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Nonsingular representation of three-body equations
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An alternate representation of the three-body scattering equations of Alt, Grassberger, and Sandhas is
suggested. Like the formulation of Karlsson and Zeiger these equations require only two-body bound-state
wave functions and half-off-shell transition amplitudes as input and contain three-body energy-independent
eAective potentials which become real after partial-wave decomposition. It is emphasized that such
representations are particularly suitable for writing singularity-free momentum-space integral equations in
the scattering region. One scheme for writing such equations is discussed.

I. INTRODUCTION

Recently, Karlsson and Zeiger (KZ) presented
Faddeev-type2 scattering integral equations for the
three-body transition amplitudes. The on- the- en-
ergy-shell (on-shell) values of the unknowns of
these equations give the physical elastic, rear-
rangement, and breakup amplitudes and hence a-
gree with the corresponding Alt, Qrassberger, and
Sandhas3 (AGS) transition amplitudes. But the sol-
utions of KZ involve a different off-the-energy-
shell (off-shell) continuation from that of the AGS
transition amplitudes and hence do not agree with
the AGS amplitudes for off-shell or half-off-the-
energy-shell (half-off-shell) values of momentum
parameters.

In the case of the two-body problem the outgoing-
wave scattering wave function in the plane-wave
basis has a scattering pole whose residue is the
half-shell t matrix which is less singular and does
not possess this pole. 4 It is usual to formulate the
two-body problem in terms of the plane-wave rep-
resentation of this t matrix. The on-shell value of
this t matrix gives the physical transition ampli-
tude.

In the case of the three body problem the gener-
alization of the above-mentioned two-body recipe
is not unique arid there are various possibilities.
First, one may consider the Faddeev equations2
satisfied by the wave-function components, factor
out the primary singularities, ' and formulate the
theory in terms of less singular amplitudes. This
method of approach was chosen in KZ where the
authors used a complete set of channel eigenstates
for the intermediate states involved. Qsborn and
Kowalski' also followed this approach essentially
but used the complete set of plane-wave states in-
stead. KZ pointed out that the basic advantage of
choosing the complete set of channel eigenstates
is that the resulting equations have energy-inde-
pendent effective potentials which can be made real.
af ter partial-wave analysis.

In this note we consider a different generaliza-

tion of the two-body recipe. We consider the full
three-body scattering states corresponding to var-
ious elastic and rearrangement channels. The pro-
jection of these wave functions on a complete set of
channel eigenstates contains the elastic, rear-
rangement, and breakup poles. The residues at
these poles are identified with the matrix elements
of the AQS transition amplitudes. We work with
these amplitudes and using a complete set of chan-
nel eigenstates write coupled equations for them,
the solution of wh'ich gives the AGS transition amp-
litudes both on-shell and off-shell. The effective
potentials are energy independent and can be made
real after a partial-wave analysis.

The analytic structure of these equations is re-
markably simple compared to the usual Faddeev
equations. The three-body parametric energy only
appears in the resolvent operators of these equa-
tions and not in the off-shell two-body t matrix that
appears in the equation. The three-body energy-
dependent propagators take the simple form of pro-
pagators of two-body Lippmann-Schwinger equa-
tions after a change of variables. Hence we canuse
techniques used in two-body scattering theory to
remove the singularity of these equations. Eyre
and Osborn' recently used this idea to propose a
scheme for writing singularity-free momentum-
space integral equations. The method they use is
essentially a generalization of two-body K-matrix
approach to the case of KZ equations.

In this note we propose another method for writ-
ing such equations. The present method is es-
sentially a generalization of the method of Ref. 7
to this problem. The present method relies on
writing an auxiliary equation with nonsingular ker-
nel. The auxiliary equation we propose has a much
weaker kernel and presumably will have a rapidly
convergent iterative solution. Then the solution of
the original equation is written in terms of the sol-
utL'on of the auxibary equation. An iterative solu-
tion to the auxiliary equation will provide a practi-
cal way of solving the original equation. We dem-
onstrate this in the case of the AGS transition
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amplitudes, but the same idea ean be applied to
the case of the KZ equations.

