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Gauge field configurations in curved space-times. V. Regularity constraints
and quantized actions

H. Boutaleb-Joutei* and A. Chakrabarti
Centre de Physique Théorique de I’Ecole Polytechnique, Plateau de Palaiseau, 91128 Palaiseau, Cedex, France

A. Comtet
Division de Physique Théorique, Institut de Physique Nucléaire, Université Paris XI, 91406 Orsay, Francet
(Received 13 December 1979)

We study the regularity conditions for certain classes of self-dual, finite-action solutions obtained
previously in de Sitter, Eguchi-Hanson, and multicenter space-times. These constraints are found to reduce
the continuous spectra of the actions obtained before to discrete ones.

I. INTRODUCTION

In the preceding papers of this series (the papers
quoted in Ref. 1, hereafter called I, II, III, and
IV, respectively) we have obtained various solu-
tions of the equations of motion for SU(2) gauge
fields in different metrics. In particular in II,

III, and IV self-dual solutions have been obtained
for SU(2) fields for de Sitter, Eguchi-Hanson, and
multicenter metrics, respectively (Euclidean sig-
nature being understood in all cases). The criteri-
on employed for constructing these solutions were
self-duality and finite action.

This permitted us to obtain certain classes of .
solutions with a continous spectrum for the action.
The action is defined as the volume integral of
(¢ TrF,, F*“Vg '), which can be converted to suit-
able surface integrals according to the case con-
sidered. Here we will study certain regularity
constraints on these solutions, which will be shown
to lead to discrete spectra for the respective ac-
tions, though not always to strictly integral ones.
But we would like to emphasize the following re-
markable feature arising in the curved spaces to
be considered. The class of self-dual, finite-
action solutions (even for genuinely non-Abelian
ones) is a larger one and includes the class which
satisfies supplementary regularity constraints.?
The types of regularity constraints to be consid-
ered depend on the special features of the metrics
in question, excluding such a phenomenon, by defi-
nition, for flat space.

In our opinion, the broader class of finite-action
solutions as a whole should be considered to be of
potential interest. In fact, even singular solutions
with divergent actions should not be discarded
a priori (flat-space meron solutions, for example).
We intend to study elsewhere adequately the con-
sequences of the existence of self-dual, finite-ac-
tion solutions violating the types of regularity
constraints to be discussed below.

This, however, need not prevent us from study-
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ing the regularity conditions in detail, which we
now proceed to do. The contents of the foregoing
remarks will be clearer after we discuss the
particular cases briefly but in a reasonably self-
contained fashion. For each case we recapitulate
the essential points. :

II. DE SITTER METRIC

We study now the self-dual solution of II. The
metric is (on the Euclidean section)

ds?=NdT®+NR?+ R*(d62 + sin®6d¢?) , (2.1)
where

N=(1-3AR?) with A>0.
The Euclidean time is periodic with a period

T =21V3/K
and

0<R<V3/K.

The limit R =V3/A can be made free of singulari-
ties by using Kruskal-type coordinates. (For de-
tails see II and the references quoted therein.)
The ansatz for the SU(2) gauge potential is

A =X,
RN 2.2)
A=(e¥-1)i[6, VO],
where
A __}E_ .g_ ] . -
e=5 Z_R a/2
and
d dR
X,=—=—X([R,) with R, = f—.
* dR* * * N
It can be shown (II) that one gets self-dual F, , for
a sinh(VA/3R
( ) (2.3)

X=In h[a (VA/3R, +A)]

Setting 8=0 and a>1 one gets finite-action solu-
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tions with the action S
S=8r*a-1) (@>1). (2.4)

We thus get a continuous spectrum for S/8r2.

