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The polarization of the vacuum induced by gravitation is studied for massless fields in the region exterior
to the horizon of a Schwarzschild black hole. The renormalized value of ($2(x)) is calculated according
to the "covariant point-separation scheme" for each of the Boulware, Hartle-Hawking, and Unruh "vacua. "
The form of the renormalized expectation value of the stress tensor near the horizon and at infinity is
discussed for each of these three states. It is found that the Unruh vacuum best approximates the state that
would obtain following the gravitational collapse of a massive body in the sense that the expectation values
of physical observables are finite, in a freely falling frame, on the future horizon and that this state is empty
near infinity apart from an outgoing flux of a blackbody radiation. The response of an Unruh box is
examined further in the light of the results obtained for the stress tensor. Finally it is shown by explicit
solution of the linearized Einstein equations that the area of the horizon decreases at the rate expected from
the flux at infinity.

I. INTRODUCTION

In this paper our aim is to discuss the physical
meaning of, and relationship between, the differ-
ent measures of vacuum activity in Schwarzschild
spac ctime.

A measure that receives considerable attention
is the renormalized vacuum expectation value of
the stress-energy tensor (T„"(x))„notleast be-
cause this quantity determines the evolution of the
geometry in a self-consistent field approximation.
Another measure that is of considerable interest
is the response of the idealized particle detector
proposed by Unruh. ' The study of physical observ-
ables, of which these two are important examples,
provides a means of examining the physical con-
tent of any state that might be proposed as a suit-
able candidate for the vacuum. Three such states
have been proposed for a spherically symmetric
black-hole spacetime. In order to discuss these
and also introduce our conventions let us briefly
review some of the relevant geometrical properties
of the manifold. '

The metric of Schwarzschild spacetime can be
given in terms of Schwarzschild coordinates in
the form

i. /2
—1 e"~ s sinh(t/4M)

2M

+ re(d&'+ sin'Hdp') (3)

in which r is understood as a function of u and v
given implicitly by

c 1 ~r/2& Q2 V
2M

I

The metric (3) is singular only at the curvature
singularities where r = 0, and with the coordinate
ranges - & v & , -~ & u &~, v' —u'& 1 represents

=0

i/2
u =

~

—1 e"'4"cosh(t/4M) .
I, 2M

In terms of these coordinates the line element be-
comes

ds'= e " (-du'+ du')
32M

+ rs(d8'+ sin'Hdg') .
These coordinates can be taken to cover the ex-
terior region r& 2M of the spacetime (region I in
Fig. 1). The metric (1) has a coordinate singu-
larity at the horizon r= 2M. This singularity may
be removed by transforming to nonsingular coor-
di,nates such as those introduced by Kruskal which,
for r& 2M, are related to Schwarzschild coordi-
nates by

bif Urcotio

f=0 Post horizon, V =0

FIG. 1. The Penrose diagram for the mmimally ex-
tended Schwarzschi jd manifold. The (8, @) coordinates
have been suppressed so that, apart from the curvature
singularities where r =0, each point represents a two-
sphere. The continuous lines are the curves r =con-
stant which are the orbits of the Killing vector 9/St,
and the dashed lines are curves of constant t.
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the maximal analytic extension of the Schwarz-
schild manifold. In addition to the coordinates (2)
we shall have occasion to refer to Kruskal null co-
ordinates U and V defined by

U=v-u,
V= v+u. (4)

With these conventions disposed of we return to
the three presumptive vacua for a quantum field
theory on the maximally extended Schwarzschild
manifold. These are

(i) the Boulware' vacuum jB), defined by re-
quiring normal modes to be positive frequency
with respect to the Killing vector s/st with re-
spect to which the exterior region is static,

(ii) the Unruh' vacuum jU), defined by taking
modes that are incoming from 8 to be positive
frequency with respect to s/Bt, while those that
emanate from the past horizon are taken to be
positive frequency with respect to U, the canonical
affine parameter on the past horizon,

(iii) the Hartle-Hawking vacuum jH), defined
by taking incoming modes to be positive frequency
with respect to V, the canonical affine parameter
on the future horizon, and outgoing modes to be
positive frequency with respect to U.

The problem of determining the expectation val-
ue of a physical. observable factors, roughly
speaking, into two parts: how to implement a re-
normalization scheme and how to evaluate mode
sums. It should be emphasized that these are dis-
tinct problems in principle, though they are often
interrelated in practice since asymptotic expan-
sions become necessary at some stage faute de mieux.

Largely as a preparatory exercise we consider
in Sec. II the problem of renormalizing the quad-
ratically divergent quantity (P'(x)) for a massless
scalar field g(x). It turns out that it is a straight-
forward matter to carry out this renormalization
by the geodesic point-separation technique of De-
Witt' and Christensen' and obtain an explicit mode-
sum representation for (p'(x))„,.' Wederive also,
in this section, a representation for the Hartle-
Hawking propagator on the Euclidean section which
proves useful for studying the properties of the
Hartle-Hawking vacuum near the horizon. Sec-
tions III and IV are devoted to a study of the as-
ymptotic values of the renormalized vacuum ex-
pectation values of the stress tensor near the
horizon and at infinity for each of the three vacua.