In Sec. II we consider the Lippmann-Sehwinger
equation for the full wave function, show how it
naturally leads to the AGS transition amplitudes
after a factorization of singularities, and write
KZ-type equations for the AGS transition ampli-
tudes. In Sec. III we describe a method for writing
a nonsingular representation for the set of equa-
tions proposed in Sec. II and finally in Sec. IV we

give a brief summary and concluding remarks.

II. THE FORMULATION

Our notation is the usual one and we briefly state
it here. The indices n, P, and y will be used to
denote a pair. G, =-(a —Hg ', G —= (s —H ) ', and
G = (a —H) ' where g =E+ie are the resolvent op-
erators to the free Hamiltonian H„ the channel
Hamiltonian H —= (H, +V ), (&=1, 23), and the
full Hamiltonian H= (Ho+ V),—where V is a pair
interaction and V=Zu, V„ is the total interaction.
The channel interaction will be denoted by ~
—= (V —V ). We also use 6s = (1 —6s ). The energy
dependence of the energy-dependent operators will
not be explicitly shown in this note.

We introduce the following types of momentum
variables. '2

q~ denotes the relative momentum of
the pair P, and ps denotes the relative momentum
of the center of mass of the pair P and the remain-
ing particle. The associated reduced masses are
pz and nz, respectively, as in Ref. 1. We also use
Ps =Ps /2ns and qs qs /2ps —eden. otes the bind-
ing energy of the pair n.

The channel eigenstates are the products of a
two-body bound state P and a momentum eigen-
state p of relative motion between the spectator
particle and the pair n. We assume that there is
only one two-body bound state per channel. The
scattering state 4"which refers to the initial
channel n is defined by

I
el'& = iaG

I p.4.&,

in the limit E 0. Using the resolvent identity

a
&pslsl'4'&=6s 6'(ps —p )+ ' - ~' 'p— (4)8 —Pg +Kg

&pl
IVs (psqs p;a)' &S Z -p~2-q~2

where

I's (ps p;a) =&Pals IVsl&"'&

aIld

(6)

IVs. (psqs, p. ; a)=& Pat;, IVs l~."&. (7)

Using Eqs. (4) and (5) the plane-wave projection of
can be written as

&p,qs I +."&= 6a.6'(ps —p. )e.(q. )

I's.(ps p;a)
+Is(qs) a p 2i~ 2

and

(10)

Equation (8) is another possible three-body gen-
eralization of Eq. (1.1) of KZ. We have factored
out the kinematic singularities of the full wave
function and introduced less singular amplitudes Y
and W in terms of which we shall formulate our
theory. As the residues of the wave function at
elastic, rearrangement, and breakup poles give
the corresponding transition amplitudes the half-
on-shell values of F and W defined by Eqs. (6) and

(7) can be readily related to physical scattering
amplitudes. Though known in certain circles we
show here explicitly that F and 8' are really the
matrix elements of the AGS transition operators
defined by'

Us —(1 —5sJ(a —Hp) + V —V —Vs

G =Gq+GgVgG,

and taking the limit s-0, Eq. (1) becomes

Ik' &=5 lp Q &+G v I4"&.

(2)
Substituting Eq. (10) in Eq. (1) and taking the limit

Owe get

&=6s IP.P.&+G ~. lp. 4.&.

From now on we shall assume that the channel
state p P which appears on the right is an on-
shell state and satisfies g~ +E =P~ . We intro-
duce the complete set of channel eigenstates in the
channel P by pals and ps(= where g= is the incom-
ing two-body scattering state. A projection of Eq.
(3) on thes e states gives

If we take projection of Eq. (11) on the channel
eigenstates for the channel p we get,

&Ps 41+a & 6su 6 (Ps Pu)

& ps~si Us. i p.e.&+- — -™2- 28 —Pg + Ky
(12)



NONSINGULAR REPRESENTATION OF THREE-BODY EQUATIONS

&p 4,=, ~~. ~ p. A. &

8 —Pg —Q'g
(13)

wa. (paqa, p. ;z) =&pal;, Iffa. I p.e.& (»)
We recall that the AGS operators U satisfy the
AQS equations