Now to obtain the regularity constraints one must
examine more closely the situation as R~ vV3/A,
or since

VA/3R =tanh(VA/3R,),

the limit R~ «. The action density itself has no
singularity there (for @ >1) as can be checked
directly from

S=8n2yA/3 f”(d%*[w - l)X*]>dR* . (25)

o]

So there is no problem in that respect. To check
the regularity of the A,’s one must, however, do
so in a coordinate system which regulavizes the
metric at R=v3/K. So let us introduce the Krus-
kal-type coordinates (£,7) such that

\e-mR* =n2+§2552
and (2.6)

; 1/2 g
Vit =(M> coi® Wi =("_) )
e YT e'”, with tany 7
The line element is now

3 4 1-¢2
A (1+g§5?{d52+d"2+( 2

ds?=

>2(d62+ sinzedgoz)] .
2.7

In (2.2) A has only components A, and 4, (4,=0).
So in the new coordinates (apart from A, and A,
which remain untouched) one gets (since ¥=vA/37
with a period 2)

A=0, A,=V3/Kyx,$. 2.8)
As R, —~«, {-0and (for a>1)

x*=m3[1+§2 _ a<1+ gza)]

1-¢ 1- 22«
-VA/3[(1 - @) + 2¢%+ (higher powers of ¢)].
2.9
Thus
Ay==(a=-1)%, (2.10)

which is finite but not vanishing and hence
-n 3
A, =?+—7wa and Aﬂ=?:-n—2-Aw (2.11)
diverge as ¢ and n—0. To remove this divergence
we now introduce the gauge transformation
Ua=e~i(a-1)w5. (2.12)

The transformed potentials are (in this “a gauge”)

AL=0,

Ay=[V37By, + (@~ 1)]3,

A =1 X sinf(a - 1)1/)]-V'<T>
+{eXcos[(a - 1)¥] - 1}i[, Vo],

(2.13)

[For convenience of notation we continue to use K
or A’ to group only the two components A, and
A, with components (9,®, 8,3) of V3.]

Using (2.9), (2.10), and (2.13) one sees that

Ap=(£2+1P)® (2.14)

and hence from (2.11) that A}, A? no longer di-
verge. For U, to be single-valued (since we are
using a 2X2 matrix representation) as y— (¥ +2m),
(= 1) must be an even integer if we want to ex-
clude an overall change of sign of U. But such a
change of sign has no effect on' A/ and from (2.13)
they are found to be single-valued for all integer
values of (a =1). (As R— 0, to assure regular
Cartesian components, we have to go back to the
original gauge. In contrast, in Sec. III, we will
find a gauge regular everywhere.®) Thus, the
supplementary regularity constraints lead to a
discrete integer spectvum for S/87% in (2.4).

In the foregoing discussion we have used a
Kruskal-type coordinate transformation which is
useful also in other cases (Schwarzschild metric,
for example). But for the particular case of the
de Sitter space one can also use a transformation
giving an explicitly conformally flat metric. In
fact, defining

Cg_ =28 N 1-E-1
g—(1+n)2+z€rz’ n-(1+n)z+£z;

one gets

3 -
dszzK (dE? + dif + 77 (d6® + sin®*6d 0?)] .

L
1+E+7)
(2.15)

It can be shown that one is led to the same con-
clusion as before, namely to a discrete spectrum
for the regular fields.

Let us note finally that in formula (2.21) of I we
used the same transformation as (2.12) of this
paper. But in II we noted the periodicity constraint
only on the limiting form (as R~ v3/A). We also
examined the potentials in the Kruskal coordinates,
but separately. The proper regularity criterion is
obtained by combining the gauge transformation
with the coordinate transformation as done here.

III. EGUCHI-HANSON METRIC5:6

We consider now the self-dual solution of IIL
The procedure adopted will be very similar to
that of Sec. II. The metric is given by
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ds? =f2d1'2+-1:’:—(d(92 +sin?6de?)

27,2
+%h—(dz/)+ cosfdp)? (3.1)
where
fl=h=[1- (a/r)4]1/ 2
and

asy<o 0sfgsw, O0s¢s2m, 0sys<27.