It is possible to extract a certain amount of in-
formation without performing an explicit renor-
malization. We may, for example, take advan-
tage of the fact that we expect (H jT„"jH), to be
regular in a freely falling frame on the horizon in
order to compute the leading behavior of (T„"),

in the Boulware vacuum since this quantity di-
verges as x- 2M. Thus

and analogously for (U jT„"jU),
By introducing uniform asymptotic approxima-

tions for the mode sums involved we are abl.e to
evaluate these differences of stress tensors and
establish many of the conjectures made by Christ-
ensen and Fulling' in their interesting paper. In
Sec. IV we address the problem of explicitly re-
normalizing the stress tensor near the horizon by
geodesic point separation. This is most easily ef-
fected for points on the bifurcation two-sphere,
the two-sphere where the future and past horizons
intersect. We partially extend our result to the
rest of the horizon making use of the symmetry of
the manifold. Unfortunately, one component of
(T„")„remains undetermined by this process.
We hope to return to the calculation of this re-
maining component in a future publication.

Our results, however, are sufficient to sub-
stantiate the following interpretation:

(i) The Boulware vacuum corresponds to our
familiar concept of an empty state for large radii,
but is pathological at the horizon in the sense that
the expectation value of the stress tensor, eval-
uated in a freely falling frame, diverges as
~-2M. For a massless scalar field the leading
behavior of (B jT," jB), near the horizon is given
in Schwarzschild coordinates by

(B T "B)
2 2(1 —2M/ )

d(d (d

esHI ey I0

-1000
0-'00
0 0 3 0

0 0 0

which corresponds to the absence from the vacuum
of blackbody radiation at the black-hole tempera-
ture (8wM) '. This result is in precise analogy to
the result for ( T„")„,above an infinitely accele-
rated plane "conductor" in Minkowski space. '

(ii) In the Unruh vacuum we find that ( T„")„,is
regular, in a freely falling frame, on the future

= (B jT," jB) (H jT„"jH).

Similarly we may calculate (T„"), for the Hartle-
Hawking and Unruh vacua as r -, taking advan-
tage of the fact that we expect (B jT„"jB), to tend
rapidly to zero there. Thus

&H jT„"jH)„~ &H jT."jH)„„-&B jT„"jB),
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horizon but not on the past horizon. At infinity
this vacuum corresponds to an outgoing flux of
blackbody radiation at the black-hole temperature.

(iii) The Hartle-Hawking vacuum does not corre
spond to our usual notion of a vacuum. (T„")„„
is well behaved, in a freely falling frame, on both
the future and past horizons but the price paid for
this is that the state is not empty at infinity, cor-
responding instead to a thermal distribution of
quanta at the black-hole temperature. That is,
the Hartle-Hawking "vacuum" corresponds to a
black hole in (unstable) equilibrium with an infinite
sea of blackbody radiation. We conclude from this
that it is the Unruh vacuum that best approximates
the state that would obtain following the gravita-
tional collapse of a massive body.

We consider in Sec. V a different measure of
vacuum activity, the response of an idealized
"particle detector" of the type proposed by Unruh.
%'e shall argue that Unruh's box does not so much
measure "particles" as the spectrum of fluctua-
tions of the quantum field, and that the interpreta-
tion of the vacuum entailed by the readings of this
device is in no way incompatible with the one that
follows from a consideration of, say, ( T„„)„,. It
is simply the case that these two observables are
largely independent measures of vacuum activity.

Finally, in Sec. VI we show, by explicit solu-
tion of the linearized Einstein equations, that in
the Unruh vacuum the area of the black hole de-
creases at the rate expected from the magnitude
of the flux at infinity. This result is, of course,
completely obvious on physical grounds but the
fact that it may be derived by solving the Einstein
equations may be regarded as a tentative step
towards the solution of the back-reaction problem.

The picture that emerges from these considera-
tions is that a consistent view of vacuum activity
and particle production is possible in black-hole
spacetimes, and that, in particular, there is no

infinite energy density associated with the produc-
tion of Hawking radiation near the horizon in either
the Unruh or Hartle-Hawking vacuum.

II. THE RENORMALIZATION OF Q2 (x))

As a measure preparatory to the renormaliza-
tion of (T„")we consider here the somewhat sim-
pler, though related, problem of renormalizing
the quadratically divergent ( P'(x)) for a massless
scalar field (t)(x). Indeed, we might regard
((t)'(x)) as a sort of poor man's ( T,") since it
provides considerable insight into the physical con-
tent of the different vacua. It suffers from the
defect, however, of being a scalar, and therefore
does not distinguish between the future and past
horizons, or between 8' and 8 .

