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Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory
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A rigorous lower bound is obtained for the Wilson loop expectation value (A[C]) in the four-
dimensional U(1) lattice gauge theory with an action of the Villain form. The bound, which holds for

g &0.168, has the form of a Coulomb interaction and guarantees that electric charges are not confined.
Using the strong-coupling results of Osterwalder and Seiler, one concludes that this model has at least one
phase transition. Using the work of Elitzur, Pearson, and Shigemitsu, one also concludes that the four-
dimensional Villain Z(N) lattice gauge theory has at least three phases if N &37. Firially, it is also shown

that the infinite-volume limit of (A [C]) exists.

I. INTRODUCTION

The U(], ) lattice gauge theory was formulated
by Wilson' in 1974, primarily for the purpose of
understanding how a gauge theory can result in
the confinement of quarks. Wilson studied the
strong-coupling limit of the theory by means of a
perturbation expansion, and concluded (non-
rigorously) that the Wilson loop expectation value

(A[C]) behaves for large loops as

(A[CI) ~c,e "
where Z is the area of the minimal surface which
spans the loop C. This behavior corresponds to
the confinement of electric charge, providing an
analogy with the confinement of quarks in non-
Abelian gauge theories. However, if the lattice
theory is to provide a valid approximation to
QED, then the confinement property is clearly
unreal. istic. Wilson therefore conjectured that in
four dimensions the model undergoes a phase
transition as the coupling constant g' is varied,
with a nonconfining phase in weak coupling. Wil. -
son's conclusions about the strong-coupl. ing be-
havior of the theory have since been rigorously
established by Osterwalder and Seiler. '

Various authors have studied the weak-coupling
behavior of the theory, but to my knowledge the
conjectured phase transition remains unproven.
The space-time lattice formulation has been
studied using a modified form of the action which
was proposed for the two-dimensional XW model
by Villain. ' The Villain action resembles qual-
itatively the cosine function proposed by %'ilson,
and in fact approaches the Wilson action for both
large and small values of g'. Using the Villain
action, Savit and Banks, Myerson, and Kogut'
have shown that the U(1) theory can be rewritten
as a theory involving only closed loops of mag-
netic current (in four-dimensional space-time)
with Coulomb interactions. The action associated

with a loop is proportional to 1/g', so they be-
come very sparse as g'- 0. Banks et al. argue
that they can therefore be ignored in weak cou-
pling, and this argument leads to a Coulomb
force law between charges. This argument has
been refined slightly by Ukawa, Windey, and
myself, ' who have derived a perturbation expan-
sion to describe the effect of a low density of
magnetic loops. An explicit calculation of the
leading term indicates thai the Coulomb form of
the long-range force is unchanged, but the ef-
fective coupling is increased slightly:

(1.2)
Also using the Villain form, Peskin' has shown
that the model can be rewritten as a singular
limit of a (noncompact) Abelian Higgs model.
For strong coupling the Higgs field acquires an
expectation value, and Peskin argues that this
implies confinement. For weak coupling one ex-,

pects this expectation value to vanish, and hence
the cause of confinement is removed.

Drell. , Quinn, Svetitsky, and Weinstein' have
examined a Hamiltonian formulation of the theory
(i.e. , discrete space with continuous time). Using
variational techniques, they reduce the problem
to a form very similar to that of Banks et al.
and then make simil. ar arguments.

The U(1) lattice gauge theory has also been
studied rigorously by Glimm and Jaffe, ' who
derive the leading term for the free energy in
asymptotically weak coupling. (Their approach
is equivalent to using the Vil. lain f0rm of the
theory, although they describe it in different
terms. )

This paper will also concern the Villain form of
the theory. I will prove that for g' sufficiently
small (numerically, g'&0. 168), the Wilson loop
expectation value obeys a bound

&~K]) - ~xv(-*'rr" Z i, & 'i ),
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where g" is a function of g', b and b' are summed
over the bonds of the lattice, ' is the inverse
lattice Laplacian, and j& is the "current" as™
sociated with the Wilson loop C (i.e., j~ =1 for
bonds contained in C, and j,=0 otherwise). The
bound is shown to hold on finite lattices with
specified boundary conditions, denoted by Ag and
described in Sec. II. It is later shown that the
infinite-volume limit of (A[C]) exists and there-
fore also obeys this bound.

The electrostatic potential. is defined in terms
of rectangular loops C(r, T) with sides of length
9" Rnd T:

(A[C(z, T)]) ~ const x e v~"~ (1.4)

Assuming that this limit exists, it follows from
(1.3) that V(r) is bounded by a Coulomb potential

~(~)-g"[&.'(0)—,'(~)],

where G3' denotes the inverse three-dimensional
lattice Laplacian. Thus, the bound implies that
electric charges are not confined. When this re-
sult is combined with the strong-coupling bound of
Osterwalder and Seiler, ~ one sees that the model
has at least two phases, distinguished by the
qualitatively different behavior of (A[C]).

The result also has implications for the Villain
form of the four-dimensional Z(N) gauge theory.
Elitzur, Pearson, and Shigemitsu' have shown
that if the Villain U(1) theory has a phase tran-
sition between a confining and nonconfining phase
at g' g„', then the Z(N) theory has at least three
phases for N& 2m jg„'.

The paper is organized as fol.lows. The for-
malism is described in Sec. II. Boundary and
coboundary operators are defined, and their
relevant properties are explained. Some tech-
nical details are relegated to Appendix A. The
gauge theory is also defined. In Sec. III the gauge
theory is transformed by the method of Banks,
Myerson, and Kogut. In Sec. IV an inequality is
established which bounds (A.[C]) from below by
an expectation value in the XF model computed
in the high-temperature region. In Sec. V a
cluster expansion technique is used to prove the
final result. The proofs of sever. a1. technicaI.
lemmas are given in Sec. VI and Appendix B.
In Appendix C it is shown that the infinite-votume
limit of {A[C])exists.

The proofs in the paper are elementary in
the sense that no sophisticated mathematical
theorems are used, at least not without detailed
explanation. The paper should therefore be rea-
sonably easy for any physicist to follow, though
it will perhaps seem cumbersome to an exper-
ienced mathematical physicist.

II. FORMULATION OF THE THEORY

Before describing the gauge theory, it will be
useful to summarize the formalism for describ-
ing and manipulating functions on a lattice. " Let
A" denote an infinite D-dimensional Euclidean
cubic lattice. Let c„denote an oriented y-dimen-
sional cell (r-cell) of A". (For D =4, the cells
are the sites, bonds, p1aquettes, cubes, and
hypercubes of the lattice. ) For each c„, there
exists a corresponding x-eel. l which differs only
in its orientation and is denoted by -c„." Let
I(c„,c„„)denote the incidence function. [That is,
I(c„,c„„)takes on the value +1 if c„ is contained
in c„„in the proper orientation, -1 if it is con-
tained in c„„in the reverse orientation, and 0
otherwise. ] The incidence function satisfies

cz
cr-&t cr I cr~ cr+y 0 ~ (2.1)

g(c„,) -=+I(c, „c„)f(e„).
CZ

(2 2)

The sum is defined to include only one of the two
orientations of each r-cell. Similarly, h„., = Vf„
is defined by

h(c„„)=—QI(c„,c„„)f(c„).
c&

(2.3)

In this paper we will be concerned mainly with
finite sublattices A & A . The incidence function
for A is defined to be the incidence function for
A" restricted to those x-cells which are con-
tained in A. A sublattice will be ca11.ed closed if

c„,c A and I(c„,c„„)x 0 ~c„cA.