The ansatz is

A,=0, A= G(r)Eg , Ag=F(7) (sinzp%l— cosd;%) s

(3.2)
Aw=G(’)’)COS9% - F(r)sin9<cosz/)—(;—1+ sinngz—"’) .
Self-dual solutions are obtained for
_asinhp
F(r)= sinh[a(p + B)
and (3.3
G(7)= atanhpcoth[a(p+ )],
where a and B8 are continuous parameters and
rz/a"’:céthp. (3.4)
The action turns out to be (III)
s=er" [ [— iG"‘+F2-GF2)]d 3.5
) L2 p( = P (3.5)
2
= (81!2)<a "1) for a>1,B=0 (3.6)
and
a2
S=(8n2)(-2-—> for @>1 and 0< 8<, (3.7

The continuous parameter a enters in the limit
p— (i.e., r -a) when F -0, G- a. Hence the
regularity of the Au’s should be checked as » - a.
Using the variable®

W =v?[1-(a/7)"],
iy (3.8)
ds®=[1+ (a/r)“]'zdu2+z (dy+ cosbde)?

,rz 2 P02 2
+T(d9 + sin?6d ¢?),

and the metric can be regularized at v=a if 0 <y

<27 (see the discussion in Ref. 5). As7r—~a
A,=A=0

and

Ay=G2~a2, 3.9)

Holding 6 and ¢ fixed as v -a («—0)
ds®= 2 (du’+ u*ayf) , (3.10)

hence the regularity should be checked using the
Cartesian components

t=ucosy, nm=usiny, (3.11)
when

A4,="04, and A =24 (3.12)

p=gr Ay and 4,=254, 12)

are seen to diverge as u —~0. To avoid this we in-
troduce, as before, a gauge transformation

Ua=eiaw03/2 ) (3'13)

which generalizes the operator (6) of III. The
transformed potentials are

Al=0, Aj=(G-a)Z,

A= -F{cos[(a -1y F+ sinf(a —1)‘“%} ’

(3.14)

Q

1

Y .
AL=G cose—z—a— F sme{cos[(a - l)z/)]7

—sin(a - 1)¢]%}.

As u -0,
G- (1l - 2u?/4a® + higher powers of «). (3.15)

Hence, Af and A} are regular in this “a gauge.”
As before, the single-valuedness of AJ and A/, as
- ¥+ 21 now imposes integer values of (a - 1).
Hence, from (3.6) and (3.7), we have the following
results:

(1) For B=0, S/8n* is an integer for odd o and
half-integer for even a. (In particular, the spin-
connection case, with =2, gives £.)

(2) For >0, S/87* is an integer for even a
and half-integer fov odd a. (We will add more re-
marks at the end, concerning the half-integral
values after having discussed the multicenter
case.)

To complete the picture we note that while the
action integrand in (3.5)

xe2@DP g5 e (- 0), (3.16)

considering separately the derivative of F as
u -0, one has

—c—a(a-1)e*?? ag 4 - 0. (3.17)

But this does not add any supplementary restric-
tion on «a.
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IV. MULTICENTER METRICS%5:7

Among the cases studied in IV, only one led to a
continuous spectrum [see Eq. (46) of IV]. Here we
will consider the regularity constraints for this
case in particular. Discrete but fractional values
(a term =1/% for n centers) appear more generally
whenever the integration on the large sphere (in
the sense described in IV) contributes to the ac-
tion. This feature will be reconsidered at the end.
The metric is given by

ds?=V(dT+ G- dX)?+ Vd%k- dX, (4.1)
where
V=Vo+i(zRM) ®R,=[E-%)"1/%)
i=1 i
and
Vxo=VV.

The period of 7 is 87M. The ansatz leading to a
continuous spectrum is (with unknown G and a
constant K)

- G
A= G'E,
. (4.2)
- L[> & -
A=w(G'§)— V(Gxg)+K%.
Self-dual solutions are obtained for
- VH
G- _(ﬁ), 4.3)
where
AH+K*H=0.

