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Quantum field theory at finite temperature in a rotating system
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The finite-temperature Green s-function formalism is extended to the case of relativistic rotating systems.
Free scalar, spinor, and electromagnetic Greens functions for a rotating system are obtained. As an

application of the formalism, the neutrino parity-violating current is calculated. The result agrees with

previous calculations where different methods have been used.

I. INTRODUCTION

Methods of quantum field theory have proved
to be very fruitful in statistical physics problems.
Originally introduced in the framework of non-
relativistic many-body theory, ~ they were later
extended to relativistic systems and to gauge
theories. ' However, these methods as they stand
are not applicable to rotating equilibrium sys-
tems. The purpose of the present paper is to fill
this gap and to extend the finite-temperature
Green's-function formalism to relativistic ro-
tating systems. A particular application that I
have in mind is to the calculation of macroscopic
parity-violating currents. It has been recently
shown3 that intrinsic parity nonconservation for
neutrinos gives rise to equilibrium neutrino and

antineutrino currents in a rotating thermal ra-
diation. The direction of these currents is para-
llel to the angular velocity vector. It has been
argued that currents of other particles can also
occur as a result of parity-violating weak inter-
actions. The main purpose of this paper is to
develop an adequate formalism for studying such
effects.

The equilibrium current of a spinor field de-
scribed by a field operator 4'(x, f) is given by

(J'"(x)) = Tr {pJ"(x, f) ] .
Here,

J"=-'[4 y"4']

(J'(x)) = —Tr{y "S(x,v.;x, v+&)), (6)

Here, T, is the usual ordering operator,

T, 1' (X„v,) &2(x„v )=1112(x„v,) &2(x„v,) for v, & v,

T, 111 (x„v,) &2(x„v2)
= —

g2 (x „v2) 111 (x „v,) for v, & v, ,

pectively, the chemical potential and the number
of particles of the ith particle species. The ex-
pression (3) for the statistical operator in a ro-
tating system has been derived by I andau and
Lifshitz. ' However, the argument leading to Eq.
(3) is scattered over the book and is partly based
on a nonrelativistic expression for the energy.
For these reasons, I fee1. that a brief derivation
is in order here. It is given in Appendix A. In
the following, I assume for simplicity that the
chemical potentials of all particles are equal to
zero.

In equilibrium the right-hand side of Eg. (1) is
independent of time and we can set t =0. Intro-
ducing the Matsubara field operator

( (x, v) = exp [v(H —M ~ Q)] 11 (x, 0) exp[- v(H —M. Q) ]

(4)

and the finite-temperature Green's function

S ~(x„vx„v )=2Tr{pT,p (x„v,)q2(x„v2)), (5)

we can rewrite Eq. (1) as

is the current density operator,

p =Cexp —P H —M ~ Q —giJ, N,
ha

is the statistical operator,

~legit

C ' =Tr exp —P H —M ~ Q — p, N, ~$)

(3)

the trace in Eci. (6) is taken with respect to spi-
nor indices, and the limit & -0 is taken symmetri-
cally for &-+0 and & ——0.

The diagram technique for the calculation of the
Green's function 8 can be derived in the usual
way. " Using the standard argument, Ec[. (5) can
be transformed to

is the normalization factor, P =T ', T is the tem-
perature, 0 is the angular velocity, II and M are
the Hamiltonian and the angular momentum of the
system, respectively, and p, and ¹ are, res-

S B(X11V11X21 V2)

= (T, 0 (x, v ) 1' (X., v, ) IJ(P) &. &U(P) &,
'

=&T,t.(x„v,) 4,(x„v.) fI(P)&., „„, (I)
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( 1))) ['() a()

U(p) =1 +Q — —

Jl
~ ~ ~ dr1 ~ ~ ~ dr„T,

n 1 +t p "p

x (H1 (r, ) ~ ~ ~ H[(v'„) ].
p (8)