A sublattice is open if

c, c A and I(c„,c„„)a 0 ~ c„,c A .
To aid visua1ization, two-dimensional exampl. es
of closed and open sublattices of A" are shown in
Figs. 1(a) and 1(b), respectively. Note that
either the open or closed conditions imply that
Eq. (2.1) holds for the sublattice.

On a finite lattice there is no need to distinguish
between chains and cochains. Thus, f or this
paper I define an r-chain f„ to be a function of
r-cells which takes values in an Abe1ian group G,
with the property that f(-c„)=-f(c„). In this
paper G will. be either the real numbers, the
integers, or U(l), where the latter will be rep-
resented as the real numbers modulo 2m. (The
group operation will always be addition. ) The
boundary (8) and coboundary (V) operators are
then defined in the usual way. Thus, if f„ is an
r-chain, then g„,—= &f„ is an (r —1)-chain defined
by
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maps a (D-r)-chain on A to an r-chain on A* (or
vice versa), using the simple prescription

g(c„*)=f(c, „),
where c„*is dual to cD „. One then has

(2.V)

(2.8)

4 x JE IL

e E eE e1

FIG. 1. (a) and (b) are two-dimensional examples of
closed and open sublattices of A, respectively. These
lattices are dual to each other and serve as exaoiples of
lattices A~ and A~.

From (2.1), one has &'=&'=0. One can also
define an inner product on r-chains:

(f„',f„& =—gf '(c„)f(c„).
c&

The multiplication on the right wil. l be well de-
fined whenever both chains are real, or whenever
one chain is integral. With respect to this inner
product, V is the adjoint of 8.

The Laplace-Beltrami operator is defined by

(2.4)

:—VB+BV. (2.5)

It is a positive-semidefinite symmetric linear
operator which commutes with ~ or V. It agrees
with the usual finite difference approximation to
the Laplacian, except that the latter is ill-defined
at the boundaries of a finite lattice.

It will. be useful to consider al.so the lattice A*
which is dual to a given lattice A. Each cell
c„*c A* is dual to a cell cD „cA. The incidence
function I* is given by

I*(c„*pcpe~) =I(clp (pej) p cD p) p (2.6)

where the cells which are arguments of I are
dual to the cells which are arguments of I* (but
in the opposite order}. If A is a closed sublattice
of A", then A* is an open sublattice of A"*,
and vice versa. (The lattices A" and A"* are of
course isomorphic, so there is no need to dis-
tinguish them. ) In Fig. 1, the lattices (a) and

(b) are dual to each other.
One can of course define r-chains on the lattice

A*, and the boundary and coboundary operators
are defined in terms of the incidence functions I*.
There is also a natural mapping g„—= "f~ „which

2g
z= (de/exp —QS[(pe)ejI,

0 P

where

(2.9}

(de, )-=... , de„
yg A

and S(Q) is some action function. The form
originally proposed by Wilson is

S,(4 ) =-(1/g') cosy.

(2.10}

(2.1i)
This paper will concern the Villain' form of the
action, defined by

exp[M„(g)] = g exp[-(1j2g')(p- 2vl)'] (2.12a)
g- wOO

g g exp[ ~g2~2] e e
4217 „

(2.12b)

The bulk of this paper will concern a particular-
ly simple sublattice, which will be called A~. Its
sites are chosen to be a finite rectangular array
of the sites of A . The r-cells of A are then se-
lected recursively on r, using the criterion that
c„EA if and only if c„,c A for al.l c„,with
I(c„„c,) o 0. Thus, A„ is closed. Figure 1(a)
shows a two-dimensional version of A~ and Fig.
1(b) shows its dual.

There are several homology properties of the
lattices A„and Ag which will be used later. For
the lattice Az (if r 4 0) or for the lattice Ag
(if r 0 4) we have the following:

(i) If &f„=O, then there exists ag„„such that
f„=eg„,. (For r =4, this means f=0.)

(ii) If Vf, =0, then there exists ag„, such that
f„=&g„,. (For r=0, this means f=0.)

(iii) The operator is invertible when operat-
ing on real-valued r-chains.

For completeness, an elementary proof of
these properties is given in Appendix A. (Note
that for the excluded values of r, these proper-
ties are violated by the constant function. )

The gauge theory can now be formulated on an
arbitrary finite sublattice A. The basic variables
will be 8, c U(1), defined on each bond b c A.
Then VO is a 2-chain, defined on plaquettes P (= A.
The gauge theory partition function has the form
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The expectation value to be studied is that of
the Wilson loop operator A[C]. The closed loop
C can be described by an integer-valued 1-chain
j&, which is equal to the number of times the
loop C crosses the bond b, each counted with the

appropriate sign. Thus,

Bj =0.

Then

(2.13)

(2.14)=1
(A[C]) = — {d8hj P exp[-(1/2g') Il&8 —2wlll'] e"",

Z 0 (sp)=-~

where I have used the notation [[ ([' -=(,).
In the proof that will follow, most of the work will be carried out in terms of the dual lattice A*. Since

the lattice A~ is simpler than its dual, it will prove convenient to formulate the gauge theory on the lat-
tice A —= Ag. The Wilson-loop expectation value (A[C]) can then be rewritten in terms of quantities as-
sociated with the lattice As. The loop C, which was described by a 1-chain on Ag, will be described by
a 3-chain on A~:

jc jb&

where the subscript c denotes a function of cubes. Then

Vj, =0

and
2I'

(A[C]) = — 4d 8j 2 exp[-(1/2g') ll» - »i i)']e'"'",Z, p [lp) =-~

where now all of the r-chains are defined on the lattice A~.

(2.15)

(2.16)

(2.17)

III. THE BANKS-MYERSON-KOGUT
TRANSFORMATION

The first step in proving a lower bound for
(A[C]) is to carry out the transformation intro-
duced by Savit' and Banks, Myerson, and Kogut. '
(This transformation is similar to one which has
been used to discuss a class of two-dimensional
models. "}

The starting point is Eq. (2.17). The trans-
formation can be carried out in several steps.
To begin, one must remove the gauge symmetry

substitution

dO, — do

cG. C

where C denotes the complement of C.
For any fixed choice of (l~ ], one can define

m~= ~lp.

Then

&mq =0.