It can be shown (IV) that except at singular points
the action density is

-

VELTr(F,, F*)=V"E,

where

- G[ZIVCH) ] (4.4)

Let us briefly recapitulate that for K =0,

n
H=H0+Z%“L, (4.5)
FE Y]
where a finite action is obtained when the R,’s are
a subset of the R,’s giving the centers of V in (4.1)
(A <n). The action is defined by surrounding the
centers by small spheres and taking the limiting
form as they are contracted to zero. One obtains
(for details, see IV), converting S to surface inte-
grals over a large and the small spheres,

S=8172<ﬁ—(L:~L—Q>, (4.6)
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where € =0 for V,=0=H, and € =1 otherwise. (For
the trivial case #=0, €=1.) The term 7% comes
from the common centers of H and V and for
H,=0=V, there is a nonvanishing contribution from
the large sphere (=1/n). For the spin-connection
case (H=V and V,=0) one thus has

S=8172(n—

For K+#0 (and V,# 0) interesting complex solutions
are obtained by setting K =4¢ (¢ real) and (with
constants a; and b,)

i Zalsmh[i R;+b))] . (4.8)

%) @.7)

(We consider only real b;> 0. For b;#0 the center
j of H must coincide with one of the centers of V.)

One finally obtains for this case (IV) a finite
7veal action,

S=87? [ﬁ +;1l-(2x+ xz)]

-8 [ﬁ_%+%(x+1)2] , (4.9)

where
_(2nM¢

3 7 )
and # represents the number of centers of H with
b;#0. (¢ and hence X can be taken to be non-nega-
tive without loss of generality.) The terms in-
volving the factor 1/n again come from integration
on the large sphere. This is the case where we
obtain finite, continuous action, which will now be
studied more closely to obtain the regularity con-
straints on the parameter X. Here the constraint
arises in trying to eliminate the string singularity
due to . While a more general investigation is

possible, it is sufficient for our purpose to study
the simple case

sinh[Z(R +b)]

(4.10)

H= V7 (R=V%?) (4.11)
with ene center of V at the origin for 5+ 0.
A complex gauge transformation given by
U= e-!(Rw)(?-E/z) (4.12)
leads (for real b) to the Hermitian potentials (IV)
1/1 .G
A0=V(R-- ¢ coth[¢(R + b)])x 5
(4.13)

A= (—— ¢ coth[&(R+ b)]) g

.
V\R
1.8
—_— X =
(smh§R+b 1>Rx 2°
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For V given by (4.1) one can choose
zﬁ:zzvz(z coseﬁqo,.), (4.14)
i=1

where 6; and ¢, are the spherical angles mea-
sured with the origin at the ith center. Hence as
R -~

V-V,

and (4.15)
® - 2nM cosbVe,

where [where Vo= (x+ %)™ (~y, x, 0)] all the cen-

ters being supposed to be at a finite distance from

the chosen fixed origin. Keeping only the leading
terms, we see that as R -«

¢ (.0
AR

and (4.16)

Y ( 0% (2 .6 1. % [+
- —=(xcosbVe) |z ) r¥x3-
Thus for {>0 (i.e., x>0) a string singularity sur-
vives asymptotically even as a leading term.
We now consider the gauge transformations

U = e®ixez5/2) (4.17)
. . .
The transformed potentials are

Aomr=40,

ZQF[%G%— ¢ °°th[§(R+b)]>ix'v’(p] (’? g)

14 o) =14 L2 x
*\sinhlc® + )] COSXP Lo X
¢R

. =( 7
imﬂn(xgo)v (x -2-)

AsR -,

> (..C 1. ¢
Km-——x(cosG;l)Vw(x-§>_R.xx§. (4.19)

Thus the string now survives for 6=7 and 6=0,
respectively. This aspect of the situation is sim-
ilar to the well-known one arising in the study of
Dirac monopoles using two coordinate patches.? 8
The gauge transformation converting A, ,,to A, ,
is

U =iz 35/ . _ (4.20)

This is single-valued (as ¢ - ¢+ 27) for integer ¥,
and so are the potentials (4.18). Thus, it is suf-
ficient to consider the regularity of the leading
terms to obtain a discvete spectrum correspond-
ing to (4.9) or (4.10). Moreover, if instead of
(4.11) we use the more general solution (4.8), the

asymptotic behavior of V(InH) remains the same.
Hence, although in the general case we cannot ob-
tain a Hermitian gauge like (4.13), the @-depen-
dent term behaves asymptotically in the same
fashion. Hence,  the foregoing considerations re-
main essentially unchanged. For completeness we
note that using (4.11) as R - 0, the leading term in
the coefficient of (Vo)(% - 5/2) is (-4£2R? cosb) for
b=0 and simply cosf for b# 0. Hence, for b=0
the string is avoided as R - 0. For b#0 one has
indeed a limiting term =~cosf6V¢. But a treatment
of this term analogous to that for the R - limit
evidently involves no further restriction on &,

the term in question being independent of . Sim-
ilarly, one sees that the u,’s in (4.5) are not re-
stricted.