( ) -=Trf[t2, ~ (8)

p, = exp[—P(H, —M, ~ 0}]/ Tr exp[- p(H, -M, 0) ],

the subscript "conn" means the contribution of
connected diagrams only, H, and M, are the free-
field Hamiltonian and angular momentum, res-
pectively,

H1 =H H, —-0 ~ (M —M )

H (&) -e~(Hp@p'5&H e-T(Hp Qp 5)
j'L I j

It should be noted that in some important cases
(e.g. , spinor electrodynamics) the angular mo-
mentum operator M coincides with its free-field
form M, and thus H, =H-H, .

The rules of diagram technique in coordinate
space are the same as those for a nonrotating
system, the only difference being that in the free-
particle Green's functions

8 1 8 1 8 Q

, +t1' 4(x, t) =0,
Bt Br r Br r 9$ Bz2

(14)

where (r, (t), z) are the cylindrical coordinates, and
1 use the system of units in which 0 =e =k =1 (k is
the Boltzmann constant). The scalar wave func-
tions with energy co, z component of momentum

p, and z component of angular momentum m are
given by

e

g 2 (x) e '"'= 2 "'m ' J (a r) exp(ipz +imp —i(ot),

(15)

where

(~2 p2 i12) 1/2 —
(p

2 p2) 1P2

The functions („2„(x)are normalized according
to

=(2(u) '5„„5(p-p') 5((u —co'), (17)

where d2x =r dr d(P dz.
The field operator 4'(x, t) can be written as

(x,X)=g(f dte f dP[ P„a, (»x„)e"
m Pp

S, ( „„„,) =(T, )t) ( „,) p ( „,) ), ,

etc. , the averaging is taken using the statistical
operator p, given by E[l. (10), rather than ee»/
Tr gwHp

In this paper, I shall calculate the Green's func-
tions for free scalar, spinor, and electromag-
netic fields in coordinate and momentum repre-
sentations. A.s an application of the formalism,
the neutrino parity-violating current will be cal-
culated. The result agrees with Ref. 3 where
the neutrino current has been found using dif-
ferent methods. The equilibrium currents of in-
teracting fields will be discussed elsewhere.

II. FINITE-TEMPERATURE GREEN'S FUNCTIONS
IN A ROTATING SYSTEM

A. Scalar field

The field operator of a scalar field of mass p,

satisfies the Klein-Gordon equation

[a„2„,a~.2.„.]=5„„.5(p -p') 5(10 —(1)') .
Let us choose our s axis in the direction of Q.
Then using the relations

g&(Hp @'&)g e"&(Hp M'~) =ga~)me %pm

87(Hp-Q 5&gf g-~(Hp-M 5) -gt eT(Q-mQ)
a~am~ 40/m

we can write the Matsubara operator (4) as

P (x, e) = Pf da f dP [a,e
e' » --»P , (x)

m ~ j))p

(19)

(20)

+a& eV((d- mo)[t, e)e (X) ]cpm

(21)
The finite-temperature Green's function is given
by

(18)

where at and a„„are creation and annihilation

operator s,

D(x„r„x„r2)=(T, g (x„r,) (t) (x„r,) ),

d(o
'

dp I Ie "" "' |()„, (x,) q„*,„(x,)+ ~e"" ""'y*„, (x,)[t„, (x ) .