(3.3)

(3.4)

8,—8,'= 8, + &(~, (3.1)
One then defines an integer-valued 2-chain G~[mj
satisfying

6I, = 0 if c (= C . (3.2)

where g& is an arbitrary function of hypercubes.
This is done by choosing a set C of cubes and

requiring

&Gp[mj —m, . (3.5)

Then &(l~-G&) =0, which implies that there ex-
ists an integer-valued 3-chain g, satisfying

There are many choices of C which will work,
but the simplest choice is constructed as follows.
Let h„... , k„denote a sequence of all the hyper-
cubes of A&, with the property that h; and h;„
share one cube. Let C be the set of these shared
cubes, along with one additional cube which is
contained in only one hypercube. It is then easily
seen that there exists a unique gauge transforma-
tion P» such that 8,' obeys the gauge condition
(3.2). Thus, (2.17}can be rewritten with the

Bm 0

{Xc)

chic

Then, setting a, =— 6, -2m'„one has

l~ = G~[m]+ 8)(, .

X, can be fixed uniquely by requiring

pc=0 if C(= C.
Equation (2.17) can then be modified by

(3.6)
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[~[C]& =f-[da,] Z exp[-(1/Q')Ilaa-2wG[m]ll']e'" ".
+co /mb) ace

cgC
8m =p

(3.7)

In the above equation, and in all subsequent ex-
pressions in this paper which are normalized by
1/Z, the symbol Z refers to the same quantity
which appears in the numerator except that the
source j is set equal to zero. The symbol Z
which appears in one equation will not necessarily
be equal to the same symbol in a different equa-
tion.

Finally, one can integrate out(a, j. One shifts
the variables of integration so that the integrand
undergoes a shift a,-a, +8,. The a, integration
is then seen to decouple provided that VQp =jc ~ (3.13)

E[c]-=— ~ exp[- ~g(2v/g)'&m, 'm)
1
+ (mb)=-~

Sm =p

+ 2]]i&j, 'VG[m]) ) . (3.12)

The variabl. es mb are interpreted physical. ly as
a magnetic current density.

Equation (3.12) can be rewritten by using the
property Vj =0 to introduce an integer-valued
2-chain H~ which satisfies

VBa = 2+V@ +ig2j .

The general solution to (3.8) is then

(3.8)
Then note that

exp(2vi&j, 'VG[m])) =exp(i(m, a)),
where

(3.14)

'(2nvG+i g'j)+eg„, (3.9) b 2' ~Hp,

Then

(3.15)

for any 4-chain g„. In principle one can choose
g„so that 8, vanishes for c c C, but this choice
need not be carried out explicitly. After some
manipulations one has

E[C]= — g exp[- ~(2w/g)~&m, 'm) +i&m, a&] .~ (m ]=-~
b

am=p

(3.16)
A[c]& =a,[c]E[c]

where

and

(3.10)

(3.11)

Since E[C] is the expectation value of a complex
quantity with modulus one, it follows that E[C]
~ 1. Thus, one immediately has an upper bound
on &A[C]&:

Theorem I:

(3.1V)

IV. RELATION TO THE XY MODEL

The remaining problem is to analyze the behavior of the quantity E[C] defined by (3.16). E[C] is an
expectation value computed in a statistical ensemble of magnetic current loops with Coulomb interactions.
This is the Coulomb dipole gas discussed by Glimm and Jaffe. Because the Coulomb interaction is dif-
ficult to treat by standard mathematical methods, the strategy here is to eliminate it from the problem as
soon as possible. This is accomplished by means of an inequality of the Griffiths-Kelly-Sherman'4 type.
The particular technique used here follows very closely that of Elitzur, Shigemitsu, and Pearson. " The
end result will be to bound E[C] from below by an expectation value computed in the XI' model. The weak-
coupling region of the gauge theory will correspond to the high-temperature region of the XY model. .

Lemma 4.1. Let E». be a real symmetric positive-semidefinite matrix, with indices b, b &= A~. Fur-
thermore, let A. be a real parameter such that the matrix ( +AK) is positive definite. Then define

E[C;E;A]—= — g exp[--'(2 /g)v& 2(m'+AX)m&+i{m, a&].+ {mb]=-~

&m=p

(4.1)

(Here Z is defined as the value of the numerator when the source a, is set equal to zero. ) Then
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0 0.
BA,

(4.2}

Proof. Differentiating (4.1),

&E 1 tt' 2m 2 1
[(m, Em) —&m', Em')]

2 I, g ~ jm }=-~ (m'j ~ -~
b b

8m =p Bm'=p

x exp(- —,'(2v/g)'[&m, ( '+AjC)m&+(m', ( '+RE)m'&]+i&m, a&] .
In the above equation and for the rest of this proof, the symbol Z denotes the value it was assigned in
Eq. (4.1). Now introduce the new variables

P, b
= Bib+@lb ~

P.b: Slb mb .
Note that .for each b, p, b and p. b' are either both even or both odd. This constraint can be accommodated
by defining a parity function

0 if p, is even,
1 if p. is odd,

and requiring x(p, ,) = v(gt} = m, . Then

8E 1 (2m 1
BA. 2 (g Z'

(4.3)

where

x g g g &p', Ep&ex, p(- —,(2v/g)'[&p, ', (& '+~)V. ') +&V, ( '. +4K}&&]+ki&l '+ V, ~)].
( ffb

) =0 e 1 ( 0 b) "-

&p=p &p =p
(~ &= b

[In the above sum, the only nonzero contributions will come from parity assignments (n~] which satisfy
S v = 0 (mod 2).] Rearranging,

aE 1 2m 1 ' 1
s~

=
2

—
]I g~ Z &V~[&] EV~[v]&

BA, 2 g/ Z

V,[s]=i g p, ,exp[--, (2v/g)'&p, , ( '+LE)p& + —,'i&g, a&].
{P, bj~ a oo

8 p-p
I{~b) ~b

The symmetry p, ,- -p~ guarantees that Vb[m] is real. Since E is positive semidefinite, the lemma is
p roven.

Lemma 4.2:.
&m, om& & 16[/m[['.

The proof of this lemma will be given at the end of Appendix A.
Lemma 4.3. Let E[C] be the quantity defined by (3.16}. Then

Z[C] ~ QC] = — 2 exp(- l ~ llmll'+i (m o) ),
1

{mb)=-

(4.4)

(4.5)

where

,'. (2~/g)' . —
proof. By Lemma 4.2, the matrix

1 1
@abbr = ~ bb '

is positive semidefinite. Furthermore, the matrix ( +UC} is positive definite for -1 ~X ~0.