(14)

and

Comparing Eqs. (4) and (5) with Eqs. (12) and (13)
we identify

Y..(p. , p. ; ) =&pa~. l~..l p.~.&

Ug =5~ G, '+ 5&„V„G,U„

In terms of the complete set of channel eigenstates
the explicit matrix element of Eq. (16) becomes

1
Ys (pa, p;z) =5a Y'a", (ps, p;z)+p d'p„' 'Ua„'(Ps, P„') -

2 2 Y„~(p„',p~~z}8 —Py +Ky

+Z „d'J'd'~w sPpa Pyqy) i2 i2Wyu(pr'qr'~pniz), (17)

1
Ws (Paqa, P z) =5s Wa~'(Paqa, PO z) +g d f)& '0((&(paqs~p&) -,2 2 Y ~(p', P z)

Z —P& + K&

(18)

where

Ys,"(pa, p;z) ='-(t&a(qa&2&)((( +(I «& )p (q (())

(19)

'Ug(Paqa P,) =-0",a(qa&2))(".'+&.(& &') 4'.(q.(())(&a»

{23)

and

'U,'„'(p q„p„q„)=(C&= (q )f*(q»q & '+' )%

(24}

where t„represents two-body half-off-shell transi-
tion amplitude. In Eqs. (19) and (20) we have used
the fact that p Q is an on-shell state and we have
introduced'2

p, g
q g(2) ———pg + pl

y

(25)

Wa')(pap„p. ;z) =-6*,(qs(2&)((( '+(I (()')4 (q (())

(20)

+s (Pa P ) A(qa(2&)(x + I ( ) )(

'Ua&~&(Pa, P„q„)=pa(qa(2))f~), (q„&(),q„;q„+2@)6a„, (22)

1
4„(2')=(fal„(2)

( ), (27)

where Q,a(y) is the S-wave regular solution to the
Schrodinger equation and , are the two-body Jost
functions satisfying

I

Equations (17) and (18) have all the interesting
features of the KZ equations, e.g. ,

(1) the input consists of two-body bound-state
wave functions and half-off-shell transition ampli-
tudes (at positive energies) and

(2) the effective potentials are energy independ-
ent and as we shall see in the following they be-
come real after a partial-wave analysis.

To illustrate the advantages associated with a
partial-wave decomposition of Eqs. (17) and (18)
we shall be limited to the consideration of a simple
case. We take the total three-body angular mo-
memtum to be zero and consider only S-wave two-
body interactions.

We recall that S-wave two-body scattering states
g' can be written as

and ~.(oa) = l~(4a) I""'"' (28)

p.~ ~
qe(f) = pg — pa, ~

my
(26) and

Here nz, is the mass of the spectator particle for
the pair y. In Eqs. (21)-(24), qa&» and q„«& are
defined similarly.

&.(ea) =~*(~a) . (29)

The two-body t matrix has the same phase as the
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Jost function and satisfies4

ts(qs, qs; qs2+ i0) =——e(a "s)r(qa, qa),
II'

(30)

where r is a real function. Following KZ we intro-
I

duce

W,.(Paq„p. ;e) = z, (qs)wa. (paqa, p. ;2).
Then an 8-wave projection of Eqs. (17) and (18)
yields

00

l'B.(pa, p;~)=UB.'(Ps, p.)+Q Pv'dpv''0B'(Ps P') -
2 )y'v (Pv P. e)

00 00 Iz ' I-'g q+Z J f ol'dllo"d~l, &Ã(o (lail) -"„-—, &,.((,'e,', r. ;~) (32)

A 1
Ws (Paqs, p;&) =Us'(Paqa P )+ Pv dpr~sv(psqs pv) -

28 —Py +K~

0O 00 2 q+g Pv'dpv q"dq' '0av(paqa, p'vqv)

The 5-wave components of the effective potential appearing in Eqs. (32) and (33) are defined by

yf

Sv(pa~pr) = 2 +'Pa(qa(2&)(~r +qr(1) )Ar(qv(1))~av ~

af

( +f

&av(pa, pyqy) = 2
"

12 dx(PB(qs(, ))t„*(qv((),q„;q„'+i&) &-(qr) ~ar ~ (35)

Qf
+Sy(paqal Py) — 2~+(qa) d+kqa (qa (2)) (~v +qv(1) ) Pv(qv(1)) ay &

and

(36)

A
22

+1

"Sr(paqa»rqv) =2~ (qa) d&4~(qa(&))t„*(q~(), q„qv'pie) g (q )ha (37)

where x is the cosine of the angle between p& and p„.
With this redefinition the effective potentials defined by Eqs. (34)-(37) are real quantities. This can

easily be verified by using Eqs. (27)-(30). Hence the effective potentials of Eqs. (32) and (33) are not

only independent of three-body energy but also real.

