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Quantization of gauge theories in a finite volume without constraints or Ao ambiguity
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We argue that, in a gauge field theory defined in a finite-volume box, some set of constraints should be
imposed on the surface fields in order to get the proper equations of motion of the fields on the surface. For
the pure SU(2) gauge theory we present four such sets. Each one of them predicts a different consistent

theory, in which the ambiguity in Ao is removed, and all the constraints become an identity of the theory.
In each one of these theories some of the total electric and/or magnetic charges vanish identically. We
realize these constraints and "Gauss's law" (vr'~ = 0) in a remodified axial gauge: 8+3 ——0. Such an analysis

and procedure can be done similarly for other gauge theories and/or other gauges.

I. INTRODUCTION

In the last few years, the interest in non-Ab-
elian gauge theories has grown steadily. The
hope is that such a theory would appear to be a
good model for the strong interaction' as an un-
broken one and for the weak interaction' as a
broken one. The curious point in this hope is
that these theories are, nowadays, not completely
understood and will be only through hard work.
In this paper we would like to clear up the situa-
tion slightly concerning the ambiugity of unbroken
gauge theories. ' The source of the ambiguity
in these gauge theories is that they are defined
by fields A& and their conjugate momenta m~& which
are not physically observable, and only some
combinations of them have physical meanings.
As a result of this situation nonphysical operators
and states appear in many ways and produce
many uncertainties about the validity of the cal-
culation and interpretation' of the predictions of
these theories (in the cases where some kind of
predictions are possible). When the conventional
Lagrangian or Hamiltonian formalism with the
Poisson brackets (1.1) is used, the ambiguity
problem presents itself by the vanishing of the
mo and the appearance of a local constrained op-
eration w', (w, A) =0. This is the non-Abelian ver-
sion of Gauss's law, which ensures that w,

' will
remain zero. Both constraints are in contradic-
tion with (1.1):

Q'„(x, t), w„'(y, t)J= 5'„'„5'(x—y) .
The conventional way of handling this embarrass-
ing situation is to use Gauss's law to gauge away
some combination of the fields Q~g~ (e.g., axial
gauge, Coulomb gauge). In this way Gauss's law
becomes solvable for the vanishing fields' con-
jugate momenta fw', }~, and thus instead of being
a constraint on the theory it becomes an identity.
The fields A., should be solved now from the equa-

tions g f}~=0 and expressed by the remaining
fields. Such a procedure should lead to a well-
defined theory, presented by a set of fields (fA'„].

gf-j~ -Ao) and their canonical conjugate mo-
menta, which are not subject to any kind of con-
straints. In this way the contradiction between
(1.1) and the two rules wo= 0, wo(w, A) = 0 disappears.
Anyhow, it seems now that the second step in this
procedure, namely the expression of A; in terms
of other fields, is not complete and leaves some
dynamical degrees of freedom in A;.' Taking into
account that w', is zero identically, the contradic-
tion with (1.1) thus remains. This situation is
most confusing, and may lead to all kinds of un-
reliable theories and predictions, arising from the
contribution of nonphysical states. '

In order to improve this situation, one should
find a way to define A. ; completely in a way con-
sistent with the whole theory. At this point, we
leave for a moment this A', -ambiguity problem
and turn our attention to another embarrassing
problem in these theories.

Taking a conventional field theory described
by a set of fields p' and their canonical conjugate
momenta w', in a box of volume (2L)', the Hamil-
tonian contains the kinetic energy term
2 f (s&p')'dv, and thus one finds that the ordinary
equations of motion(ROM) of w' are not satisfied
onthe surface S of the box. Instead, one finds
that w'(s) is linearly dependent on s„p'(s) (the
tangential derivative on the surface). If the
fields @' describe a massive particle, one can
neglect this problem if I. is taken to be large
enough. Anyhow, considering the problem of un-
broken non-Abelian gauge theories with long-
range forces, which is crucially dependent on the
solutions of the EOM which falls as x ', this
problem is in no way negligible. It was suggest-
ed' that in these theories this surface problem
should be solved by adding to the theory more
dynamical degrees of freedom on the surface.
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8+;= 0 (a = 1, 2, 3) . (1 2)

It is necessary to define this gauge, as we find
the commonly used axial gauge'A, = 0 too restric-
tive and not well defined.

In this way when one introduces some constraints
on the states the proper EOM are produced on
the surface. We will not take this point of view
for the following reasons. First, we do not see
the point in the introduction of new dynamical
degrees of freedom, which do not have any phys-
ical meaning. Second, the sets of constraints
presented there [(6) a-15, (6) c-12] are not self-
consistent for finite-volume "bags" unless var-
ious other constraints are satisfied; in particular,
&„(s)=0. However, we cannot find any justifica-
tion for such "universal" forces. In the follow-
ing, we present four new types of bags, free from
such restrictive conditions.

In this paper we suggest that in order to get
the proper EOM on the surface the fields A'(s)
and their conjugate momenta 7'(s) should be sub-
ject to some set of constraints; these constraints,
like Gauss's law, should be realized and become
identities of the theory. We present in Sec. II,
for example, four different sets of this kind, for
the pure local gauge theory of SU(2). Each one
implies some kind of constraints onAO(s) which
exact;ly removes the ambiguity which is left
after the realization of Gauss's law. In this way
each set of constraints can be used to define a
proper quantized gauge theory in a box of finite
volume (2L)'. The problem of presenting these
constraints in an open space where I.- ~ is left
to further publications.