(22)
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Here,
—(es(&o-mo ~ 1)-& (23)

A =(4n'R) ' sinP, R,
where

is the Bose-Einstein distribution for a rotating
system, ' 7 =v, —v'„ the upper and lower lines in
parentheses correspond to r, &v2 and 7; & T„re-
spectively, and I have used the fact that

(a„' „a„., „,), =n„„6„„.6(P -P')6((o —(o'),

(a„«„a',«. ,), = (n„+1)6„„,6(p —p' )6 (&o —~ ' ),

It is easily seen from Eq. (22) that' for -p& v &0,

D(&+0) =D(&) (24)

and thus the function D in the interval —P& 7.&P ca.n
be expanded in a Fourier series as

D(x„r„.x„v,) =g ' g e '"'D(x„x„v„), (25)

R
I
x x

I
(r +x,' —2r, x, cos(&f&, —(f),)

+(e, -e.)'l'".
Another representation for the Green's func-

tion D can be obtained if we note that Eq. (28) can
be rewritten in the form

D(x„x„v„)=g (k. )
' —iQ «D, (x„x„v„)

8 v„9&]&,

8 8=exp —iO, Do x] x2 pev„e,
(31)

Here, D, is the scalar Green's function for a non-
rotating system which is given by the well-known

expression'

where v„=2minP '. The function D(x„x„v„)can
be found from

D,(x„x„v„)= —(2m) 'J d'pe"'"' *"

8

D(x„x„v„)= —,
' e'"'D(x„r; x„0)dr

«g

8
e"~' D(x „v;x „0)dr . (26)

Noticing tha.t

Qs/sy, =Q (x, x v, ),
we obtain finally

x(v„P —P ) -(32)

(33)

Substituting Eq. (22) in Eq. (26) and integrating
over v, we obtain

D(x~~x~~ „)

dp i«~pm & Ql pm 2

p —co +m(3
ft

4*.,.(x,) 4., (x.)
~ (27)v„+co —mQ

In most physical situations, Q«T and one can
be interested in calculating the first few terms in
the expansions of physical quantities in powers
of PQ =(O'Q/k T). Expanding (v„—u+mQ) ' and

(v„+v —mQ) ' in powers of Q, we obtain

f" dw g(iQ 8),

D(x„x„v„)=exp —iQ ~ (x, x V, )
8 v~

&&D,(x„x„v„).

B. Spinor field

The spinor field equation in cylindrical co-
ordinates is'

where'"

(35)

d(d ~ zQ 8

vn+~ «=u vn+~ sfx

(28)

r, =—2 O'3

2
0

0
(37)

where

dP „, x, *„x,.
-po m

(29)

The quantity A can be calculated directly from Eq.
(29) using the cylindrical wave functions (17). This
is done in Appendix B. The result is

(I+y')e'(x, i) =O. (38)

The primes in Eqs. (35), (36), and (38) indicate
that the corresponding quantities are taken in
cylindrical coordinates. Unprimed quantities
correspond to Cartesian coordinates.

For neutrinos p, =0, and Eq. (35) is supplemented
by the condition"
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The spinor field operator can be written as
OO

4'(x, t) = dv ~ dP[a„~ „)I)~„„(x)e'"'
m h & -pp

where h stands for helicity, a„h and b„h satisfy
the usual anticommutation relations, g„~ „(x) and

„(x) are the particle and antiparticle wave
functions, respectively,

1 0 0 0

0 cos/ sing 0

0 —sing cosP 0

,0 0 1

The corresponding spinor transformation is
O' =U+

where the transformation matrix a is given by

(47)

(48)

Xtd pmh y + epoch (40)

S'(x„v „.x„v,) =P '+exp(-&, v) S( x„x„f,),
l

The specific form of g„~„~ is unimportant for the
following discussion. We shall only use the fact
that the P dependence of t(I„„„is given by the
factor exp(imP).

Following the lines of the previous subsection,
we obtain

where

U(p) = exp( 2igZ, )

and

0 g

For the y matrices,

y' =BUyU =y.

