of our new variables, and then in terms of the
tetrad projections. The luminal interaction, Eq.
(4.9), is written in terms of q rather than p by
Eqs. (5.4) and (3.2). We find"

I = -R'[-(q' —q+ v'P' —vP)'+ p,
'

(q„q,, q„q ) = (q„P,M, ', q„q„,-q„P, 'M,). - + (q,'-q,
( .'(P'+P -2K)]-'. - (5.15)

(5.10)

Given this expression for q„, we then project q„
onto the tetrad KLMN. We find

To express this in terms of our relative variables
(q„q, q ) and (q', , , q', , q„', ) and the mass para-
meters, we use Egs. (5.13) and (5.14) to eva]uate
I in the K-tetrad frame. We have

-(q' —q+ v'P' —vP)' = (q' —q+ v'P-' —vP)K,N(q' —q+ v'P' —vP)» N+ P (q' —q+ v'P' —vP), '

= (q' —q)'-q„', q„' '' + (v' —v)(q„', M~-q„M, ),
q'

where we remind the reader of the definition (5.9) of the "three-vectors" q and q'. Also

I

iq,'-q„i~(P'+P -2K)=— "; — " (MN'+M, ' —2M').
q q

I

(5.16)

(5.17)

These expressions can be written in terms of the angular variables and inserted into I, Eq. (5.15).
Having written I in variables which allow a proper angular integration, we now manipulate the Wein-

berg equation itself to lead to a Schrodinger-type equation. This is a standard procedure' "for such
equations, and we only sketch the steps.

The required invariant volume element, Eti. (5.5), becomes

dV~—= d'p, d'p, 5(p, '-m, ')5(p, ' —m, ') = (P,M, ) '~1 —(m, ' —m, ')M,
~

'q dq d(cos8)dp

&& dP, dP d'P, 5(P —P, '(P,'+M, ')). (5.18)

We next define from the standard two-body invariant amplitude K another amplitude X which is continued
off shell in the minus component of the total momentum, in terms of which the S-matrix operator is

S= 1 —i(2»)'5"'(P' —P)(2m) 'K = 1 —2»iP. '5(P' —P )Ol .
The basis states are normalized as

(5.19)
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&PlPl IP P.& =4P,.P..6(Pl, -P„)6(P;.-P..)6"'(pl, —p,,)6"'(pl, —p.,) .
The Weinberg equation is

«:&:I~I&,»&=&»».'l~ l&, &&-~fd&' I&'.&~, +~. -~ -~~l '«'& 1~ Iv&&v l~l»»&,

(5.20)

(5.21)

(5.22)

where continuing our example the matrix element of I is, following Eqs. (3.4) and (4.2),

(P(P,'II IP,P, ) = —4m,m, g (2m) P,6(P,' P,)-6" (&P ~
—Pi)

x [-(q' —q+ vP' —PP)'+ p'+
I q,' —q, I ,'(P'+ —P —2K )] '.

One could, however, simply consider the quantity in square brackets in (p,'p,'II Ip, p,) as given by some
other dynamics. In (5.22) we evaluate the square brackets as in E&ls. (5.16) and (5.17). We have also
defined a dimensionless coupling constant g by

g = 2V'm, m2g, (5.23)

where the factor 2v'm, m, is chosen to make the minimal relativity factor g'&&M, ,M, reduce to one in the
nonrelativistic limit.

We separate relative motion" by reduced matrix elements, as follows:

&P,'P,'I5f IP, P, & =P.6(P,'-P, )6"&(P,' —P,)(M,.M,[1 —(~,'-1,')'M ."][(1—(~,'- 1,')'M, ']}'"&q'fl I5l Iq»,
(5.24)

and similarly for I. The reduced matrix elements satisfy

IIqfl& —2
M M . &q'fl'II Iffy &&Ifl&15flqfl)

with the kernel given by (5.24) and (5.22).
For M, satisfying E&l. (5.3) we have

q = —,'M, ' ——,'(m, '+ m, ')+ (m,
' —m, ')'/4M, '.

This equation can be used to verify the identity

M M& —4(/ P)[1 —(m
' m ') M &M~]

which we use in the definition of a T matrix,

(5.25)

(5.26)

(5.27)

satisfying, from (5.25), a Lippmann-Schwinger —type equation,

dl dQ
~f ~d', "".