Defining the total. electric and magnetic charges
as Qs= JE ds, Qs= f8 ds, the four theories
are characterized as follows (a=1, 2, 3):

Theory I: Q~s = Q~»» = 0,
Theory H: Qs=Qs=O,

Theory III: Q~= 0,
Theory IV: Q»»

= Qs = Qs = 0.
It is not clear to us whether each set of con-

straints leads to a different actual physical
prediction (e.g., confinement, spectra, scatter-
ing, amplitudes, etc.). Neither is it clear whether
other sets of constraints are needed in order to
describe some physical environments. In any
case, one should go on investigating these prob-
lems and try to learn the physics which these
theories predict.

In order to realize these theories we present
in Sec. III a modified axial gauge defined by
(1.2):

II. SURFACE CONSTRAINTS

The common Lagrangian density which is used
to describe pure non-Abelian SU(2) gauge theory
is

2 = —«E'„„E""=—2 Tr(E„E"")
E' = sQ' —8 A'+ga' 'AQ'

E„„=~&'E'„„=s„A„—&„A„—ig[A„,A„].

(2.1)

(2.2)

[a is an isospin index, p, , v, are Lorentz in-
dices, and &'(a=1, 2, 3) are Pauli matrices. ] The
conjugate momenta of the A. '„ fields are

—--=&»-Eo.= -&» (+»- 2~ »aE»a) (2.3)

8$
mp8Aa

(2.4)

where the presence of too many degrees of free-
dom reflects itself in the vanishing m', .

In order to continue with a Hamiltonian quanti-
zation procedure, one has to define the equa1. -time
nonvanishing Poisson brackets of the theory to be
given by (1.1). The contradiction between (2.4)
and (1.1) for v' should be resolved by expressing
A p expl icitly in te rms of other fie lds, and elim-
inating both Ap and mp from the theory as indepen-

In Sec. IV we realize Gauss's law and the sur-
face constraints. The theory is thus well defined,
leaving aside the order problem, and we can
quantize.

That is done by replacing the Poisson brackets
between the canonical variables by commutation
relations in Sec. V.

As was mentioned above, we do not include
fermions or scalars in our discussion. This
procedure can be carried out with them in a sim-
ilar fashion, by enlarging the set of constraints
in a proper way. In environments such as the MI'7

bag theory, where the fermion's currents vanish
on the surface, such an enlargement is trivial
and our sets of constraints are sufficient for this
purpose.

We reserve a last comment for the problem of
the Hamiltonian which naively seems to imply
an infinite energy. ' We do not think that this prob-
lem is a consequence of the Ap ambiguity only,
and this should not motivate the identification of
Ap. ' Moreover, such an approach does not re-
move the infinite energies, which are of local
nature. It seems to us that the correct approach
to this problem should be similar to that in QED,
namely to find the solution with finite energy and
forget about all others.
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dent degrees of freedom. The Hamiltonian of a
theory, defined in a finite box of volume (2L)',
is given by

H = d'g —,'p' p'+ —,'O'- B'+A; V ~ ~m'+gg'"m' ~ A&
V

(2.5)

The equations of motion (EOM) are derived from
the Hamiltonian (2.5) by using the (1.1) Poisson
bracket. Inside the box one gets the EOM (2.6),
(2.7):

A = fA, H'I= v —sA0+ ig[A 0, A],
v'= g', If)

= —V X B'+g&'"7t'A'+ g&'"8' ~ A'

(2.6)

(2.7)

v, =(v„H)= ig[v, -A]+V». (2 8)

(As g;, z~j= 0 for it j, the brackets [A, n]are'
well defined and are equal to e'~'2t'A~ »'. ) In-

The operator m0 should vanish for all times;
hence one gets the SU(2) Gauss's law constraints.
Inside the box one gets the constraints

side the box (2.6), (2.7) are the proper EOM
and (2.8) is the proper Gauss's law constraint,
mhich together define a Yang-Mills gauge theory.

The contradiction between (2.8) and (1.1) is re-
solved by realization of Gauss's law. That will
be done in Sec. III.

Contrary to the proper EOM for A, m, and the
'm, =0 constraints given by (2.6), (2.7), (2.8),
which are obtained inside the box, the resulting
EOM [obtained from (2.6) and (1.1)] for», (S)
[the parallel to the surface components of »(S)]
and the constraints v, (S) are different from (2.7)
and (2.8} and thus are wrong.

In the following we mill discuss the situation
on two facing sides of the box, a surface we de-
noted by S,. The two faces S,' are defined by

(x, =+L ~S;ex'. The following discussion is valid
also for the other axes of the box (surfaces S,
and S,). In these cases, instead of the third space
direction, each time one should take the normal
direction to the surface, and instead of the first
and second space directions, the analog parallel
directions to the surface should be taken.

The resulting EOM for v (X') [we denote the
surface points (X„X„aL)by (X'); n = 1, 2] and
the constraints», (X') are given by

~:1.)(x:&= (" &(+&f dvg4ll. )(&:&,~1.)(x:&»!1,)(v'. & (+&
S+

= ("') (+)II;, (X:)~(0),

0;(X'.) = ( ~ ~ ~ )+ »,'(X'„)6(0) .

Yn&A&(2&(yn)~ &&2&( a} 2&»(y~)

(2 9)

(2.10)

[The three dots in (2.9) and (2.10) represent the
correct EOM of »'(X' } and the v;(X') = 0 con-
straint, as they appear in (2.7) and (2.8), corres-
pondingly. ] It is seen that these are not the proper
EOM and constraint which we get inside the box.
Therefore, we should expect to get these mrong
equations on the surface, as the Hamiltonian in

the box (2.5) does not contain enough information
to treat properly the fields on the surface.