V. REMARKS

In Secs. III and IV we have thus obtained dis-
crete spectra for S/87% but not one of integers.
In fact, (4.9) is now restricted to

S/872 = integer+%, (5.1)

where 1,=0,1,2,...,(r=1). For V,=0=H, again
one has

S/8112=ﬁ--1-. (5.2)
n

Even the spin-connection (7i=#) case gives a non-
integral value. In Sec. III half-integer values ap-
peared, which is not surprising since the Eguchi-~
Hanson (EH) metric is equivalent to the n=2 case
(V,=0). But some differences should also be
noted. To start with, the ansatz used in Sec. III
belongs to a different class from that used in Sec.
IV (comparing, of course, in particular #=2)
although both classes include the spin-connection
case (see the discussion in IV). In the multicenter
formalism the nonintegral values arise only when
the large-sphere integral contributes. In the EH
coordinates a factor ¢ arises in both limits

(a?/2 as r -a and -3 as » -=»). This factor & is

a direct consequence of restricting the period of

P (of Sec. III to 27 (from the usual 47). The vari-
able 7 of Sec. IV has a period 47 (for the normal-
ization 2M =1) for any n. (Hence also forn=2, a
fact that appears particularly explicitly in the rel-
evant coordinate transformation linking in the two
formalisms.®’!°) This is why the integrals over the
small spheres (for details see IV) contribute in-
tegers to (5.1) and (5.2). The asymptotic proper-
ties of V that formally lead to the term with a fact-
or 1/n are the ones that imply the asymptotic
properties of the metric (identification of n points
under a discrete group).
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For flat-space solutions different types of
compactifications of the manifold have been con-
sidered" which, avoiding the usual asymptotic
mapping S; -S,, can give a topological significance
to half-integer values associated to Gribov vac-
uums. Half-integral meron charges are not un-
related to Gribov vacuums. Nonorientable mani-
folds have been proposed to provide a geometric
interpretation of merons. When one starts with a
flat-space solution such postulates have to be in-
troduced as additional ingredients. Multicenter
metrics introduce from the outset asymptotic fea-
tures leading to fractional values of S/87%

Let us note finally some further special features
of our solutions. One can start with the de Sitter
case, but our point is best illustrated by the
Eguchi-Hanson one where our solution includes
the flat-space one-instanton solution as a limit.

In flat-space many-instanton solutions the centers
can be chosen arbitrarily and, in fact, to obtain
higher indices one has to increase the numbers of
centers and hence to introduce new parameters.
The translational symmetry of the flat Euclidean
space being absent, such a simple prescription is
not possible for the EH metric. But we have been
able to construct solutions for all values of the
action, in a “form-invariant” fashion so to say,
the value of a (for the two cases 8=0 and 8>0)

fixes the action and (apart from the unrestricted
positive B) there are no more free parameters.
It is remarkable that such a simple, single solu-
tion can be obtained to cover all possible values
of the action without adding terms. On the other
hand, it does not seem to be directly generaliz-
able to include more parameters. In the multi-
center case, for a given action, there is room
for more parameters. The permissible number
of singular centers of H [those appearing in (4.5)
or those in (4.8) with b,# 0] is limited by the
number of centers of V (7 <n), with which they
must coincide if the action is to remain finite.
With each, one can associate a parameter ;.
Apart from this fact, a very special situation
arises for the complex fields corresponding to
(4.8). The number of regular centers (b;=0) is
arbitrary. They do not contribute to the action.
In this respect the situation remains analogous to
that for flat-space complex monopoles discussed
by Manton'? where such centers can be added
without altering the monopole number.3
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