(4.6)
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by Lemma 4.1, the quantity E[C;K; A) is monotonically nondecreasing in A, . But E[C;K;0]=E[C] and

E[C;K; -1]=E[C], so the lemma is proven.
The quantity E[C] is actually an expectation value in the XF model. This equivalence can be seen by

introducing an integration over variables (8J to enforce the constraint Bm =0:
2g

E[C]=— fd8, j exp[- —,'yf[ m]f'+i(&m, 8)+i(m, a)).
P (mb)=-~

Now define

exp[-V(P)] = g exp[-2ym'+imp], (4.8)

E[C) =
& gG

where

(5.5)

which is again the form of a Villain action [see
(2.12b)]. Then

de,
Go[a] =— ', p((V8)n+aa )

p ~ beg
(5.6)

1 t

E[C]= — (d8, ) exp —Q V((V8), +a, ) .
p . b

(4 9) (5.7)

and Q is summed over all subsets of the bonds
in A„. From (5.4) one has

o-G [al-[ (y)]"",
In this form one clearly recognizes the XY model.
with Villain .action. As g 2- 0, y- , and thus
the problem has been reduced to that of the high-
temperature behavior of the XP model.

(5.1a)

g exp[-(I/2y)(g —2wl)']. (5.1b}r g- «oo

Equation (4.9) can then be rewritten as

s[cj = —f (ae.)';w((vs},„,&.
p b

(5.2)

Now let W;, denote the minimum value of W(g&).

Positivity of Wm~ is assured by (5.1b). The
quantity p(Q) is then defined by

W(I) = W.[I+-p(4)) .
It follows immediately that

(5.3)

0- p(y)- '" = e(y).
5'm4n

(5.4)

It is easily seen that e(y)-0 as y-«. The cluster
expansion is obtained by inserting (5.3) into (5.2)
and then expanding the product:

V. APPLICATION OF THE CLUSTER EXPANSION

In this section it will be shown that E[C] can be
bounded from below by the use of a cluster ex-
pansion. The cluster expansion technique was
introduced in constructive quantum field theory
by Glimm, Jaffe, and Spencer, "and was later
used in the context of lattice gauge theory by
Osterwalder and Seiler. '

To begin, one defines

W(Q) =- exp[-V(Q)] = g exp(--,'ym'+imp)

where L(Q) is the number of bonds contained in

the cluster Q.
Now note that any cluster Q can be uniquely

partitioned into connected clusters R„.. . , R„.
(Two bonds are connected if they share a site,
and a cluster is connected if any two of its bonds
can be joined by a sequence of connected bonds
in the cluster. ) Then

n

G [a]=." G, [a)
&=1

(5.8)

(5.9)

fp=s

One can think of U 'j, as the electromagnetic
potential arising from the current j„and then

f~ is the electromagnetic field strength. The
bound on G„[a] can then be stated as follows.
I emma 5.2. Let R be a connected cluster of

I bonds. Furthermore, let fs denote the maxi-
mum value of

~ f~~ on any plaquette which is
within a distance ~I. of the cluster R. (The dis-
tance between a plaquette p and the cluster R is
defined as the minimum number of plaquettes in

(5.10}

00 n

E[C)=-'Z-', Z:.'. :G.,[.).~ n=p +' B ~ ~ 'Bn
disjOint

In the above sum, each R& is summed over all
connected clusters, subject only to the constraint
that (R, ~ ~ R„) is disjoint (e.g. , no bond in one
cluster R; is connected to any bond in another
cluster R&).

The next problem is to bound each G~[at from
below. This bound is stated below as Lemma 5.1,
and it will be proven in Sec. VI. In the analysis
of Gs[a], it is convenient to describe the effect
of the Wilson loop by the quantity
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G~[a] - (1 —~~)Gs[o]

where

(5.11)

& = (r)f 'L'[ (r)]'. (5.12)

As y- ~, z(y) and T(y) each approach a constant
value. [Explicit expressions for ~ and v will be
given below as (6.16) and (6.15).]

It should be pointed out that the bound stated
in the above lemma is a rather poor one if
either L or f„ is large. However, it will be good
enough to prove our result, as can be expected
from the following reasoning. The contributions
from large L will be suppressed by the cluster
expansion as y- ~. The contributions from large
jz will arise only from clusters in the vicinity of
the Wilson loop. These contributions will modify
the length dependent term in the answer (the self-
energy term), but they will not be confused with
an area law.

Given the above lemma, it is now possible to
prove the following.

Lemma 5.Z:

a connected sequence which starts with P and ends
with a plaquette which contains a bond of R.)
Then

where R is to be summed over all connected
cluster s.

Proof. The connected clusters R; can be di-
vided into two classes, depending on whether 4~&

is less than or greater than one-half. Let V&

be a label which is summed over all connected
clusters with &v; ~

&, and let W~ be summed over
all connected clusters with &w& & —,'. The partition
function of Eq. (5.9) can be expanded as

x=ZE„,', Z Z (:..:c„[o])
disjoint

x(;,=, ', C,,[O]) .

In understanding the motivation of what follows,
the reader should bear in mind that there are
many clusters V; and few clusters W&. Thus, the
contribution of the 8'; can be bounded rather
poorly without significantly weakening the result.
The first step is to ignore the disjointness re-
quirement on S';:

OO n

E — .... G . 0,
tf=p V ' ~ 'Vff f&],1

disjoint

where

p[C]- exp (-p gx„[x(y)] t "~), (5.13)

(
Ic, = exp~ g C [0]).

Using (5.11) and the requirement &„

00 n 0O 00

Z=Z, Q —' Q !,",((1+2~,.)G„.[ ]]=Z, PQ' „pnt V ~ V„'&='1
1 pm pntmj

disjoint disjoint

fl ]

2~,, G, , [a]

Now remove the disjointness requirement on the
V~. Then

00 n

Z=K.X. —' ....G.. .
npn V1 ~ V i1n

disjoint

where

E2 = exp 2+v(yv Q

The sum over V, ~ ~ ~ V„can now be extended to all
connected clusters, so

00 n

Z ~Z,Z, P—g, , G, ,[a].
ff~p + t B ~ ~ 0R

1
disjoint

exp 2+w&w 0

(5.14)

where

and recalling the bound (5.7) on Go[a], the
lemma is proven.

Given Lemma 5.2, it is now just a matter of
counting clusters to obtain the final. bound, which
is the main result of this paper.

Theorem II. I.et &A[C]) denote the expectation
value of the Wilson loop operator on the finite lat-
tice Ag. If g' is sufficiently small so that
e(y)r(y)(, g', , then

&&[C]) -exp[--(g'+5g') &~ o 'I)1

Comparing with (5.9), one sees 5g' =C, x(y) P L"[196 (ey)r(y)]
I=p

(5.15)

E[C]-1/X,E0 .
Noting that

[Here C, is a constant, e and y were defined by
(5.4) and (4.6), and x and r were introduced in
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Lemma 5.1.]
The condition on g' in Theorem II corresponds

numerically to

where

r(m) = (e " j2- W 6„,).
Dmin

(6.2)

g' & 0.168.