In order to get out from this embarrassing si-
tuation, one should enforce some kin'd of con-
straints on the surface fields, which will change
this situation. By such a method, some of the
dynamical degrees of freedom are removed from
the theory by these contraints in a way that the
remaining ones form a consistent theory mith the
proper EOM.

In the following, we present some sets of such
constraints. Each one of the sets leads to a dif-
ferent environment in which the proper EOM are
obtained from a well-defined Hamiltonian and a
set of Poisson brackets.

In general, it seems that there are basically two
kinds of classes of such constraints. 'The first

I

contain constraints which enforce the vanishing
of some of the fields, whereas the second contain
constraints which enforce definite relations be-
tween the fields on the surface. In this paper we
will present some simple examples of both these
types, mhile more sophisticated examples will
hopefully be given in the future.

To begin with we look at six kinds of basic con-
straints which we would like to apply to the fields
on the surface:

(a) A;(X') = 0, »', (X') = 0,
(sa) s,A;(X') =0, s,»',.(X')=0,

(b) A;(X:)=A;(X.), v;(X'.) = v;(X-„),

(Sb) Sg;(X:)= s,A;(X.), S,v,'(X:)= s,v;(X.),
(c) A;(X') = -A;(X,), »', (X') = —n',.(X ),
(Sc) S,A;(X;)= S,A;(X,), S,v,.(X;)= S,»;(X ). .

Each component of the fields will be subject to
different constraints. Nevertheless, in all the
simple examples which will be given below we
demand that the fields A;(X'), A;(X'), »', (X'),
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v,'(X') satisfy the same constraints at S, (for
each a index) for each one of the above six con-
straints does not hold on its own. In order to fix
it, one must require that it be a constant of the
theory; thus other constraints arise. In this way
the constraints on different components of the
fields are correlated and subsidiary constraints
arise. In the following, we examine these corre-
lations between the different constraints. First,
we take for simplicity the @=0 theory, and dis-
cuss the three U(1) theories which are obtained.
The time derivatives of m(X') and A(X~m) in U(l)
gauge theory are given by

m= V(V ~ A) —V A,

A= m —VAO.

(2.12)

(2.13)

(6) (B2 + C' BRmcj

[Each set is constructed from two different sub-
sets (m is a non-negative integer), and when one
operator of the first subset is acting on one of the
fields A (X'), v (X'), Ao(X'), it shouM vanish.
Similarly, when one operator of the second sub-
set is acting on the fields A,(X'), m, (X"), it should
vanish. ]

Turning back now to the wrong EOM of m (X'),
v, (X,), we see that a theory constrained by the
above (1) or (2) set of constraints will predict
the correct EOM on the surface. Each one of the
other sets of constraints is not sufficient for this
purpose. Thus the second (4) and the fifth (5) sets
together, and the third (3) and the sixth (6) to-
gether, predict the correct EOM. Hence in U(l)
gauge theory each one of the following four sets

These EQM imply that in order that the constraints
of types (a) or' (b) or (c) acting on v (X' }, A (X')
have zero time derivatives, the field A&(X') would

be constrained in the same way and v, (X;) shouM
be constrained by (Ba), or (Bb), or (Bc), corre-
spondingly.

Furthermore, one finds that the time derivative
of the above constraint on w, (X'), namely, (Ba),
or (Bb), or (Bc), vanishes if the fields A, (X;),
v (X'), and Ao(X'} are constrained by (B2a), or
(B'b), or (B'c) types of constraints, corresponding-
ly. Continuing in this way, one concludes that
six proper self-consistent sets of constraints on
the two sets of fields {A,(X'), v (X',),A,(X');
A, (X'.), w, (X,j are

(1) (B 2ms. B 2m+1gj

(2) (B 2-b. B 2-~bj

(3) (B 2mC. B 2m+ic

(2.14)
(4) (B2m+zs. B2msj

(5}(B2m+xb. B2mbj

TABLE I. Definition of four SU(2) gauge theories, by
the constraints that each one of the isospins index fields
satisfies.

Field of isospin index

Theory I
Theory II
Theory III
Theory IV

(2.15d) (2.15d)
(2.15c) (2.15c)
(2.15b) (2.15b)
(2.15b) (2.15a)

(2.15c)
(2.15c)
(2.15b)
(2.15a)

of constraints which vanish on the two sets of
fields: g (X'), w (X'),A (X');A, (X'), w, (X')j is
sufficient to ensure that the proper EQM will be
obtained on the surface

(B2m&. B2m+i&j

(B2™&~.B2mgj

(Bmb Bmb j.

(B c; B"cj

(2.15a)

(2.15b)

(2.15c)

(2.15d)
I

Turning back to an SU(2) gauge theory with g 0 0,
we find that only four different theories can be
defined by the (2.15}kind of constraints, re-
garding EOM with gWO [Eels. (2.6), (2.7)].

In each one of these theories the fields satisfy
the proper EOM given by (2.6), (2.7), and the
Gauss's law constraint given by (2.8) in the whole
box. Each one of the theories is subject to a dif-
ferent set of constraints. These theories are de-
fined in Table I, where in each column the con-
straints on one of the isospin index fields are
given.