(49)

(50)

(51)

where g =in(2l +1))6 ',
(41)

ln cylindrical coordinates, the local coordinate
axes at point {r,g, z) are rotated by angle P with
respect to Cartesian ones, and thus the cylindri-
cal and Cartesian spinor Green's functions are
related by

S (xo„xf,) =U(P, )S()(x„x„g,)U (p,). (52)

&. =g ~t dP 0:...(,) 0 „',„,(,),
tÃs h -po

p

dPX„~ „{x,)x„~„„(x,).
e~ h

Equation (42) can be rewritten in the form

(42)

(43)

S,(x„x„t,) = — d'p e'~'&xi-*2) ' -'
(2v)~ . g)2 -p3 —p, 2

(45)

e 8S'(x„x„l, ) =exp~ —iQ St( xx„l, ),
(44)

where S,' is the free spinor Green's function for a
nonrotating system in cylindrical coordinates,
which can be obtained from the Cartesian Green's
function

and we obtain

S(x„x,, g, ) =exp —iQ (x, && V, ) +—,'Q Z

xS,(x„x„l', ) . (54)

Replacing s/8@, by —9/sp, in Eq. (44), we find
another representation for the spinor Green's
function:

From Eqs. (44) and (52) we find that the spinor
Green function for a rotating system in Cartesian
coordinates is given by

S(x„x2)$, ) =U (P, )

xexp —iQ U x, x8 8&

Bfq s ~j
(53)

Using the we11-known theorem that if the com-
mutator of operators A and B commutes with both
A and B, then

eAeB —eBeAelA. &&

by means of a coordinate transformation.
If the local coordinate system at some point

is rotated by angle Q around the z axis, then all
the vector quantities at that point transform ac-
cording to

S(x„x„l, ) =exp iQ ~ (x, x &,)

"S,(x„x„t,)exp(H Z (55)

V' =+V, (46} Here the arrow over s/sg, indicates that this dif-
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ferential operator a.cts to the left. In the case of
neutrinos, one has to set p, =0 and multiply Eqs.
(54) and (55) by —2'(1+y') on the right.

C. Electromagnetic field

As we know, the quantization of the electromag-
netic field is complicated by the presence of un-
physical states in some gauges. It is not obvious
that we can do statistical mechanics in any gauge,
since that would result in nonzero equilibrium
numbers of particles in unphysica. l states. For
this reason, in deriving the expression for the
photon Green's function, I shall assume that the
Coulomb gauge is used in which only physical
states are present. Then it will be shown (Appen-
dix C) that the theory is invariant with respect to
gauge transformations.

Quite similarly to the cases of scalar and spinor
fields, it can be shown that

(61)

where

(1)0 (2)0 »Vnr +(1)» S~SX1» r +(2)» SISX2»

and A(1)0»(x(rx2r ) a d il(2)0»(xlr 2r

bitrary functions of x„x„and v„. In other
words, the theory is gauge invariant and one can
use an arbitrary gauge for D,„v. In particular,
one can choose the Feynman gauge in which

Do»v(X»r X2r Vn) =-g»n 0( X1 rX2r V„)

where D,(x„x„v„)is given by Eq. (32) and g„„
=diag(1, —1, -1, -1).

So far we assumed that in Eqs. (56) and (60),
D, is taken in the Coulomb gauge. It is shown in
Appendix C that the physical results of the theory
do not change if D,„v is replaced by

Dovv -Doiiv+V(y)v+(x)ov+V(2)v A(2)oe ~

D». =&»1t41)D1.o"..(4 2) (57)

where o.»„((P) is given by Eq. (47). The matrix
a((P) can be represented as"

A,

(2((t)) =exP(MQ), I (58)

where

Svn S

(56)
where v„=2((inP ', D„'„ is the photon Green's func-
tion in cylindrical coordinates, and D,'„v is the
corresponding function for a nonrotating system.
The cylindrical and Cartesian photon Green's
functions are related by

D,(x„x„v„)=D,(x, —x, v„). (63)

Rotating systems are not translationally invariant
and, as a result, D(x„x„v„)depends on both x,
and x, . The scalar Green's function in momentum
space D(p„p„v„) can be defined a.s

D(p1 p v)

~ ~ ay

=(2(() ' d'x, d'x, e "1 *18"2*2D(X„X„V„).