III. NONSINGULAR EQUATIONS

We now study the equations introduced in the last section —Eqs. (32) and (33)—.in detail and reduce them

to a set of practical nonsingular equations. Such equations will provide a practical way of solving the

original Eqs. (32) and (33). The reduction procedure starts with the following change of variables in the

double integrals of Eqs. (32) and (33)'.

(38)

such that

P t2+qt2 ~p I2(4 t( )-1/2 Pi2

Then we have

Py dPyqy dqy =P() dP() COS (dy Sill (dyd(dr =—Po dP(td)r, (39)
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In terms of these new variables Eqs. (32) and (33) become

P(sP Ps„; )z= zs(sP„P. ) +aa f a(plpl'zss'(Pspl)(), a' P,"-+(a) 'P-(Pl P. )
'F 0

and

r/2
+Z dE~ dpopo 4(pa po(d~)(ko po +ie) 'IiP~N(po(d„zp;z)

0 0

(40)

PPs (Psssa, p;z) sss'(Pss=ss, P, )+Q f PP„P„' ssa''(Paass, p')()a —P„' +ia)'P„, (P„',P„.z)
r o

I'/2

+Z d4 dpopo +a)(po(da»o(dp)(ko Po + ) +~ (po(d) P
0 0

(41)

Here the carets on various operators have been omitted for simplicity and I, (q„')
I

' in the double integral
has been absorbed in the potential. ['U" and%" of Eqs. (40) and (41) are different from those of Eqs. (35)
and (37) by a factor of

I
Z(q'„)I .] The unknowns involving Paqa are written in terms of equivalent variables

(p„(da). The on-shell momenta k„and k, are defined by k„'=z+)e„' and k,'=z.
Equations (40) and (41) are similar to multichannel scattering equations. In order to complete the

analogy with the usual multichannel equations we introduce two other unknowns Sa (pa, p,op„;z) and

Ta (po(da, po'Op;Z). The funCtiOnS S and 'T SatiSfy EqS. (40) and (41) With V~&', u~Zo, Y, and W replaCed by

g~, z~~, 8, and T, respectively. S and T are related to the matrix elements of the AGS transition op-
erators U with p~|t); in the initial state and we deduce in the Appendix the equations they satisfy after
partial-wave projection. The four operators P, O', S, and T satisfy the following schematic coupled equa-
tions (see Appendix for detail):

~it ~i2

oU2i oU22

gi2 '

C I
O+ 0

~021 g22 O Q
(42)

and

dp!p~'Ip~&(k' P" +~) '&P' -I

0

n/2

G, = d~„' dp,'p,"Ip,'~'„)(k,'-p,"+ie) '&p'. &,'I.
0

where the spectral representations of C,' and ~, are

(43)

(44)

The only singularity of Eq. (42) appears in the resolvent operators of Eqs. (43) and (44). The energy

denominators of Eqs. (43) and (44) have the same form as that in the two-body case. Hence we generalize

a recently proposed method' for writing nonsingular two-body equations in the momentum space to the

case of the three-body equations. We rewrite Eq. (42) in such a way that a part of the kernel is explicitly

nonsingular. Then we write a nonslngular equation wlththlsplece of the kernel and relate the solution of

the original equation to that of the nonslngular equation. We emllcltly demonstrate this for one of the

equations —Eq. (40)—of Eq. (42). Equation (40) is rewritten as

)'a (Pa P;z)=ass (Pa P )+Q f aap'P's(a'(Pa P,', P,)& (i" P;a)
0

~/2

+Z d4 dPoPo+a)(Pa PooPp ko)~) (Po~) P
r o 0

+Q 'Ua„'(Pa, k„) dP„'PP(k„o -P„'2+ie) 'Y„(P„',P;z)