As A, should be solved from a second-order
differential equation, the ambiguity which is left
in its identification would be eliminated in each
one of these constrained theories. Hence we ex-
pect that in each one of these four theories, A,
does not suffer from any ambiguity. We will not
give a full proof of it, but will. show it explicitly
in a specific gauge, namely the modified axial
gauge "BP,=0.*' This is done in Sec. IV for
each one of these four theories, where in Sec. III
we present this modified axial gauge. It should
be noted that each theory given above describes
a different physical environment in a finite volume
of dimension (2L)'. At this stage it is not clear
to us if the limiting theories (L -~) are physically
equivalent concerning actual problems. It should
be clear that it might not be the case and only part
of them might be correlated with experiments
(spectra, scattering amplitudes, etc.). Hence one
should find principally all the possible kinds of
constraints and then choose the proper ones ac-
cording to their physical predictions.
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III. MODIFIED AXIAL GAUGE: 33A3=0

The main task of this paper is to get in a box
of volume (2I,)' a quantized Yang-Mills field theory
defined by an Hamiltonian which is constructed
from a set of free canonical dynamical variables
with well-defined Poisson brackets. The word
"free" in the last sentence means that the set of
the dynamical variables is not subject to any kind
of constraint. In order to present a gauge theory
in this way, one has to fix w, and Gauss's law to
be operationally identically zero. The common
way of doing it is by using all the local constraints
of Gauss's law to generate a specific gauge trans-
formation. In this way one eliminates some com-
ponents of A from the theory (e.g., Ar, A, ), solves
Gauss's law for its conjugate momenta (e.g., vr,
m, ), and stops treating them as canonical vari-
ables. In this way Gauss's law becomes an iden-
tity, and is in no way in conflict with the Poisson
brackets of the remaining free dynamical vari-
ables. The field Ao should be solved now from
the EOM of the vanishing A field, and 7t,

—= 0 is
consistent with (1.1). (For excellent consistent
review of this procedure, see Regge et a/. , in
Ref. 5.) It is far from being trivial to prove that
all field configurations can be transformed in
this way to one specific gauge. Thus we take the
following approach. If Gauss's law can be solved
for some component of m when its canonical con-
jugate field is determined to be zero, the result-
ing gauge is a consistent one. In such a theory
the inconsistency between (1.1) and (2.8) is re-
solved, and A, can be solved apart from the am-
biguity mentioned above. A proof that all such
formally different gauge theories are physically
equivalent is still most desirable.

In this paper we choose to work in a modified
axial gauge 8,A, = 0. We choose the B,A, = 0 gauge
instead of the usual axial gauge'A, = 0 because
Gauss's law is not solvable for the constant part
of v, (X), denoted by '7), (X ). Thus there is no way
to gauge A, to zero. Moreover, a theory with
A 3 0 and independent cons tant part of m, contains
explicit contradiction to the Poisson bracket
(1.1)—solving it by elimination of v, (X ) is not
trivial as 'v, (X ) interacts with the other fields.

In the 8,A, = 0 space, A, is a function of X

only, and we will denote it by 'A, . The differen-
tial equation for m, is

where

p, = —&Nn' + ig[v, A ] (3.1)

Defining for each matrix operation q= q'xr' an
operator q by

q ediXoASXXqe-&goA3X2

Gauss's law can be written as in (3.2),

837T3 = ps.

Hence

(3.2)

+ e(x'"3x3p, (X„X,')
-L

x e 'x "2"4(x,—x,')dx,',

(X) e I& A2x3 j(XQ+.Ix A()x2
3

(3.3)

After solving Gauss's law, we now solveA, by
the ROM of A, :

v, =A, + s,A, —ig[A„'A, ]. (3.5)

Thus

Hence

+e-lx A()x3(S A )ed'fx A2x2 (3.8)

%3= T+ 83A, (3 'I)

where T is a constant matrix. The solution for
Ao is

r
L

(2 (,)(X,)= 'pX, (X„, ')Xx,')d

[see the definition of the operators 'q, *q in
(4.1)]. At this stage 'A, and 'm, are the only in-
dependent degrees of freedom which were left
from A„w„and the only nonvanishing equal-time
Poisson brackets for m,' are

('A;(X },'m~(f )= —5"~|i'(X —y ). (3.4)

f'+L

d, (X) = ' 't()X, (. '2).(,)+ *' [ (X„(),')
~

X'X
~

(. 22d(X, —X')d(( )+V)e"'3 3 2g 3(l) (3.8}

It is seen that although Gauss's law was solved
and becomes an operator identity, A, given by
(3.8) is not completely solved and some part of

it T, V, remain as independent operators.
It should be noticed that the physical reason for

this situation is that the number of constraints
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given by mp=0 is greater than the number of the
constraints needed to fix mp in time, namely, the
Gauss's law ip 0 This is seen most easily by
counting the number of degrees of freedom which
are frozen by these two different laws, on a fin-
ite lattice.

The ambiguity which is left in A, reflects itself
in many ways. For example, the Poisson bracket
g„7[,] does not vanish, although w' is zero. This
specific problem can be resolved by constraining
the so-called "physical states. " Nevertheless,
the unphysical states manifest themselves in other
ways. One of the most important ones seems to
be the unphysical singularities which appear in
the field propagator in some gauges. The inter-
pretation of this situation is far from clear. All
kinds of speculation about confinement, ' etc,
which rely on it, stand on shaky ground as the
role of unphysical states in such an ambiguous
theory is not understood yet.

Hence it seems to us that in order to get a con-
sistent theory, one should try to get rid of the
constraints on the states, and A, should be solved
completely, even if that means specifying the
environment in which the theory is defined.