III. GREEN'S FUNCTIONS IN MOMENTUM SPACE

For a nonrotating system, the Green's functions
depend only on the difference x, —x,. For example
[see Eq. (32)],

0 0 0 0

0 0 1 0

0 —1 0 0
(59) The inverse transformation is

D(x„x„v„)

(64)

0 0 0 0

or M»„=&0„„2. From Eqs. (56)-(59) we get =(2(() 2JI d'p, jt d'p, e»21'"(e "2'"2D(p„p„v„).
~I'

D(x„x„v„)=exp —iO(x, x &,)
~Vn

DO(x)r 2r n).

A g—i'
~Vn

(60)
Substituting Eqs. (34) and (32) in Eq. (64), we
obtain

D(p„p„v„)=(2(() ' d'x, d'x, d'pexp(-ip, x, +ip, .x, +ip x, —ip. x,) exp 0 (x, p) D,(p, v„)
4 BV„

=(2)T) ' d'x, exp[ix, (p, —p, ))exp x, (p, 0) D,(p„v„)

=(2(() 'exp i(r', . (p, 0) ' d'x, exp[ix, (p, —p, )]D,(p„v„)

=exp iQ. (~» xp, ) 6(p, -p, )D.(p„v„).
Q Vn"

(66)
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Here, ~» =8/8 p, and

noticing that

(67)
S(p„p„L,) =exp i—Q (V»xp, )

'
8

x 5 ( p, —p, )S,(p„f,) exp —,
' Q ~ Z

and

(V» "V„)6(p, —p.) =o

Here,

p D, (p, v„) =-v„V D,(p, v„),

we can write Eq. (66) as

D(p„p„v„)=exp[- iv„Q ~ (V, && V,)]

Do,(p v, ) =g~, (v,'-p') ',
and I use the Feynman gauge for D,„„.

IV. NEUTRINO PARITY-VIOLATING CURRENT

(73)

"6(p, —p.)D.( p., v.) (68)

"6(p, —p.)S.(p„k,), (69)

D( p„p„v„)=exp i Q ~ (V, && p,) —iQ Mev„ev„
"5(p|-p.)D.(p., v.).

Another representation for the spinor Green's
function can be found from Eq. (55):

Quite similarly, we obtain the momentum-space
representations for the spinor and electromagnetic
Green's functions:

)ee I%I

S(p„p„g,) =exp i Q ~ (V, x p, ) + —,
'

Q ~ Zpl 2

The formalism developed in the previous sec-
tions can now be applied to calculate the equili-
brium neutrino current in a rotating thermal ra-
diation. The physical mechanism of this effect
is easily understood if we recall that neutrinos
have negative helicity, i.e. , their spin is always
antiparallel to the direction of their motion. In a
rotating system neutrinos are partially polarized
in the direction of the angular velocity Q, and thus
their average velocity is antiparallel to A. Anti-
neutrinos have positive helicity and their current
is parallel to the angular velocity vector.

According to Eq. (6),

(J(x))=- Trays(")(x, o; x, e)},„,,
where S(")(x„v„x„q;)is the neutrino Green's
function. For simplicity, I shall calculate the cur-
rent on the rotation axis (x =0). Since

S " ((x)„r„x„r,) =P .'(2m) '+exp[ —f, (7; —v;)]~ d'p, Jtd'p, exp(ip, ~ x, —ip~ x)S '((p„p„i;,),
l

(75)

we can rewrite Eq. (74) as

(J(0))=-p'(pe)'P e" fd'p Jd'p Tr(yp'"'(p„p„p }}, (76)

Substituting S(p„p„f,) from Eq. (70), it is easily seen that terms with (V, p, ) do not contribute to
( J(0)) and thus

(J(0))=—P '(2m) '+exp(eg, )Tr yexpj 2Q ~ P
~

d'pS,'"'(p, g, )
l 8 )]