&/2 OO

+P dg„'Ua„(Pa, ko~„) dP+o (ko -P,"+ie) 'W„(Pooo„',P~;z), (45)
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where

&er(ps Pr k.}=hb'(Ps pr') 'U-ar(pa»)]

x(k ' —p "+is) ' (46)

W T

~i 1 ~f2

~U21 '022

Qf f +f2
+

g21 ~22
))))

Y S

~o21 gy22

Go 0

0 Go

(48)

+ay(ps) Pp~y) ko) = ['Uey(ps) P pldr) '0ey(ps) kacy)]

x(kp —po +ca) (47)

are the nonsingular kernels of Eq. (45). We can
write four such equations corresponding to the four
equations of Eq. (42). These four equations of type
(45) can be combined to yield the following equa-
tion in schematic matrix notation

~sr'(Pa, pr'} =&ay'(pe ky}

'Varsy(ps) Poooy) ='0am(pa) kp~r) )

~sr(po&a P.'}=Usr'(Pp~a k.}

and

%er(pp&e) Pp&r) =+ay(p p~e) kooky)

(51)

(52)

(58)

(54)

It is to be noted that Eqs. (42) and (48) are essen-
tially the same equations. In Eq. (48) the kernel of
Eq. (42) has been broken into two parts. The part
containing A. obviously does not have the pole of the
resolvent operator whereas the singular part is
contained in the last term on the right-hand side of
Eq. (48).

Now following Ref. 7 we define the following non-
singular equation in schematic matrix notation:

Y S

W T

~f2

~21 g22

Y S+
~21 ~22 W

&er(po4's» poor) ko} = I+ay(Po&A Pp&6) &er(po4's ko&6)]

x(k, ' p,
"ipp) ', (50)

where

Asy(poles pr) kr) =[Usr(pp(ds) pr) vsy(pp(oa) kr)]

x(kr -pr' + pe) (49)
Equs. tion (56} contains four equations of which the
first one reads

(p p z) ='U (p p ) +Q t dpypr~&ey(pa)py) kr} r)M(pr)p~)a)
r 0

«/2

dg, dpopo'Asr'(pe po~r', kp)&r (po~r', P; ) ~

o

(56)

The other equations of (55) can be written down
similarly. Now following Ref. 7 we can relate the
unknowns of Eqs. (48) and (55) and we have in
schematic notation

Y S

I'sr(pa py'', &) =I'er(pa, kr, a),

Ssr(Ps) Po&r)'a} =Sar(Ps, kp(dy) a} )

@sr(pp"s pr'&) =ITar(pp&s kr'&)

(58}

(60)

Gl 0

O' T, 0 Go

where Y's are related to Y's by

(57)
W T

Tsr(po~s»o~r'a) =~sr(pp+e kooky)a) ~ (61)

Equation (57} contains four equations. The two

equations for Y and W now become in explicit nota-
tion

«/2

(P, p .a) I (p„p,;a)+g Y'e„(ps, k„;z) „,(p; ) +g dgSs„(p„kp~„',.a)&„( „',P; ),
0

(62)

and «/2

(p &g, p .a) =IT' (p co,p;a) +g Wer(po&e) k a)Drr)u(p a) N+)p @~sr(pp+e) 0g~ 0 g~ alp
— Se 0 0~ e~

o

XEr+ (Ky) P&) 8) ) (63)
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where

D„(P;z)= dPyPyo(joy'-Pyo+oo) '
0

XI'„ (P,P ;e') (64)

and

E (w „p ;„z,)=„J . dp(p( (k~ —p( +is) '
0

XWy (Po&()y, P„;z) .

De (p;g) =De (p; g)++ Dey(Ioy;z)Dy (p;z)
p«/2

+g ll d$+ey((dy;&)Ey ((dy)p~;s)
&0

&ei ((de i PN i ~) =Eee ((de»N i s)

+ Q Xey((oe, fey; z }lDy (P; z )

«/2
+ d ~~a~ +a ~&~

So at the moment the present formulation depends
on solving the nonsingular equations (55), (62), and
(63}.