Turning back to our expression (3.8) for A, we
see that A, is already quite solved. The remaining
degrees of freedom T and V' represent the freedom
of A p on the two surf aces &X3 = M. Hence it seems
that one has to look for other kinds of constraints
besides Gauss's law, which should hold on the
surface and fix A, completely. In our opinion the
starting point of this search should be whether
or not the proper EOM. can be obtained on the
surface. It seems to us that the four theories
which were defined in Sec. II are good examples
of how to solve this problem as they define A,
completely and predict the proper ROM.

+ P3 X E X3 X3 dX3 (4.3)

p~(X) = eftX3(x3-x )3p N(Xr) aft%3(x3- x3)
3 3

x e(X, —X,')dX,' (q& =,'~'q'+ ,'r2Q')—,

where Q,'&» are defined by (4.5):

&)«„&(x,l= f &«(x, x,)%,dx, . "

(4.4)

(4.5)

At this stage one has to take care that the condition
m', (X,+1)=m3(X,-I ) be satisfied. That implies
the constraint

p,'(X, x, )dx, =O. (4.6)

In the same manner we define the two operators
*')'*Q(X) ")'*Q(X) for the operators '~*q(X):

')'*Q(X) =- *')'*Q(X)+")'*Q(X„X,),
(4.2)+I, p/g

o Oi*q(X„X,) = — q(X') dX,',
L

L

dx, * ') *Q(X)=0.
L

A. Theory I

Beginning with the theory I, defined by the con-
straints [E(ls. (2.15a)-(2.15d)] in the 9~A, =0
gauge, we first solve Gauss's law for 7t3. In this
theory 'A, (X ) does not vanish in the third iso-
spin direction only the other two components
'A, (X ) and their conjugate momenta are elim-
inated by the surface constraints. The field m3

is given by (4.3), (4.4):

Q(X) -=*Q(X)+'Q(X.),
+I

Q(X )= —
J Q(X, Xs)dr~,

(4.1)

IV. FOUR SU(2) GAUGE THEORIES IN

THE 33A3 =0 GAUGE

In this section we realize Gauss's law by gaug-
ing the field A, (X) to B,A, = 0 and solving w, and

Ap in the four theories defined in Sec. III. As it
appears, we can use the constraints on the surface
in each theory in order to rotate A, (X ) to be
A, (X )2v'=X~(X ). To simplify the notation we
will define the two operators 'Q(X ), *Q(X) for
each local operator Q(X) in the following way:

2( u) 2 2L Q3, 2(l&

(4.7)+ ~3 2 &X~&2 & &2 —&2 d&2~

'«', ,(X,) = —f (9'«', + [«'-„A~ [+ [«g A;"J)(x„A,)d&,,"

= —(6'~', + '[~;,A,"]+'[~;,A;]) .
The operator Q', ,(» is defined by (4.9):

(4.8)

The other two constraints w, (X„+L) = —m3 (X„,-L,)
are satisfied identically.

In order to realize the constraint (4.6) we gauge
A, (X ) to B,OA,'= 0, and then solve (4.6) for its
conjugate momenta 'm', (X ) in (4.7):

eL
*Q(X,X,)dX, =O. ()...«, (&:„)=f «, „(&:„&:,)&:, &(&:, . (4 8)
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The field A', is given now by 'A', and satisfies

(4.10)
Ox=0= f p,', (x,)dx, . (4.14)

Continuing this procedure, we have to employ
the conditions 03[23(X„XS=L) = 07ISS(X„XS=—L),
which results in the condition

'p', ,(x„x,)dx, = 0. (4.11)

The realization of (4.11) is achieved by gauging
away the operator S,O OAS(X, ) [Eq. (4.13)] and
solving for its conjugate momenta (4.12):

OeOVS(» ) OeOe0~3+ q3
1

332&&&

+ P3 2 y X E Xg Xg '&g P

(4.12)
''p'. . .(x,)= —f '([e-;,d-",) —[ee,A;"J)(x„x,)dx„

(4.18)

To ensure the last constraint 'Ov', (X,=L)
= 'Ov', (X,= —L), one has to realize also the globa, l
condition (4.14) which is the last one in this
theory,

v;(x) = 8+; + ig[Aos, XS].

The solution for A, is given by

(4.15)

A. (X)=exp(-(XA, x,)(-*fp;(&„~,')Ix, —x, 'Idx, '

+ V- (X )
~

exp(+ igXSXS) .
j

(4.16)

As we claim, Gauss's law leaves in Ap, the un-
defined operator V (X ), which should be fixed
now by the surface constraint AO (X + L)
=-A, (xe, -L). This constraint is given now by
(4.17) and has the solution (4.18):

Thus, this is a global constraint, and it should
not have explicit effects on the dynamics of the
theory. Thus we leave it as a constraint on the
states which should have zero global electric
charge in the third isospin direction. After
realizing Gauss's law and all the local boundary
constraints, we are going to solve for the A, op-
erator. We begin with the two isospin components
1,2. As A3 vanishes identically, the differential
equation for A, is

e fgASL[ Lq-e(X ) qe (X )+ Ve(X )]e+Ig1[SL e IgASL[ Lqe(X )+ q-. (X )+ Ve(X )]s-fgASL

V'(X )= - —,'[03)(, ) tan(gXSL) —SLQ'(X ),

P'(X )=-,'0[ i exx(dd, L) ,'d 0'(X ) (0*„—|—f *"" 'p='(eX x )e'*""**x'd*) .