(77)

where

S,'"'(p, g, ) =--,'(y'g -y p)(|: '-p')-'(1+y'). (78)

Expanding exp( ~ Q ~ Z 8/8$, ) in powers of .Q and keeping only the linear term, we obtain, after calculating
the trace,
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( J(0) ) = f Q(2~) ' d(o [f„((u) f,(—ro)1-
C

r
d'P(~'+P')(~' P') -' (80)

where

Using a standard device" the sum in Eq. (79) can
be transformed into an integral

consider an equilibrium system divided into
several weakly interacting subsystems. The in-
teraction between subsystems is important in
establishing thermal equilibrium but can be ne-
glected- otherwise. In this case, the subsystems
are statistically independent and thus the statis-
tical operator for two subsystems is equal to the
product of statistical operators for the individual
subsystem~ ~12 ~1~2

f.(~) =(e"+1) '

and the contour C runs around the imaginary axis
in the counterclockwise direction. The integral
over ~ is easily evaluated and we get

( J(0) ) = Q(2v) 'J"d 'pf,'(p)

1&» =lnp, +lop

From the equation for the statistical operator

sp/st =i[H, p],
it fol1.ows that in equilibrium

[H, p] =o.

(Al)

(A2)

(A3)

= —Qv '
y, (P)P dP = ,', Q T'—. —

0
(82)

This is in agreement with Ref. 3 where the neu-
trino current has been calculated using different
methods.

Using Eq. (77) one can calculate contributions
to ( J(0)) proportional to the higher powers of Q.
It is shown in Appendix D that the resulting series
can be summed to give a simple closed expression.
The result is

(J(O) ) = —Q(T'/12+Q2/48''), (83)
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APPENDIX A

In this appendix, I shall derive Eq. (3) for the
statistical operator in a rotating system. Let us

again in agreement with Ref. 3.
A word of caution shouM be said concerning the

interpretation of Eq. (83). As was mentioned
earlier, a rotating system cannot be infinite, its
maximum size in the plane of rotation being
A =0 '. The energy spectrum of particles in a
finite system is different from that in infinite
space. A considerable deviation occurs for the
low-lying energy states with energies & «R '.
From Eq. (82) we see that the contribution of this
part of the spectrum to (J(0)) is of order QR '.
If T»R ', this contribution is much smaller than
the first term in Eq. (83), but it is always greater
than or comparab1e to the second term.

The conclusion is that for T»R ', Eq. (82) gives
a good approximation while for T «R ' the boun-
dary effects are important and Eq. (83) is inac-
curate. In particular, one cannot argue from Eq.
(83) that""(J(0))00 at T =0.

Equations (Al) and (A3) imply that lnp is an ad-
ditive integral of motion. The only additive in-
tegrals of motion for a mechanical system are the
energy H, momentum P, and angular momentum
M. To these we have to add the particle numbers
N, (or the . conserved charges Q, if interactions
with transformations between different particles
are allowed). Therefore, lnp has to be equal to
a linear combination of these quantities:

lnp = n + p H +y ~ M + 5 P + Q A(N(, .

where the constants n, P, y, 5, and A, have the
same values for all subsystems.

The entropy of a subsystem is given by

(A4)

S =-&lnp) =-»(plnp)
and thus

(A5)

dS = —PdE —y dM —5 dP -QX, dN, , .

where E =(H) and M, P, and N, stand for the
statistical averages of the corresponding opera-
tors. Comparing this equation with

(A6)

dE=TdS +V' dP+Q' dM+ Q p. ;dN;, (A7)

APPENDIX B

In this appendix we shall calculate
Po

A = ~ dPP $„~„(x,)$~~„(x,).
S

where 7 is the center-of-mass velocity, 0 is the
angular velocity, and p, are the chemical po-
tentials, we find

P = —T, y =Q/T, 6 =V/T, A., =p,./T . (A8)

In the rest frame of the system V =0 and we come
to Eq. (3). The normalization constant C is de-
termined from the condition Trp =1.
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Substituting the wave functions from Eq. (17), we
obtain

f &0

A =(8H2) 'Jl dp e'2' g J (&)fr, )J„(&)fr2)ef 2, (B2)
m=

where z =z, —z„p =p, —p2. The sum in Eq. (B2)
equals" J,( &2p), where p =(2;2 +2'22 —22,22 cos&t&)'".
Now Eq. (B2) can be written as

PO

A =(4&(') 'J dp J,(&)fp) cos(pz).