Proof of Theorem II.
Note that Lemmas 5.1 and 5.2 imply

F[C]~ exp[- 2~(y) I],
where

(5.16}

(6.3)

Bm=p

In terms of these Fourier coefficients, the ex-
pression (5.6) for G„[a]becomes

G [a]= Z e"""„~(m,).
(mb)=-~ b~R

b&R

I = gf;[L(R)]'[e(y)~(y)]""'.
8

For each cluster R there exists a plaquette p(R}
with the properties (i) p(R) lies within a distance
~L of the cluster R, and (ii) ( f~s]~ =f„. [lf this
plaquette is not unique, one can choose one
plaquette P(R) which has these properties. ] Then

I = Qfp, 'o'(P.),
p

To bound this expression, one must look at the
properties of the functions m, which are being
summed over.

Lemma 6.1. Let A be a connected cluster of L
bonds. It is always possible to choose a set of
integer-valued 1-chains {Mk[']), where
i =1, . . . , n, which vanish for b 4 R and which
have the following properties:

(a) For each i,
where am") =O. (6.4)

o.(P,) = g [L(R)]8[e~]~["] .
B

a(~) =up

C l.earl.y,

(b) The most general integer 1-chain m, which
vanishes for b g R and which satisfies sm =0
can be written as

a(PO} ~ Z n(L)L'[e7]~,
L=p

mb=~ k';Mb'(~) (6.5)

where n(L) is the maximal number of connected
clusters of length L which lie within a distance
L of a given plaquette p, . To bound e(L}, note

that the cluster must contain one bond within a
distance &L of Pp. This bond must therefore be
contained within a cubic volume of L sites, and
so the number of such bonds is less than 4L'.
Having specified the first bond, the number of
possible connected clusters can be shown by
standard techniques" to be bounded by 14'
Thus,

n(L) ~4L (14)'

Mb (g) =0]~.(i)

Thusy k~ =mb (q) .
(6.6)

Furthermore, it is possible to choose integer-
valued 2-chains {SI,' ), where i =1, . . . , n, which
have the following properties:

(d) We have

eS(" =M(" . (6.7)

where the {k,) are arbitrary integers.
(c) For each i there exists a special bond b, (i),

with the property that

Next, note that (e) There exists a constant C, such that

gP js,'( - C,I.'. (6.8)

Pp

where one has used the fact that ~j =0. Combin-
ing these bounds with (3.10}, (3.11), and (4.5),
the theorem is proven.

VI. THE BOUND ON G~ [a]

(6.1)

The bound on Gz[a] which was stated as Lemma
5.1 will be proven in this section. The first step
is to examine the Fourier expansion of p(Q):

p(4]) = g y (m)e'"

QO n

G [s] = Z k[k]ccs(P k;k,};
where

(6.9)

(f) Any plaquette for which S~ 0 0 for some i
lies within a distance ,'L of the cluster R—. (The
definition of distance was given in Lemma 5.1.)

The proof of Lemma 6.1 will be given in Ap-
pendix B. Using this lemma and the definition of
a„given by (3.15) and (3.13), Gz[a] can be re-
written as
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and

~
n

&[k] = f... I~K k; M'"
I

b&R k i=y

Cg =2m(S ',f),

(6.10)

(6.11)

(kg') - o'(r) [&(y)],
where

c(y)= g m' r(m)
m-"-& m=-&

(6.14)

where f~ is the electromagnetic field strength
defined by (5.10}. Using the fact that cos8» 1
—~6' for all 6, one has

and

T(r) =
0

Z' r(m).
S=

(6.15)

1
G„[a]» g p.[k] 1 ——P k;C; . (6.12)

Ck )=- 2

This expression can be bounded by the use of
the foll.owing lemma.

L,emmg 6'.Z. There exist functions o'(y) and 7(y)
such that

l [k]Ik,.k, I

(k~)=-

Z l [k]
k

—& ~(r)[T(r)] (6.13}

&[kjk~' ~ 1[k]
g~ ™

As y- ~, o(y) and r(y) each approach constants.
Proof. Consider first (k ) for some fixed value

of j, and let b, =b,(j) as defined in Lemma 6.1.
Then

The limit of y- can be extracted by using
(5.1a) to yield

W =1 —2e "'+O(e '"),
and then using (6.2) for r(m). One finds &r(y)- —,', and r(y)- 2. The bound is extended to
(Ik& k, I ) by a simple Schwarz inegualtiy.

Using the lemma above with (6.12), one has
n 2

C„[0]
' ' -1—— Qlc;I o(r)[r(r)]',

where 4; was defined by (6.11). Using Lemma
6.1(f) and the definition of f„given in Lemma
5.1, one has

I 4, I
& 2wf, g I s,"'I .

9

The proof of Lemma 5.1 is completed by using
Lemma 6.1(e). One has

m, ,' „., r(m, )
Cmb)=- b~R

r(m, ) .
{mb)~- beR

~(r) = »'C. 'o(y) .
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APPENDIX A: HOMOLOGY PROPERTIES

In this appendix, I will give an elementary proof of the homology properties of the lattices A„and Ag
which were stated in Sec. II. In addition, the proof of Lemma 4.2 will appear at the end of this appendix.

The first step is to give an explicit construction of the lattice A . The sites can be labeled by the
integer-valued D-vectors n —= (n„.. . , nD), with -~ &n~ &~ for each y, . Now introduce D unit vectors p. ,
with j„—= 5~„. Bonds can then be labeled by pairs (n; p, ), denoting the bond which contains n positively
and n+ p, negatively. The general r-cell can be labeled by (n; p„.. . , y,„), where p, , & p, & ~ ~ ~ & p.„. The

incidence function is given by
&+1

I[(n.; p„.. . , p,„),(n, ; v„.. . , v„,] = Q (-1)"" '
(5~ ~

—5„~,„- ) 5",' ~ ~ ~ 5"„'. ' 5"„'."~ ~ ~ 5","'. (A1)

[Oppositely oriented r-cells may be denoted by
-(n; p.„.. . , p.„), and the incidence function can
easily be generalized to allow these new argu-
ments. However, it is simpler to construct the

formalism so that each r-cell has a fixed standard
orientation corresponding to the incidence function
(A1).] It is straightforward to verify that the in-
cidence function obeys Eg. (2.1).
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The finite sublattice A~ is obtained by restrict-
ing the sites to the region

0& n„~L„ for each p. ,

where(L„j is a set of positive integers. The
criterion for r-cells becomes

0&n„L„-1 if ~= p
(ni Pi~ ~ ~ ~ ~ Pr) & Az ~ 0( (L0&n„~ L„otherwise.

f(n) -f(n —~) = o

(A11)

where

for all n and for all ~, and with the boundary
conditions this implies j(n) =0.

Now suppose that property (i) has been shown
for dimension D-1. To show that it holds for
dimension D, consider the construction

h„...„(n)=6(n )h„...„„(n),

An r-chain can then be denoted by

f(n; g„... , p„) =f, ...„—(n) . (A4)

h„...„„(n)= Q (-1)' '5„.