(4.17)

(4.18)

We solve now for A, '. The differential equation
which defines it is

I

solved through the ROM of 'A,' and "A',.
The gauging of OAS [(4.10)] implies

It3 A3 + ~3 Ap (4.19) (4.22)

)ISS(x) —0vS'(x) = &SA', (x) . (4.20)

The solution to (4.20) is given by (4.21); it defines

p ~

*A,'(x) = -,' J[ pS( x„x,') i i», -x,'i -—— '
id»,

'

Before solving the above equation we would like to
use the surface constraint. We integrate (4.19)
over X, from -L, to + I. and employ the condition
A,'(X„,+ L) = A,'(X„,—L) to get the more definitive
equation (4.20) for A, O':

ovS-0 ov23=sSAOS+i*g'[ ;A, A]. (4.28)

With the solution for *'Ap,

X,"p'32(X„XS')~ iXS-XS'i=- ' dx,'

We integrate (4.22) over XS from -L to L and
using the boundary constraint 'A,'(X'.„+I.)
='A,'(X„-L) to get the more definitive differential
equation for Ap.

~X n3
3( ) (4.21)

X2
QSe2 (1)

This representation of *A,'(X) by (4.21) satisfies
the above conditions on the surface. The freedom
which is left in A,', namely 'A,'(X„), should be

p

-igJ [A, )A, ](X„XS) c(XS-XS')+ ' dX,'.2 2 L 2

(4.24)
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The complete solution for A,' is given by

A,'(x) = ~A', (x) + *'A,'(x„)+ *"A(X,) +M'. (4.2'I)

As we claim, the realization of Gauss's law plus
the surface constraints determines A, completely,
and in a consistent way. We left one global con-
straint as a symmetry of the theory, without real-
ization and thus A, contains one global undefined

operator M' and'the physical states are subject to
the constraints Q3~= 0. We will discuss this global
symmetry in a future paper. Nevertheless, we do

not expect it to influence the dynamics of the the-
oryi

B. Theory II

In theory II which is constrained by the set
(2.15c) all the components of 'A, (X ) do not vanish.
We use these surface constraints to generate an
additional X, independent rotation which rotates
'A, (X ) to the third axis. Thus A, (X„)=A.,' and the
solution for m3 is given by

w3(x) = 'v3(x„)+ Q3(, )

+ p,'(x .„,x3')e (x, —x3')dX3. (4.28)

The remaining freedom of A.o' at this stage is
'A,' which should be solved from the ROM of

030A31'

Applying the boundary condition "A,'(X; = L)
="A',(X, = —L) we get

0 ~ 0 3(X ) OeOeOV3 SO, OA3 ~ 3,0,0(AB Azq1 1 1 1 0+~g L 0& ll '

(4.25)

The solution for *' ' A', is then given by

/2*'A, =-.'
J p. ,..(X )I,I,—;I-—,—,L d '

~X 3+ 2LQ3, 2 &0)
I

ed Jl (d, d, ((x',)(e(X,- X', ) ed' Idd(.

(4.26)

The constraint n 3 (X„+L) = v3(X, —L) determines

0~23 = -'.q', cot(gA33L),

'w,' = ——'Q', cot( gA', L}.
(4.31)

So|ving A„we begin with A, , which is defined

by the EON of A", :
v, =83AO+ig[AO, A3]. (4.32)

The solution to (4.32) is given by

d,"-(x)=e-""e
( ( P(x„, x)lx -x Id»

e,,"-(x„)V,e V-"(x„))e"'"* (4'3(

The surface condition imphes that A, (X„—L,)
=A (X„,+ L), i.e.,

igd(. 3L (( L-q- —q + 0 -L p) dg 33 P-„3(1)

+ig7L &(( Lq- Lq o -L P' ) 'g+3
2 3(1)

(4.34)

This equation defines V uniquely, with the solu-
tion given by

y'(x.}= ——,
' [L+cot'(gA', L,}]q,'

+ 2Q3&» cot(gA', L),
&'(%„)= ——,

' [L+ ot' (gA,'L)] Q;

——,'Q3'(, ) cot(gA,'L) .

(4.35)

The operator A', is, again solved in. the same
manner as in the theory I and is thus given by
(4.21), (4.24), (4.26), and (4.2'I).

C. Theory III

Theory III is defined by the set of conditions
[Eq. (2.15b}]. It is the only one which belongs also
to the A, =0 gauge theory. We will not discuss here
whether the A3 = 0 gauge theory implies as a rule
the whole set of constraints (2.15b) or whether
some other set of constraints will do. Neverthe-
less, the following solution, the set (2.15b},is rel-
evant also to the conventional axial gauge theory.
The solution for m3 in theory III is given by

The condition v3(X, + L,) =v3(X„,—L,) implies that e,((() = f p „, (x(~X (-e)d x, . x, (4.36)

J p33(x~, X,) dx, =0. (4.29) The constraint w3(X„+ L}= 0 implies the constraint

It is the same condition as (4.6) in the first theory
and we solve it in the same manner with Eqs.
(4.V), (4.10), and (4.12)-(4.14). The conjugate v3"

are given by

'p, (x„)= 0. (4.3'I)

In order to realize the constraint (4.3V), we gauge
OA, ,(X„) to be zero [taking into account the bound-
ary condition at X„=(X„+L)]and solve for 'w2(X ):

e", (x) e"'"d' ('e,"+ Jp(x=„,x')e(x, —x')dx')e """
(4.30)

'A =02.