Defining a new variable by p/p, = cos&I), we obtain

multiplied on both sides by j"' and jvI and inte-
grated over d3x, dv, d x,dv; and that in all 7 and

&t& integrations the integrands are periodic func-
tions of r and &t&, we conclude that the results of
all calculations will not change if we replace D„'„
by

D' „(xl 'rl'X 12) =D' „(xl Tl x 2 )
I I
&1)tt A(1)tt( lt lt 2) 2)

(2)IP (2)tt( lt lt 2) 2)

(C8)

A =pa(4H')
0

de sin&J, (p, p sinS) cos(p,z cos&).

(B4)

where A&»„and AI2&„are arbitrary (periodic in &t&

and 7) functions. A similar transformation can be
written for D'„„(x„x„v„):

The integral over 8 equals"

(H/2p. R)'"J„,(p.R),
where R = ( p2 +z2) '". Thus,

A. =(4)&2R) ' sinP, R .

(B5)

(B6) where now

(1)))A(1))t(x1) X 2 ) vtt)

(2)V (2)tt ( lt 2 t tt) t (C9)

APPENDIX C
V&1&0 2vn Qs/sp» V&» =V«&

(2)0 / 42) (2) (2) '
(C10)

In this appendix we shall discuss the gauge
transformations of the electromagnetic Green's
function. The gauge invariance is closely related
to the charge conservation law which, in cylin-
drical coordinates, can be written as

8 J '/st+V' ~ J' =0. (c1)

Here, as before, primed quantities correspond
to cylindrical coordinates and V' =(8/82, 2 '8/8&p,

8/sz). Since 8 J"/st =i[H, J"], we can rewrite
(Cl) as

Noticing that

we see that the corresponding transformation for

OQV OQV (1)Q "L(l)OV (2)V~~(2)OQ &
(C12)

with

exp iQ i v„+0 = iv„exp iQ

(C 11)

i[H, J"]+V' ~ J' =0. (c2) V(1)o ZVff~ V (2)( Z V~ (c18)

The Matsubara current operator is
t

j»(x 2) —eT(H-H2o &J')t t(x 0)e T(H Af20 )

Differentiating it with respect to 7. and using
[H, M2] =0, we find

ej "/87 = [H,j ")—Q[M„j"]

(Cs) 8 8
A,'„(x„x„v„)=exp iQ „'(x„x„v„).sv„s,

(C14)

In Cartesian coordinates,

= [H,j"]—2Qsj "/sy. (C4) OQV OPV (1)Q (l)OV (2)V (2)OP &
(C15)

The continuity equation for j"' can now be obtained
from Eqs. (C2) —(C4):

where

(1)&& (2)&& ttt (1)f 8/8 li t (2)f

or

(is/82' —Qs/8&t&) j2'+ V' ~ j'=0 (G 5)
APPENDIX D

where

V,' =is/82- —Qs/sy, V =V'.

(C6)

(c f)

Noticing that in all diagrams D„„(„x„2x 2)2is

In this appendix I shall find an exact expression
for the neutrino parity-violating current on the
rotation axis. It is clear from. the symmetry of
the problem that ( J(0)) is parallel (or antiparallel)
to Q, and thus it is sufficient to calculate Q ~ (J(0)).
Furthermore, it is easily seen that the term pro-
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portional to y ~ p in S,'"'(p, g, ) vanishes upon integration over p and that terms independent of y'
drop out after taking the trace. Omitting a11 these terms we get

0 g(0)) =-(2p-'(2n) '+exp(eg, ) I d'p Tr/0 Z~ exp(-0 ~ Zs/8$, )]g,(f,'-p') ',
where I have used that Z =y yy'.