It is to be noted that the structures of Eqs. (62)
and (63) are much simpler than original equations
(32) and (33) once the nonsingular equations (55)
for F's are solved in advance. To exploit the sim-
ple structure of (62) and (63) we write a set of
equations for the two unknowns D and E appearing
in (62) and (63). Multiplying Eqs. (62) and (63) by
obvious appropriate factors from the left and inte-
grating we get

The basic equations of the present formalism are
Eqs. (55), (66), (67), (62), and (63).

Equations (66) and (67) are coupled integral-lin-
ear equations in E and D. The kernel and the Born
terms of these equations are complex quantities.
The kernel is a smooth function of the variables
and is also nonsingular in nature. Hence in princi-
ple Eqs. (66) and (67) reduce essentially to an inte-
gral equation in one variable, with smooth kernel
that is easy to solve in practice. We have reduced
the original equations —Eqs. (32) and (33)—to two
sets of nonsingular equations.

Another important feature of Eq. (55) apart from
the fact that its kernel is nonsingular is that the
kernel is sufficiently weak compared to the kernel
of the original equations. Such kernel has been
tested analytically and numerically in two-body
problems to give rapid convergence for the itera-
tive series and is one of a wider class of nonsin-
gular kernels. Hence Eq. (55) is expected to give a
rapidly convergent iterative solution.

It is not clear at present whether an approximate
real solution of Eq. (55) when used in Eqs. (62),
(63), (66), and (67) will yield a scattering ampli-
tude satisfying constraints of unitarity. Careful
study of the unitarity relation is needed to make
unitary approximations.

IV. DISCUSSION AND CONCLUSION

In this note we consider a representation of the
AGS equation using the complete set of channel
eigenstates as basis functions. The resulting equa-
tions have simple formal structure. The input to
these equations are the two-body wave functions
and the half-off-shell two-body t matrices. The ef-
fective potentials are energy independent and can
be made real after a partial-wave analysis.

KZ wrote similar equations not for the AGS op-
erators but for the operators E which are related
to the AGS operators U by

&ye((dy)p())i~) i (67}

where D and E satisfy (64) and (65) with Y and W

replaced by F and 8", respectively. The functions
F and J are defined by

Eg~ —V~G0U~N G0VN .
The operators E satisfy

Ife Eq VeGoV„+—Q 'Fey VeG+y„. (71)

0

and

~ ~(ooyi &e'~) = dpopo ~~o Po +"}
0

xjy())(Po(dyi )oo(0~ g), (69)

On-shell the operator K agrees with the more com-
monly used AGS operators U but off-shell values of
K are not easily related to the corresponding val-
ues of U. It was not a Priori clear that KZ-type
equations with real energy-independent potentials
can be written with the more commonly used AGS
transition amplitudes. We explicitly derive these
equations here and show that this is indeed the
case.

Next we discuss the utility of such equations in
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writing a nonsingular representation. The analytic
structure of the equations we obtain is very simple
in comparison with that of the usual plane-wave
representation of the three-body equations. It is
well known that the moving logarithmic singulari-
ties in the kernel and in the Born term of the usual
momentum-space three-body equations, even in a
simple separable potential model make a numeri-
cal solution difficult in practice. But in the present
case after partial-wave decomposition the Born
term is three-body energy independent and real
whereas the kernel is shown to have a fixed-point
singularity as in that of a two-body Lippmann-
Schwinger. equation. Hence all the two-body tech-
niques for writing nonsingular equations can be
easily extended to the present case. %e use a
recently developed technique for writing nonsingu-
lar two-body equations to this case. The method'
relies on relating the solution of the present set of
equations to that of an auxiliary nonsingular set of
equations whose kernel is free from the fixed-point
singularity of the original equation.