Ow2(x„) = Op (x„x2)~(X,—X')dx,'.
4

(4.38)

(4.39)
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As rr2(X1, + I) = 0, we get the new constraint

p, —0 (4.40)

"A =01 (4.41)

This constraint, with the conditions 'oA, (X, = I)
='oA, (X, = —L) and o'ow, (X, = L) =m, (X, = —I), are
realized by gauging away "A,(X,) and solving for
(4.41) and (4.42):

D. Theory IV

The set of. constraints of theory IV implies that
A 3 0. %e wi 11 use the surface constrai nt and ro-
tate A, (X ) to be in the third isospin direction only,
where 'AO=A„(oA2'='A', = 0). Thus one should ex-
press rr2 (x) completely by the independent vari-
ables of this theory. The solution for m,

' is given
by (4.49):

"v( x)= )"''p. ..(x,')e(x, —x,')dx,'. (4.42) v2(x) =o~;(x.)+ (1/2i)q', (~)

The above constraint "1r,(X, = I.) = "v,(X, = —L)
implies also the global condition

qrg 0 p32 ~ 1 ' (4.43)

The realization of (4.3V) implies Eq. (4.45) for
Q ~ 0A ~

o ~

As for the other theories we are not going to
realize these three global constraints and leave
them as harmless constraints on the states, which

should not inQuence the dynamics of the theory.
The equation and solution for *A„after the reali.
zation of the Gauss's law constraints, is given by

@3=&3*Ao,
(4.44)

A, = —,
'

p x, x,' x, -x,' ——— ' dx',

+ t p,'(x „,x2')e (x2 —x,')dx,'. (4.49)

The solution for rr2~(X) is given by

v2-(x) =e ""2"2~,'rr, (x )+ p-(x„,xge (x2- xg ~

X e+ig7L3x3 (4.51)

The conditions on m2(X) is &Ovg(X„, X,=+ L) =0,
which yields the conditions (4.52) in the second
isospin direction;

The boundary constraint at X,=a L, on S, rr2, (4.50),
is satisfied as an idenbty of the theory, as
v"(x, =+ I.) =A"(x,=+ I.) =0:

B,v,'f„, , = 8 (s,&,'+&,w, + [rr„A„])f, „=0. (4.50)

'rr, = a,*'A+ ig'[*A„*A,]. (4.45)

Thus the solution for *'A, (X) is given by

~o
*'A(x„)= —, p, ,(x„x,) ((~x2 —x2) ——— Idx2

(e"g"~[A orr, +q, (x„,+ L,)]e"g"2 )"'=0
Equation (4.52) defines 'w, in

'v,'(x ) = q'(x„) cot(gA', L),
'~,'(~) = q'(X„)tan(gA,'I,) .

(4.52)

(4.53)

1

Ao~ A2. xyy x2 & x2 x2 + ~x2 ~2 2 2J) 2

' rr, (x,) =s,"A +igo'[Ao, A, ], (4.4V)

(4.46)

The remaining freedom of A„namely "A„should
be solved from the vanishing EOM of "A, given
by (4.4V), with the solution to 'OA, given by (4.48):

[ yigAOL(ov- + q-)e2igAOL](1) 0 (4.54)

Substitute the expression (4.53) for orr, into (4.54)
and Eq. (4.54) is satisfied automatically.

Going on to solve A, , we begin with A, ' which
should satisfy

In this way the conjugate momenta to A, are corn-
pletely defined. The condition rr2'(X„, a L) =0 im-
plies Eq. (4.54) in the first isospin direction:

t' ooo /2

"Ao(x)=-') p. ..(x,') ~x, -x,'~- —— ' dx,' n'3 =A3+ 83Ao3. (4.55)

p t'

-ggJ~ I
"[*A *A ](x')

Thus A,' should be a solution of (4.56) with V' yet
to be defined.

+ OIO[O OA g OA ]op 1

P' I
&(x,') e(x, -x,')+ ' dx,'+iV.1

T'+ 83Ao

The solution to (4.56) is given by

(4.56)

(4.48)

The global operator M should be solved in accor-
dance with the constraint (4.43); we leave it here
as a harmless free operator.

p3 z~, x3 X3- X3 dx3

+ow~X3+ T x3+ V (4.5V)

The boundary condition on Ao in the X, =+ L sur-
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faces is given by (4.58). It defines the operators
T and V which are given by (4.59):

A, ( .,+ I.) =-,' „I;(„,~g(L+@d,

V'(x-y)=- Z &(l~;-y;1-2L)&(~, -y, )
t =1,213

x 5 (x, —y„) (i cj x k 3) i), (5.1)

+T L+V
5,'(x —y) —= 6'(x —y) + V'(x —y) (5.2)

Thus

=0 (4.58) [the definition of 5', (x„—y„) and 5',(x —y) are done
in an analogous way],

6, , (X, ,y, ) —= —[6(x,. +y,. —2L)+ 5(x,. +y,. +2L,)]

V(x„)=-,' Jl p', (x, x,')dx,'.
As A, = 0, the solution for A.", is given by

A,"(x)=e ""*'(-', ' ((yx„)x(x x'(dx'

+ O~Cxg + PCx e+~g+3L'

(4.59)

(4.60)

The condition A', (X „,X,=~ L) =0 defines V" in
(4.62) through (4.61):

Ao(x.„,+ L) =[e"'"3 ( LQ + —O'Q~«)

+ Ov-L+ V-) aigA3I ](3)
3

=0 (4.61)

V (x„)= —-4Q'+ (- 'w', L+ -'Q'(, )) cot(gA,'L),
(4 62)

V'(x„) = —.' rQ'+ (-'v3L+ 3@—t„)tan(gA3L).