Since 0 ~ Z = QZ, and Z, =diag(1, -1,1, —1), we easily find

Tr(Q ~ Z exp(-,' 0 Zs/sg, )].=20[exp(-,'Qs/eg, ) —exp( ——,Qs/sg, )].
Using the relation

exp(nd/dx) f(x) =f(x+n),

we can now rewrite Eq. (Dl) as

0 ~ (J(0)) = —QP '(2n) 'g exp(qg, ) d'P((g, +0/2)[(f, +0/2)'-P'] '-(g, —0/2)[(g, —0/2)' p']-'].
l

(D2)

(D8)

(D4)

Using the same device as in Sec. IV to replace the
sum over l by an integral, we find

0 g(o))

=0(2P&') ')) dPP'[f, (P+0/2) f,(P- 0/-)2]
0

where g =QP/2. The integral in Eq. (D5) can be
evaluated, '

f 00

(coshx+ cosh)) 'x'dx = $(m'+ g') /8 sinh$

(De)

= —(2n'p') ' sinhg)) (coshx+coshg) 'x'dx,
0

and we obtain

(J(0) ) = —0(T '/12+0'/48m'),

in agreement with Ref. 3.

(D7)
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~Note that n„has a singularity at&= mQ. This singu-
larity, however, is unphysical. A rotating system
cannot have size greater than Q (otherwise the velo-
city at the boundary would exceed the velocity of light),
and in a finite system the energy is quantized in such
a way that u is always greater than mQ. (There are
some exceptions in which the field has exponentially
growing modes. See Bef. 6.) As an example, consider
an infinite cylinder of radius R rotating around its ax-
is. Requiring that 4 vanishes at the boundary, we find

the energy levels ~nmp = @ + p + gmz R )~, where ~mn

is the nth root of J~(x). It can be shown (Bef. 7) that
$~„&m. Thus, „~p& $~„R & mQ. In the present
paper we shall assume that the lowest energy modes
are unimportant and thus the infinite-space solutions
(17) can be used.
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In fact, Eq. (24) follows directly from the definition of
the temperature Green's function (see Bef. 2) and holds
for interacting as well as for free fields.

In this paper I use physical, not coordinate components
of vectors, so that A&=A @, where e&, e&, e3 are unit
vectors parallel to the local coordinate axes.

~ The matrices y ~ and y are taken in the representation
of J.D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).
In Bef. 3, the matrix y and the argular quantum num-
ber m were taken with a wrong sign. The correct equa-
tions are obtained by changing L -L and m -m in
Eqs. (15), (19), and (20) of Bef. 3. All the following
equations, including the final results, do not change.

~2See, e.g. , S. S. Schweber, An Introduction to Relativis-
tic Quantum Field Theory (Bow, Peterson, Evanston,
Illinois, 1961).

~3A nonvanishing zero-temperature value of (J (0)) in Eq.
(83) is due. to the fact that the Fermi distribution func-
tion

f~~= {exp[P(~ —~Q)i + 1)

does not vanish for ~& mQ, even at T = 0. It seems
reasonable to assume that the finite size of the system
modifies the particle spectrum in such a way that co is
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always greater than mQ. I have proved this statement
for a scalar field (Ref. 5). Quite similarly, it can be
proved for electromagnetic and nonrelativistic fermion
fields. The case of relativistic fermions and neutrinos
requires a special treatment because of the well-known

difficulties with confinement of these particles to a
fixed volume.

~4This point has been missed in Ref. 3.
[p&, p2] = 0, since the interaction of the subsystems is
neglected.