&q fl IvIra, &&fail, IrIq».&q fl'I7'Iqn&=&q'fl'IVlq»-2
1 2

(q'fl'
I
7'Iqfl& = — ' '([1 —(m, '-m, ')'M, , 'M ][1—(m, ' —1,')'M, M ']}'"(q'nI5f Iq»,

1 2
(5.28)

(5.28)

In this equation, the matrix elements of V and I
have the same relation as those of T and N, Eq.
(5.28). Equation (5.29) suggests the proper rel-
ativistic form of the relative energy, namely,

way, namely near the bound-state pole

(, ,
I I )

y(q', A')y*(q, 0)
9' 0 =

@ @ p (5.32)

~2m1+ m2
2 m 1m2

(5.30)
satisfying the homogeneous equation

l'dl dQ

1 y 2 1
M 2 M p

1 2

where ks satisfies M =(-k„'+m, ')'~'+ (-k„'
+m, ')'&" note the minus signs in this expression
and in (5.31).

The vertex functiori y is def ined in the usual

(5.31)

and for a bound-state problem of mass M an ener-
gy-shell variable

j. m +m 1

1 2
(5.34)

satisfying the relativistic Schrodinger equation

(5.33)

Finally the bound-state wave function is related
to the vertex function by
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t'dt dn, qn V Ln, t, n, . (5.35)

For our particular example V is nonlocal and

energy dependent. ( is normalized by

small parameter.
In the literature on quarkonium, the relativistic

corrections are discussed for local position-
space potentials. Therefore it will be useful to
consider the relativistic Schrodinger equation in
position space and to start with a local potential.
By this we mean

q2dqdn q, n ~j2

E d~r ~ ~r

x —(in, )V)qu) ~
4(q, ").

8E gg

VI. RELATIVISTIC CORRECTIONS

(5.36)

(6.1)(q ~V)q&=V(q q),

where we remind the reader that q' and q are
evaluated in different tetrad bases, Eq. (5.9). Let
us denote by r=(r„r„,r„) the variables conjugate
to q=(q„q„,q„). Then in position space, we de-
fine

(flp~r)=(pr) fd'eee'
Several methods can be used to estimate the

relativistic corrections for a problem such as
ours. We consider the case of equal-mass con-
stituents, m, =m2=m, and let m become large.
The interaction is a power series in m '. A
natural way to extract this series is to expand in-
tegrands in m ', which is basically equivalent to
expansion of these integrands in ratios of the mag-
nitude of relative three-momentum to mass, e.g. ,
q/m. Such a ratio is locally the same as v/c,
since the constituents' energy is proportional to
(q+m')' ', andq/(q+m2)' 2=v/c. However,
even if the result of expanding in q/m under the
integrand is finite, we must be wary of the re-
sult, since only if the basic dynamics holds the
relative motion to the region q/m «1 is this pro
cedure completely consistent in its interpretation.
In discussing more details below, we assume this
is indeed the case.

The care which must be taken in extracting rel-
ativistic corrections is illustrated by another pos-
sibility for the expansion parameter, namely the
ratio of relative energy k, to relative three-mo-
mentum ~k~, where k= —2'(k, —k2) is the relative
four-momentum used in Secs. III and IV. Here
one must be certain that k, decreases to zero
faster than ~kl to avoid problems with the region
~k) =0; we assume dynamics damps the large-k,
region. To study the small- ~k~ region, let us for
example consider the equal-time approach, dis-
cussed in Sec. III, where one has factors [see
e.g., Eq (3.19)] su. ch as W —2E, corresponding
to one constituent on-shell, energy E=(k+m2)'~',
and the other has energy W-E, determined by
energy conservation. The relative t'nergy is thus

k, =E —2W. With W= 2m —8, we see

m k2 '" a' )k[
2~- &2(-. 2~

A nonzero value of & thus leaves the region ~k~- 0 a dangerous one, if one uses k, /~k~ as a

x exp[ —f(q r —q' r')]V(q' q)

=(2m)' '6"'(r' —r)V(r),

where

v(r)=(2«)'«' fdeexp(r'il 'r)p(il).

(6.2)

(6.3)

For m, =m, = m —assumed throughout this sec-
tion —the Fourier transform of the relativistic
Schrodinger equation, (5.35), is

P

——~'+ V(r) 4(r)=~ 4(r), (6.4)

where
Q2 Q2 82

2

er, er '

and

p(r)=(pr) "fe e«p(re «)'p(e) (6.5)

+M' ——' [-,'(M, ,'+M, ') —(2m —B)'], (6.7)
q' q

and M, is given by

This has the form of the ordinary Schrodinger
equation, although x is now an invariant with
tetrad notation. (Equivalently this is the ordinary
Schrodinger equation in the rest frame of the
bound state. ) The spectrum and other physical
quantities would then be that corresponding to
the ordinary local potential V(r), as in pheno-
menol. ogical models of quarkonium.