(n) =-V-if'" ~ -gi(n) (A5)

Using the conventions above, these tensors are
defined only for p,, & ~ ~ ~ &p.„. However, it is con-
venient to extend the definition to all r-tuples
(g„.. . , p, ) by defining the tensor to be anti-
symmetric.

The boundary and coboundary operators can then
be worked out explicitly. The only complication
is to correctly treat the boundaries of A„. For
this purpose it is useful. to extend the definition of
f„...„(n) to A" by requiring it to vanish outside

Az. Then if g„,=Sf„,

and

x Qf„, )„,r..~ (n+kD)
A=1

(A12)

1 ifn~& 0,
0 otherwise. (A 13)

5 is to be considered an (r+ 1)-chain on A",
while h has been constructed so that it vanishes
identically outside A„. An illustration of such a
construction is shown in Fig. 2. Using &f= 0,
one finds

where repeated indices are summed and

V g f(n)= f(n-X)-f(n). (A6)

-V- ~h, ,",„i(n) =f,,".,„(n)

Then

(A14)

If h„., =Vf„, then

(n) = g ( 1)" Vg fg ~ gg ~ ] ~ ~ g„(n)

(A7)

where the square brackets denote an omitted index
and

-V „h„,. . .„,„(n)=f„...„(n)+f„...„(n), (A15)

where

(A16)f~, ~ (n) = 5„,h„,...„~(n -8) .
Note that j~,...„(n) vanishes if no w 1 or if any
p, & D. Thus, f is——an r-chain in dimension
D —1. Furthermore,

V, f(n) =f(n+ V) -f(n) . (A8) sf=a(» -f) =o. (A17)

f„...„(n)= e„...„ f(n),

where j'(n) will vanish unless 0& n„~ L„-1for
each p, . Then Sf„=0 implies

(A9)

„[f(n)-f(n - A )]= 0 (A10)

for all n and for all p., ~ ~ ~ p.D, . Thus

It is worth noting that expression (A5) for the
boundary chain g will vanish identical. ly outside
A„, while expression (A7) for the eoboundary
chain k will take on spurious values ori cells one
unit outside A~.

I will first prove property (i) for the lattice A„:
for r P 0, if &f„=0, then there exists a g„„such
that f„=&g„., g„„wiii be constructed explicitly,
using induction on the dimension D of the lattice.

First consider the case D =r ~ 1. Then

Thus, by the induction hypothesis there exists
ag„, with f, =&g„„, and then

g&+y =kz+g —gr+ j (A18)

(A19)

obeys the desired rela'tion f= &g.

Using standard homology and cohomology
theory, "it is possible to use property (i) to
prove properties (ii) and (iii). However, for the
benefit of the reader who may not be familiar
with this theory, I will complete the proof in an
elementary way.

The next step is to prove property (ii) for the
lattice Az. For r 0 0, if Vf„=0, then there exists
a g„, such that f„=Vg„,. The proof will again
use induction on D. Consider the construction

LD +D 1
A

h„,...„„,(n) = Q f„...„~(n+kD).
4=0
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(o)

(b)
(b)

~it&

~~ii&

tttpp

Ilgwu~

(c)

FIG. 2. An illustration o f the homology construction.
Here D= 3 and x= 1, and the 3-axis is vertical. In (a),
darkened bonds with arrows indicate unit values of f~ (p),
with f„(g)= 0 elsewhere. Unit values of h~„(n) are. indi-
cated by shaded plaquettes in (b) or (c). In (d), darkened
bonds illustrate f= Bh-f.

An illustration of this construction is shown in

Fig. 3. Explicit calculation then gives

FIG. 3. An illustration of the cohomology construction.
Here D=3 and r=1. In (a), darkened bonds with arrows
indicate unit values of f„(n), with f~ (n)=0 elsewhere. Un-
it values of h(n) are indicated by darkened sites. In (b),
the 1-chain &h is indicated by darkened bonds and (c)
illustrates the 1-chain f=f-&h.

(i) applies, Vf=0 implies f=eg from someg.
Then

(A2S)

so the result is proven.
Finally, we turn to the proof of Lemma 4.2,

which for arbitrary D becomes
Vk=f-f,

where

(A20)

f, ..., (n) =f„,...~ (n„nc=LD). (A21)

[Here n~ denotes the (D —1)-vector consisting of
the first D —1 components of n. ] As in the pre-
vious case, it follows immediately that Vf =0.
Note that f~,".~„viasnhes if any p. & D, and that-—

it depends only on n~. Thus, f is an r-chain in
dimension D —l. If D =r, f vanishes and the
problem is solved. For D &x, the proof is
completed by induction.

Properties (i) and (ii) for the lattice Ag are
then established using the duality properties ex-
pressed by Eqs. (2.7) and (2.8).

To prove property (iii}, suppose Qf =0 for some
real-valued r-chain f„. The goal is to show that
f=0. Note that

On A", it is easily shown that

(A24)

o=&f, f&=ll sfll'+llvfll', (A22)

so Sf=0 and Vf=0. For the values of r for which

f„...„(n)=V &V„f ... (n) . (A25)

To compute Elf on Az, it is convenient to extend

f to A" as before. The only complication is that
Vf can then take on nonvanishing values outside
A&. Thus,

~ f=(V +88 }„Vfs= J f-g,
where g = h and

&=Vflz .

(A26)

(The notation above means that h equals Vf re-
stricted to those r-cells contained in the comple-
ment of A~.} By examining the incidence function
(Al} and the A„boundary conditions (AS), one
notes that if c„„cA~, then there is at most one
cell c„cAs withI(c„, c„,) OO. Thus, for c, c Az,
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g(c„)= g I(c„,c„„)g I(c„',c„„g(c„')
cr+le kB cr

=f(c,) Z [f(c„c„,)]'.

Then clearly (f,g) ~ 0, so

(f, CI„ f) ~ (f, „f) = g f( n)[2f(n) f(n-+A),

(A27)

—f(n —A.)],
where the indices p, , ~ ~ ~ p,, on f have been sup-
pressed. The Schwarz inequality implies

n+
n

and then (A24) follows immediately.

APPENDIX B: PROOF OF LEMMA 6.1

This appendix will contain the proof of Lemma
6.1. I will first prove parts (a)-(c).

Several definitions wil. l. be useful. A 1-cycle
is defined to be an integer-valued 1-chain m,
which satisfies ~m =0. A 1-cycle on R has the
additional property that m~ =0 if b f R. A closed
path is defiried as a sequence of oriented bonds
with the following properties:

(i) Each successive bond begins at the site
where the previous bond ended.

(ii) The final bond in the sequence ends at the
site where the first bond began.

Two sequences which differ only by a cyclic
permutation are considered equivalent, defining
the same closed path. Given any closed path, a
corresponding 1-cycle is defined by setting mb

equal to the number of times the bond b occurs in
the closed path, each counted with the appropriate
sign.