The kernel of the auxiliary nonsingular set of
equations, defined by Eqs. (46), (47), (49), and (5O),
can be made more general by the introduction of
an arbitrary function y as in Ref. 7. But in order
to present our point of view in a clear and trans-
parent way we did not introduce the function y,
which will only inhibit this purpose and complicate
the method formally and algebraically. In principle
it is simple to introduce this function. For exam-
ple, Eq. (46) should be redefined as

and

SB (pB, p q;~) =(PB4'B I Be IP ~i (Al)

TBe(pBqB paqe) B) =(pB+B I UBe lpekB ) (A2}

and find the equations they satisfy after S-wave
projection. From Eq. (16}it is easy to see that S
and T satisfy Eqs. (17) and (18) with Y, Y(B', W,
and 8' ' replaced by S, S' ', T, and T' ', respect-
ively, where S' and T' ' are defined by

and

(p)
SBa (PB Paqa) ~) 'PB(qB(2&)

~*(qe(&)0qa qe +B ) (A3)

(p )
TBa (pBqBs paqa) Z) Qs& ('qB(2&}

x t*(q «&, q, q
2 + i& ) . (A4)

or improve the rate of convergence of the iterative
solution of the auxiliary equation. Such an iterative
solution, apart from being simple to implement,
is also interesting in practice because any approx-
imate real (iterative) solution of the auxiliary non-

singular equation may lead to schemes for making

unitary approximations. Various approximation
schemes will probably emerge in the future based
on the present and related approaches. 6'~
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APPENDIX

%'e introduce

&",(P,pl, fB,) =[&",(P,pl) 0",(P, ~,)y"—(~„p,')]

x ($y -P„' +i B ) ' (72)

Next we consider as in Sec. II a simple case with
zero three-body total angular momentum and S-
wave two-body interactions only. As in Eq. (31) we
define new quantities S and T by

SB.(PB,P.q. ; B) =SB.(PB,p.q. ; ~)~, '(q. ), (»)

TB.(PBqB p.q. ;B) = ~.(qB}TB.(PBqB, p.q. ;~)

(A6)

Then as in Sec. II an S-wave projection of the equa-
tions for S and T becomes

Ss 00

(A7)

with y" (ky, ky} =1. Other equations of Sec. HI

should be modified in a way indicated in Ref. 7. It
is easy to see that the kernels defined by Eq. (72),
like the one defined by Eq. (46), apart from being
nonsingular is also weaker in nature compared to
the original kernel. Hence the auxiliary equation xg, '(q ).
will probably have a convergent iterative solution.
In an actual implementation of the method the
function y should be varied in order to achieve andj

00. ((ss (s.s. 0) "0'.((ss, (s.s.)l (0)l0='+P f (s ss)(s„"tt"„((0,)s„') -, s„„()s„',)s,s, ;0)

and

TBa(PBqBsPaqa sB) = t&Ba(PBqBspaqa) I~(qa) I
+ Py dpyUBy(PBqB Py} e2 2Sy (Py P

o ~ —Pr +~~

+g Py dpyqy dqy UBy(PBqB0 Pyqy) I2'02 Tya (PyqysPaqa. , &) .
0 0 z —P& —q&

(A6)



21 NONSINGU LAR REPRESENTATION OF THREE-BODY E QUATIONS 2259

Omitting the carets on various operators and absorbing the factor of ~Z(q)
~

' in the potential as in Eqs.
(40) and (41), Eqs. (A7) and (A8) can be explicitly written [in terms of new variables of Eqs. (38) and (39)]
as

~p (Pe kp&;~) =~e'(&a kp~. )+Q dpy&y'~ey(&p Iy)(ky'-&" +~) '~"(Py kp~. a)
0

alld

r/2
+Q dgy dppp() 'U(ty(p() zpI)(dy)(k() p() +prp) T ~y(pp(diaz kp(d~i8)

0 0
(A9)

yz ((rrzzz i rz,z;z) =Zrr(, (yzrzz, irzrz, ) + g f djr„'(r„' Zrrr„'((rrrzz, ir„')(ir„' —(r„' + iz) 'S„,(p„', kzrz„; z)
l' 0

I'/2

+ Z d5y dPoPo By(Pp(dpi Pp(dy)(kp Pp +tE) Ty&(Pp(dyz kp(d»Z) .
0 0

Equations (40), (41), (A9), and (A10) are combined to give the compact operator form (42).

(A10)
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