I et us turn to the potential corresponding to
scalar exchange, as in Sec. V. According to
Eqs. (5.29), (5.24), and (5.22),

(q'~ V~@=—P(2w) '2m(M, ,M, ) '~'(p'+Q2) ',
(6.6)

where

q2 (qe q)2 q3q3
(M M)2

M, ,M,
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M, '=4(~q+m') . (6.8)

This potential can be generalized by the inclu-
sion of a form factor E(Q'), where the original
BS exchange kernel has the form E(Q')/(Q' —p'
+ is), Q a four-vector, as long as the form factor
neither cancels the singularity of the scalar ex-
change nor has itself any important singularities
in, e.g., the integrations starting with Eq. (4.8).
E(Q') also serves to damp the relativistic region.

Such a potential is nonloca/. We distinguish in

Eq. (6.6) two nonlocal factors. First, we have
the "minimal relativi. ty" factor" 2m(MQ, ,) ' ',
whose origin is the phase space of relativistic
kinematics, and second, the last term in Q'.
The origin of this last factor is the noninstan-
taneous character of the interaction; as we have
seen, noninstantaneous behavior is important
for any luminal or equal-time scheme derived as
a three-dimensional equation from the BS equa-
tion.

The effects of both of the nonlocal factors van-
ish in the limit m-, where we recover the
nonrelativistic physics. We shall therefore ex-
pand them in q/m, q'/m to measure the relativis-
tic corrections. From Eq. (6.8) we have

1 +
2m(M W }-'&'=I -q 'q + ~ ~

Q Q 4 2 (6.9)

and from Eq. (6.V),

y B2't
Q'= (q' —q)'+ ~q', —q, ~

+2B ———
I +

yn 2 m)

If, according to the discussion above (4.14),
B=m Bo, Bo fixed, then

Q'= (q'-q)'+ ' ' (q" +q +2B,')+" '

(6.IO)

(6.11)

Thus the correction in Q' is O(1/m). We thus have

(6.12)

Equations (6.9) and (6.12) combined give the rel-
ativistic corrections in (6.6). A crucial observa-
tion is that the leading correction due to the non-
instantaneous character of the interaction is
O(v/c), whereas that due to minimal relativity is
O((v/c)'). Of course the noninstantaneous piece
will also have O((v/c)') terms in the potential.
The presence of a v/c correction in the context
of quarkonium, as opposed to (v/c)', would appear
to be a qualitatively n.ew result with nontrivial im-
plications. [Even without the O(v/c) piece, there
are now additional O((v/c)') terms. ] If one be-
lieves that the zeroth-order local quarkonium po.-
tential is the nonrelativistic limit of some four-di-
mensional kernel derived from quantum field
theory, then such O(v/c) corrections may appear
according to the underlying field theory. The
equal-time scheme, interaction given by Eq.
(3.19), also has corrections O(B,'/m). It is in-
teresting to note that in either scheme the presence
of the binding-energy term B is only possible
through the appearance of the noninstantaneous
parameter S'.

In closing the discussion of the relativistic cor-
rections we remark that different terms in. the ex-
pansion of the potential may cause quite dif-
ferent effects on the spectrum. One should
therefore be quite careful in discarding, say the
kinematic corrections in favor of noninstantaneous
terms. We cite here" a numerical study of the
binding of a scalar system by massive scalar ex-
change, and in particular the fact that the rela-

I

tivistic effects due to the minimal relativity fac-
tors can be comparable to the effects due to the
noninstantaneous character of the luminal interac-
tion. On the other hand, as the ratio of the con-
stituent mass to the exchange mass increases,
the relative size of the minimal relativity effects
decreases, consistent with the results of this sec-
tion.

We conclude this section with a brief discussion
of the relation between relativistic corrections
and dynamics based on a Lagrangian. For the ex-
change mass p. 0, consecutive kernels with an
increasing number of exchange particles corre-
spond in an average approximate way to-decreasing
range —the notion is vague because we must re-
member the forces are nonlocal. In addition to
the small parameter q/m corresponding to rela-
tivistic corrections there are other parameters
p/m and coupling g in terms of which we can
classify approximations to the kernel. The v/c
correction we have discussed above for single-
particle exchange is simply that of the longest
range; multiparticle kernels will also have v/c
corrections.