To prove parts (a)-(c), one proceeds by induc-
tion on I. Given any cluster R containing L
bonds, one can always find a bond b, such that
8 is the union of b, and a connected cluster R'
of L-1 bonds. Assume that n functions (Mi~'~)

have been chosen which satisfy properties (a)-(c)
for the cluster R'. There are now two cases to
consider. (i) Suppose b, is connected toR'
through only one of its sites. Then any 1-cycle
on R must have mb, =0, and thus the functions
(MI ~] will satisfy (a)-(c) also for the cluster
R." (ii) Suppose b, is connected to R' through
both of its sites. Since R' is connected, there
must be a sequence of bonds through R' which
joins the two end points of b, . Kith b„ this se-
quence forms a closed path. Let p.b denote the
corresponding 1-cycle, so p.b, =1. Then let

Mb = P, b
—~ P, b (~) Mb(n+y) M ( k)

and let b,(n+ 1) =b, . It is then easily verified
that this enlarged set of functions satisfies (a)-
(c) for the cluster R.

I will now go on to prove parts (d)-(f). Again
one proceeds by induction, assuming that the
Lemma has already been established for the
cluster R'. Case (i) will again be trivial, and
for case (ii) one must analyze the properties of
M =—M~"' )

b . b

Lemma Bl. There exists a closed path P for
which the corresponding 1--cycle is the function

defined by (81). The length of P is less
than or equal. to the number I of bonds in the
cluster.

Proof. This construction is very similar to
the famous Konigsberg bridge problem of Euler, "
so I will translate it into that language. Each site
is to be considered an island, and each bond for
which M, & 0 is to be considered a set of ) M, )

bridges. On each bridge is a one-way sign which
corresponds to the sign of Mb. Starting on the
bridge b„one chooses a closed path P which
crosses each bridge no more than once and only
in the legal direction. The condition ~M=0
guarantees that each island has the same number
of bridges leaving it as entering it, so such a
path can always be continued until it returns to b, .
To show that P crosses each bridge, let M
denote the 1-cycle which corresponds to P. Then
Mb= Mb-M& is a 1-cycle on R', and Mb ~&) =0
for i =1, ... ,n. By the induction hypothesis,
Mb=0. Finally, the bound on the length of P is
obtained by showing that no bond is crossed more
than once. This statement can be proven by con-
tradiction. If P crosses the bond b, twice, then
one can form the subsequence P which starts and
ends at b, and which does not include the bond

b, . P is a closed path, and there is a correspond-
ing 1-cycle M on R', with M b,~&)

= 0 for i = 1, . . .z.
This, however, contradicts the induction hy-
potheses.

Lemma B2. Given a closed path P of length L
with a corresponding 1-cycle Mb, there exists an
integer-valued 2-chain S~ with the following

properties:
(a) SS, =M, .
(b) Q~[S~~ ~ ,[(D-1)/D]L', where D is —the

dimension of the lattice. (D =4 in our case. )
(c) Any plaquette for which S~ 4 0 lies within

a distance —,'I of P.
Proof. This lemma is proven by induction on L.

Given that P returns to its starting point, one
knows that the number of bonds in the p direction
must equal the number in the -p. direction
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(p, = I, . . . , D). Call this number I~, so
D

For purposes of the proof, replace property (b)
by the property (b'):

It will be shown later that (b') implies (b).
Given P, choose a direction p, with l„t 0.

Now 1.et B and B& denote two oriented bonds in

P, one in the p, direction and one in the -p. di-
rection (in either order). I et k(B,B&) denote
the number of bonds which occur after B and
before B& in the cyclic sequence P. Of all pos-
sible pairs, choose B and Bz to minimize
k(B,Bz). Cyclically permuting, the sequence
P can be written

P =(Ba»B».» ~ .. »B»»»Bg»B»»»». ». . .»Bl 2)»

where the oriented bonds B„.. . , BI, are all per-
pendicular to the p. direction. Note that

P = (B„..., B„,B»», »». . . » B~ 2)»

characterized by

l -1 if v=p.
if v4 p. .

The path P is shown in Fig. 4(b). If M is the
corresponding 1-cycle, by the induction hypothesis
there is an S~ which satisfies (a), (b'), and (c}.
Now note that M' —= M -M corresponds to the
closed path

P' = (Ba» Bi» ~ ~ ~
& Ba» Bs» -Ba»» -Bi)»

where the minus sign denotes the opposite orien-
tation. One can then define the 2-chain

1 if B,. cp and -B,. cP for anyi =1, .. . , k
S~= -1 if -B;(=pand B;(=P for any i =1, . . . , k

0 otherwise.

The path P' and the surface S' are shown in
Fig. 4(c). One then has

M' = ~S'

A three-dimensional example of such a closed
path is shown in Fig. 4(a). Now let B„... , B„
denote the bonds which are obtained by translat-
ing B„..., B„by one unit in the direction of Bz.
Then note that one can form a closed path P
defined by

Then 1.et

Sp =Sp+S'

and property (a) is easily verified. To verify
(b'),

PiS, I-. g IS,1+k

Q 1„I», + (I„—I) Q I„+ Q I„
v &3.
vg p,
A, Pp

(b)

(c)

~ iV
~ V/

~ JJJJ

/„I), .
@&X

To verify (c}, note that any plaquette for which

S~ w 0 lies within a distance —,'(L —2} of P. It
therefore lies within a distance —,'L of P. Fur-
thermore, any plaquette for which S~ 4 0 lies
within a unit distance of P. Thus, (a), (b'),
and (c) are established.

To show that (b') implies (b), define

5„=I„-L/2D.

Then, after some simple algebra,

FIG. 4. An illustration of the construction used in the
proof of Lemma B2. (a) shows the closed path P, with
the bonds B& labeled by i. The closed path P is shown in
(b). The path P' and the 2-chain S' are shown in (c).

g I„I„=— L' - —,
' g 6,'.

p &p

It should be mentioned that the bounds (b) and
(b') are both strong bounds in the sense that one
can construct closed paths which saturate them. "



21 EXISTENCE PROOF OF A NONCONFINING PHASE IN. . . 2305

The bound (c), on the other hand, is probably
quite weak.

Lemmas 6.1(d) and 6.1(f) are now proven. To
complete the inductive proof of 6.1(e), let

Cg = ~8(D —I}/D =33 ~

Then

QQ lSpl & Cg[(L- I} 3+L ]

=C, [L,'-2(L, —1)' —(L-1)] & C,L'.

APPENDIX C: THE INFINITE-UOLUME LIMIT

In this appendix, I will show that the infinite-
volume limit of (A.[C]) exists. More prec'isely,
the following two theorems will be proven.

Theorem III. Let A;, i =1, 2, .. . , , denote an

infinite sequence of finite closed sublattices of
A", with Aq c A~„. Further, assume that the
sequence approaches infinite volume in the sense
that any finite lattice A is contained in A& for
some i The.n let (A[C]); denote the expectation
value of the Wilson ioop C on Aq. Then (A[C])(
is monotonically nondecreasing in i and approach-
es a finite limit as i-. This limit is the same
for all sequences Aq with the above properties.