+5(X. -y,.). (5.8)

The distribution function 6 0,. (X, ,y,-) is defined by
giving all its derivatives in the interval -L,
& X, ,y, & L (m is a non-negative integer):

s„, ,-5, (X, ,y,. ) =s„„,5(X,. -y,.)
——,'[(-1) —1]s„(,)

x 6(2L- ly,. + x,. l) . (5.4)

The independent fields and their nonvanishing
equal-time CR in the four theories are given below
(neglecting the undefined global operators). The-
ories I and II are presented by the fields

A3(x„), *A,'(x), ' A3(x, ), *A',(x),

+'A'(x„) "'A'„A",(x ) (n, P=1,2),

and their conjugate momenta. The nonvanishing,
equal-time CR in these theories are given by

The condition on A,' on the X3=~ L boundaries is
given by ['A', (x„),'v3(y)]= 53 (x —y„), (5.5)

0=a,A,'

=~ ([A„(,'Lq +q„,~ 'v-,"L+-V-)])(') . (4.68)

This equation is satisfied automatically with V

given by (4.62).

V. QUANTIZATION OF THE FOUR SU{2)GAUGE THEORIES

In this section we pass from the classical theory
to the quantum theory. In the quantized theory we
define all the dependent operators to have the same
expressions as were given in Sec. IV and new com-
utation relations (CR) to replace the Poisson
brackets. Thus we skip the order ambiguity in
this transition.

The new CR between the independent fields and

their conjugate momenta should take into account
the boundaries constraints which were defined
above. Thus the new CR are not the usual canoni-
cal ones. In order to present them in a closed
form we define in E(ls. (5.1)-(5.4) some distribu-
tional functions, in the finite space volume -L,
& x;y y; &+I (i =1,2, 8):

[*A'8(x), *v„'(y)] = 63(x-y)

5', (x„-y„) 5„(), (5.6)

2

["'A,'(x, ), "e,'(y, )] g &y
e', (x, —y, ),

[0' 0 ' OA3' 0 ' OeO 3]
IP yl ] 2L p

(5.'I)

[*'A.',(x„),*'v3, (y )] = 53(x„-y )

1 2

(+1 y))

[A3 (x), n", ', (y)] = 68 ()', 5'(x —y), Theory I,
(5.9a)

[Ag(x), v8,'(y)] =6~& g,'53 (x - y), Theory II.

(5.9b)
Theory III. The independent fields a.re *A',

* 'g;, and their conjugate momenta. Their non-
vanishing equal-time CR are given by
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[ Al(x)~ wl(y)] —5 50I1(xl~y 1)50~2(x2$y 2)50I 3(x3~y 3) l

(5.10)

[*A;(x),*w2(y)] = 5" 5, ,(x„y,)5, ,(x„y,)5, ,(x„y,)

5, ,(x„y,)6...(x„y,)

(5.11)

[*'Al(X.), *'~l(y-)]= &"
l,~~ 60,.(x.,y.)50,2( .,y.)2] 0 b ah

(1 &2
—

] 2~, 1 50,.(x.,y.) .
(5.12)

Theow y IV. The independent fields are 'A.,', A',
and their conjugate momenta. Their nonvanishing
equal-time CR are given by

f'A'. (x ), '~3(y.)]=2~5..1(xl yl) &...(x. y2)

(5.13)

[Al(X) +1(y)] 50, 1(xl yl)50, 2( 2 y2) 50 3(x3 y3)

(5.14)

[A (X) 7 (y)] 60,1( 1 yl)502( 2 y2, ) 50,3( 3 y3)

(5.15)

[A', ( ), ',(y)] = ~. ,(,y )5,.( .y.) &,.( .,y )

(5.16)

[A2(x), &2'(y)]=~0, 1(x11yl)50,2(x2ty2) ~0, 3(x3'ly3) ~

(5.17)

The Hamiitonian of these theories is given by (2.5),
and should be expressed by the free dynamical
variables only. The EOM are obtained then by
computing the CR fH, A; ]and [II, 0, ] by. using the
CR given above for the independent variables.
The correct EOM [Eqs. (2.6) and (2.7)] are thus
obtained by a straightforward, although tedious,
calculation in all the four theories and in the whole
box.

VI. DISCUSSION AND SPECULATION

It is clear that further work is needed. One
should look at other kinds of constraints which

can predict the correct EOM on the surface, and
remove the A, ambiguity. Thus one conclusion
seems to be very likely; not all kinds of solution
for these EOM exist in one theory. As an example
in some theories one cannot introduce one quark
states, and has to consider quark-antiquark states,
or two quark states only. In other theories the in-
stanton is an illegitimate solution and one has to
consider instanton-anti-instanton solutions, etc.
That should reflect itself in computing vacuum-to-
vacuum tunneling amplitudes, etc. It is interesting
to notice that by the boundary conditions the SU(2)
symmetry is broken in theories I and IV. We
learn that in pure non-Abelian gauge theories it is
impossible to take antiperiodical boundary condi-
tions in all the isospin directions. Also, it seems
that in these theories only the MIT bag can be pre-
dicted (theory III) where the outside magnetic
permeabilities p.

' are taken to be infinity. It is
interesting to learn also that the analogous tech-
nique taking all the dielectric constants e' to be
infinities is forbidden in these theories.

It is clear that much work has to be done in or-
der to learn these theories. Among other prob-
lems one has to find out the propagation of wave
packets in these boxes; to find how their behavior
depends on I., and if some phase transition occurs
in which one theory is changed to another. The
theory in an open space should be a limit of the
theories, where I. ~. Therefore, it might be that
before reaching this limit some critical value of
I. occurs which can help in understanding the con-
finement phenomena and other features of strong
interactions.
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