The case p. = 0 is qualitatively different. In this
case we have a Priori the two small parameters
q/m and g, but as stated at the end of Sec. IV,
q/m =O(n), so there is only one parameter. The
v/c correction from the one-particle exchange
kernel is an O(n) correction, and thus the lowest-
order correction in n. Multiparticle exchange
kernels would have higher-order corrections in n.
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However, we warn ' the reader that this reasoning
is consistent only if the one-particle kernel pro-
vides a binding energy analytic in 0. . For example,
the first-order perturbation-theory expression
for the energy should not have any 1n& terms.
Such nonphysical behavior would have to be can-
celed by simila. r lne terms from multiparticle-ex-
change kernels; the Weinberg interaction may
avoid the problems and we hope to address this
question in more detail in separate work.

Of course, as we discussed in Sec. I. the situa-
tion in quarkonium phenomenology resembles
neither situation above, in the sense that the phe-
nomenological quarkonium potential is not tied to
any one term in a systematic sequence of kernels,
but rather phenomenologically subsumes the en-
tire dynamics of confinement in chromodynamics.
Nevertheless, we certainly expect the appearance
of O(v/c) corrections.

VII. CONCLUSIONS AND FINAL REMARKS

Systematic development of either equal-time or
luminal projections of the BS equation leads to
three-dimensional equations whose nonrelativistic
limits a,nd relativistic corrections can be sys-
tematically computed, given some BS kernel a,s-
sociated with a Lagrangian QFT. The luminal,
or Weinberg, equation in particular possesses
many attractive features for dealing with a rela-
tivistic two-body bound system, even near the
nonrelativistic limit. This may be superficia. lly
surprising since the luminal interaction is equiva-
lent to the equal-time interaction evaluated in the
infinite-momentum frame. However, it has a
derivation which makes it clear that the infinite-
momentum frame is not especially favored for
this equation.

Our main results may be summarized as fol-
lows:

(i) Relativistic corrections appear in O(v/c).
(ii) There is a covariant form of the Schrodinger

equation.
(iii) Interactions are noninstantaneous and non-

local.
We discuss these below. The kernels associated

with these equations are intrinsically nonlocal,
although in zeroth order of relativistic correction
v/c they reduce to ordinary local potentials. This
fact has an important consequence: nonlocal ~eLa=

tivistic corrections zehich appear in O(v/c).
One cannot uniquely derive these corrections

from the zeroth-order results. In other words,
one can go from a fully relativistic BS kernel to an
ordinary potential with its systematic relativistic
corrections, but not from an ordinary potential to
a, full BS kernel. Unfortunately, phenomenological
models of quarkonium' begin with just such a po-

tential. Thus, we ca,nnot write the relativistic
corrections to quarkonium, but only wa, rn that
such corrections may first appear on the O(v/c)
level. Although the qualitative results of Beavis
et al. (Ref. 3) are quite reasonable, the details
would appear to be in question. On the other hand,
if one began with, sa.y, a BS kernel behaving at
small momentum transfer q like q 4, in other
words with a kernel whose instantaneous limit cor-
responds to a, linear confining potential at long
dista. nces, then the level of phenomenology could
be raised a notch in the sense that all relativistic
corrections are systematically given. Such a
phenomenology would include the equation dis-
cussed here.

From the luminal projection of the BS equation,
we have been able to formulate a covariant two-
body bound-state Schrodinger-type equation, de-
rivable from field theory, which has projective
properties, and which has fully on-mass-shell
dynamics. The equation, written in terms of in-
variant four-dimensional scalar products, has
genuinely spacelike relative momentum, and hence
a proper angular decomposition. We refer to this
equation as the Weinberg-Schrodinger equation.

We have investigated the equation based largely
on a single scalar-particle-exchange kernel and
variants thereof. The nonlocal nature of the inter-.
a.ction persists in the static limit, where one of the
constituent masses goes to infinity, but the inter-
action becomes local in the nonrelativistic limit,
when both masses go to infinity.

We have also discussed the systematics of ex-
traction of the relativistic corrections. Evidently,
some care is necessary in this procedure.

Finally, although this work is in no sense a com-
plete review, we. have tried to give some idea of
other approaches to the problem of nonrelativistic
limits of relativistic equations.

Our formalism should be extended to the more real-
istic case of particles with spin. Thanks to recent
study" of definite field theories with spin in the infi-
nite-momentum fram e, we have an idea of what the
new features of luminal dynamics with spin & and 1will
be: We expect a weakening of the interaction sin-
gularity due to gluon exchange, and contact terms
in kernels. We also expect the gauge symmetry
to play a, role in the case of massless gluons. In
particular, the gauge~ A.,=0 seems to be singled
out. In addition to clues about the range of allowed
corrections to quarkonium, this formalism may
then be useful for calculating the spectrum and
transition rates for positronium itself.