Theorem IV. Let A&, i =1, 2, .. . , , denote an

infinite sequence of finite open sublattices of
A", with A; c A;„. Further, assume that each

A; (the complement of A;) has a trivial 1-coho-
mology (i.e., given any I-chain f, with finite sup-
port, Vf= 0 implies f= Vg for some g). Again
assume that the sequence approaches infinite
volume. Then (A[C])& is monotonically non-
increasing in i and approaches a finite limit as
i-~. This limit is the same for all sequences
A; with the above properties.

Before proving these theorems, several remarks
are in order. (i) One would expect that the limits
of Theorems III and IV would be equal, but this
conjecture has not been proven. (ii) The co-
homology condition of Theorem IV is satisfied,
for example, by the lattice Ag. Thus, the lower
bound of Theorem II is obeyed by the infinite-
volume limit in Theorem IV. (iii) For the case
of the Wilson action and closed boundary condi-
tions, the infinite-volume limit has been estab-
lished by Osterwalder and Seiler. '

The proof of Osterwalder and Seiler made use
of an inequality of the Griffiths-Kelley-Sherman'4
type which was proven by Ginibre. The proof
here is based on an extension of this inequality
to the Villain form, using the methods of Elitzur,
Pearson, and Shigemitsu. " The proof is similar
to that of Lemma 4.4.

Lemma Cf. Let (A[C;g~]) denote the expecta-
tion value of the Wilson-loop operator in a theory
which contains an arbitrary coupling constant

gp for each plaquette of the lattice A:

(A[C;g~j) = — Cd8, ] ~ exp —g ~ (V8- 2+i)3+i(j, 6)
0 {tp)= ~ p 2gp

(C1)

Then (A. [C;g,]) is positive and is a monotonically nonincreasing function of each g~'.
Proof. Begin by rewriting (C1) using the form (2.12b) of the Villain action:

2$

(A[C;g~j) = — ILd6$ exp —p gg~'n~'+i(n, &8) +i(j, 6) ~.
0 Cnp)=- p )

Using (n, V8) =(Sn, 6), one has

1~
(g((';gel) = —Z exp —-Zge'ee ).

Cnp)n- 2 p

&n=j
It follows immediately that (A[C;g~]) -0. Differentiating,

Z (; -", )-. --:Zg;(.;-;)).
Ep {n )=- {n')=-~

0 p" p p

8'j Bn'=0

[In the above e(luation and for the rest of this proof, the symbol Z maintains the value it had in (C2).]
Now set

(C2)

Qp = Sp+Rp ~ P p
= Sp —Sp . (CS)

The sums over np and np can then be replaced by sums over pp and pp. To account for the constraint that

pp and gp must be both even or both odd, one introduces a parity function mp as in the proof of Lemma 4.1.
Then
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'=- '.Z Z Z (~,p,.). p --.'Zg, (~,"~,")'i.
~gp 2Z {i) } {p, }- oo {y,~}- eo 0

p )0 p p p
8p, = j 8p8=j

W( fI.p ) = lip r( Pp) =rp

Rewriting,

'&A(C g8]) 1 g[y [ j],8
Bg 2 2Z2 po'

po {np}

where

v, X= P q&, «p —4+g;t i').
{Pp}= p

(C4)

(C5)

For any &)0, there exists a value of j such that

-A„--A, —c.(2) ) (2) (C7b)

(C7c)

Since the sequence A approaches infinite vol-
ume, one can then choose i sufficiently large so
that A&' a A,.', so

J ~

8 p=f
I'( 0 p) ~ &p

The monotonicity follows from (C4).
Proof of Theorem III. Note that if A; (:A;„ is

closed, then

(A[C;g8])8, ——(A[C;g8])

where

(C6a)

g» ifP(= A; C6b
otherwl se ~

The monotonicity of (A[C])i then follows from
Lemma (Cl). Since (A[C])i is bounded from
above by one, the limit i- ~ must exist. Finally,
let A&' and A~ denote two sequences with the
required properties. Let A( ) = (A[C])(8), ()'8=1, 2),
and let A„=lim~ ~& . For any value of i,

A(z) )A(z) (C7a)

Combining (C7a)-(C7c), one has

A„-A„(j.) (2) ) (C8)

(A[C;g8])i, =(A[C;.g8])8,

where

(C9a)

gp, ifP(= A;,
0, otherwise .

Equations (C9}, however, are somewhat less
obvious than their counterparts (C6). To verify
(C9), look at the right-hand side of (C9a):

(C9b)

For (C8) to hold for all e, A(„' -A. ' ) 0.
argument can then be reversed, showing that
A(x) A(2)

Proof of Theorem IV. The proof is of course
nearly identical to that of Theorem III. One must
show that

Pf'

(A[C g ]&
=- {dO]e'"" '

. (6[(VO),]] '. i
0 pgh, pG ll~

(Clo)

where the 5 function is defined on the argument
modulo 2m and 8& denotes the Villain action of
(2.12). Now let A; denote the complement of A;
in A" and let A& be the intersection of A; with
A;„. The 5-function constraint requires that
(VO)i~, =0. (The symbols f i8 denote the chain f
restricted to the sublattice A. ) A, is a closed
sublattice of A;„, so (VO}i 8,, =VO', where
8 ' = 8)~ . (When the coboundary operator acts
on a restricted i.-chain, it is defined to be the
coboundary operator on the restricted sublattice. )
Letting 8(') = Oi~. , (C10) can be rewritten

&"X ~)1&;., =
z f «e(")

0

" .... (~[(VO'") ])&[8'",j],
(C11)

where

21r ~ M ra

p[8 j] ]do(i)} i(i, 8 & e-Sv((v8)&,88)
0 pg A,.

(C12)

The next step is to use gauge invariance to show
that E[8',j ] is independent of O'. Then the nu-
merator and denominator Z of (Cl1) will each
factorize, proving Eqs. (C9). To examine
E[8',j ], it is convenient to extend 8, to be a
1-chain on A" by the prescription 8~ =0 for
b g A;., Since Ai„ is an open sublattice of
A", ~8will vanish outside A~„. Now let ~'
=— 8[~,. Since (VO)i&,. -—0, and A; is a closed
sublattice of A, it follows that VG'=0. But A;
has a trivial l-cohomology, so O', =Vg„ for some
0-chain Q, (s for site). Thus, one can define
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a change of variables

8» -—8» -V Q (C13)

for all b, where g, has been extended to A" by
the prescription Q, =0 for s c A, . Then 8» will
vanish on A;. (C13) is of course a gauge trans-

formation with VO' =VO and (j, p') =(j, &). Using
(C13) as a change of variables in (C12), one finds
E[8',j]= E[0,j], and (C9) follows.

The rest of the proof of Theorem IV is identical
to that of Theorem III, except that this time
(A. [C]); is monotonically nonincreasing and is
bounded from below by zero. .
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