A separate issue, which also deserves more
study, is the angular momentum analysis of the
solutions of the Weinberg-Schrodinger equation.
Luminal dynamics has a different angular momen-
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turn operator than equal-time dynamics, as recent-
ly explained in detail by Leutwyler and Stern. " In
the case of noninteracting particles our variables
q = (q„q, q„) are the appropriate ones for defin-
ing the angular momentum operator as -igxe jeq.
The spherical harmonics of our proper angular
variables 8 and p are then the eigenfunctions of
this operator. However, for the case of interac-
ting particles the angular momentum operator is
more complicated, since it depends on the inter-
action. We can project the luminal interaction
on the spherical-harmonic basis in both the final
and initial state, but we find a nondiagonal repre-
sentation. This can in turn be diagonalized to a
different basis. We also note, that if we performed
such a partial-wave analysis on the on-energy-
shell t matrix as given in luminal dynamics, we

would get the standard results. ~ For the off-shell
case we can use an off-shell extension" of the
Macfarlane partial-wave analysis, ~ which is done

in terms of the Wightman-Ga. rding'4 relative mo-
m enta.
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L' =L" = V"nt„',P 0

I„.'=6,.~- V,. V~ [m„(m„+ V,) j-',
(Al)

where i,j =1,2, 3. The rows, of the Lorentz boost
(A1) are the four contravariant tetrad vectors
which in covariant form we call V~"&, p~&'&, V~&

'

V&"'. These four vectors have orthonormality prop-

APPENDIX A

For the benefit of the reader who may not be
familiar with their use, particularly in the context
of the Bethe-Salpeter equation dynamics, we re-
peat here the use of tetrads. "'"'~ A tetrad is a
set of four four-vectors, which can be used to store
information about a given four-vector, in a given

frame, in an invariant way. In particular, for a
timelike four-vector we build a tetrad based on

the rest frame of the four-vector. This construc-
tion is based on knowing the Lorentz transforma-
tion which takes the four-vector to its rest frame.
Let V„= (Vo, V„V2, Vg be this vector, such that
m„'= V„V". The Lorentz boost which carries V„

to its rest frame, where V„= (m„, o, o, o), is

(v, v„v, v„) = (0, v„v„,v„) . (A4)

Any scalar product can be expressed in terms of
the tetrad projections:

A B=A B -A, B, -A B -A„B„. (A5)

Thus the dot product for vectors in tetrad nota-
tion has the same formal expression as it does in
terms of its ordinary coordinates.

Given a vector in tetrad notation it is also pos-
sible to use the Lorentz transformation (or the
tetrad) to express the four-vector in ordinary no-
tation. An important case is the four-vector v

orthogonal to V, when the transverse coordinates
V, and V, are zero. Then"

v~ = (v„v„v„v,) = (v„V,m„', v„v, v„V, m„-') . (A6)

In turn, once this inversion has been made, it is
possible to find the projection of, say, v on some
other tetrad in terms of the components v„v, v„.

Finally, we can also define a variables in tetrad
notation, e.g. , for a four-vector A we can define
a tetrad-+ variable using the tetrad projections,

A„,„=—A~+A„.
As an example, suppose we start in some frame

where V„has no transverse component, V„
= ((m„'+ V,')'/', 0, 0, v, ). Then the tetrad for V~ is

V&»' =m„'((m„'+ V, ')'/', 0, 0, V,),
y~&'& = (0, 1,0, 0),
V„'"' = (0, 0, 1,0),

Using this tetrad, it is straightforward to verify
the properties discussed above.

erties g„„i.e.,

(A2)

The "tetrad frame, " which is the rest frame of
the four-vector, is singled out as special, but it
nevertheless allows an invariant characterization
of any four-vector. If we have the four-vector
A„, then we characterize A„by the four invariants
A ~ V'"', o. =k, l, m, n, which we denote (A», A„A,
A„). It is most important to note that although this
is written to resemble a four-vector and has many
geometric properties like four-vectors, it is not
a four-vector; its components are invariants.

In this notation (the "tetrad notation"), the four-
vector which generates the tetrad is quite simple:

(V„V„V., V„) =(m„, O, O, O). (A3)

Another related four-vector is the four-vector v„
orthogonal to V„, v V=O. This purely spacelike
vector has vanishing 4th component in the tetrad
frame, namely,
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