In the exterior region of Schwarzschild space-
tirne a complete set of normalized basis functions
for the massless scalar field is"

u„, (x)= (4n(d) 't'e "tt R(t(sir)yt„(e, (t)),

u„, (x)= (4tt(d) '"e t"t Rt((u ~r)yt„(e, (t)),

which have the asymptotic forms

r 'et""+ + Xt (~)r 'e '""*, r -2M
R t ((d

~

r)-
Bt((u)r 'e'""*,

B, (&u)r 'e t""-*,-r- 2M
Rt((o~r)- r-le-tldF i)i + A ( )r-let(i))'i(i

zn which

y~= r+2M ln —1 .

y'

is the Regge-Wheeler coordinate. The Feynman
propagators corresponding to the three vacua
satisfy the equation

ZG(x, x') = -g-"2r(x, x')

and are given, for t ~-t', by'

"*')=iI f i' ' "' '+i (t' 4')+s (~' )I (i(ru()r() (ra)( ()+Ri(ra[ ) ihi[iR")'],

Oo='Z f ""'
i ( (i) '(&',(i'),', ,„+e((a))(,(ii~i);(ii(~i")

lm. - 4~

G (x x') —i Q e-trs(t t') y (8 -y) jr t, (gt ~ )
tR(~t~r)Rt*(td ~r')

H 4 PQ) luff
lm —e

+
lfff t ~ 2r(y/ff

where tt= (4M) ' is the surface gravity of the hole.
The expectation value of P' is related to the Feynman propagator in the corresponding state by the for-

mal expression

((t)'(x)) = -ilimG(x, x') .
'~X
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In virtue of (5) we obtain an expression of the form

(e'( »rf e«e(«lr)
0

In the Boulware vacuum, for example, we find

2 (2&+ IKIR, {~l~)I'+ IR({~l~)I']
S=o

The high-frequency behavior of g(~
l
r) may be inferred by noting that (for t & 0)

G(e, r, e, y;o, r, e, e) if =e«e'"e(«lr).

On the other hand, we know on general grounds that

6(tee&8)$;0 ex&8 e$)- »( / )
as t-0',

and in virtue of the elementary identity

d{dwe'" =-—,
0

t2

it follows that

4~'(I —2M/~)

We shall regularize (6) by geodesic point separation and t~e x=(t, y, g, y) and ~'=(t+q, ~, o, (t)).
renormalized value of ((t') is then given by

(e'(r))„.=)im f e«e ' '«(«lr)—
6~0 0 Bra

where 0 denotes the geodetic interval between x and x'. A straightforward calculation reveals that to the
required order

1 1 M
2a (1 —2M/x)e'

+
12r~(1 —2M/r)

'

We find

(d M"""'l'-4"(1 2M/. ) -46..(1 2M/) ~

Writing this expression out explicitly for each of the three vacua we have

~II

(cele(r)lee)...=-)e,.f Z(e)+))IIR(«lr&l*rl)((«lr&l*&-) ',M, -„,...,
2 M«l e'(x)

l &)...=-16' ~
—Z (2&+ I) coth',— IR~(~l~) I'+ IRi(~l~) I' —,

~ )~0

(6)

(Hle"(r)IH&...=»'. f "- eeee' 2 (e)+))(IR(«lr)l*rlR&(«lr)l*l-(
$~0

Of particular interest are the two asymptotic regimes x- 2M, x- ~. In order to study these we make
use of asymptotic forms that are established in Appendix A:

Q {»+»IRi(~l~)I'-
J~O

4' 2M
1 -2M/r '



21 VACUUM POLARIZATION IN SCH%ARZSCHILD SPACETIME 2189

, Q (2l + 1)
I
B,((o) I',

2 (2l+1) IRi(~lr) I'-
l=p

4(d2 r oo ~

Note the curious nature of the cancellations that
occur as r-2M. For the Boulware vacuum the
leading behavior of the sum over outgoing radial
functions cancels against the last term in the in-
tegrand. The leading behavior of (BI p'(x) IB)„,
is therefore determined by the "finite" term

d~2 1 dg2

+ r'(d8'+ sin'8dg') .
It has been shown '" that the point r=2M is a

regular {as opposed to conical) point of the result-
ing manifold if the coordinate g is made periodic
with period 2m '.

The Hartle-Hawking propagator satisfies the
equation

M
48m'r (1 —2M/r)

which has its origin in (t). In the other two vacua
the leading behavior of the outgoing modes can no
longer be canceled, due to the presence of the fac-
tor coth(var/v). The frequency integrals in (8U)
and (8H) therefore develop a leading term

0Ge(-ig, r, 8, Q; ig',-r', 8', &f&')

ir '&(t.-r.-')&—(r r')5(n, n'), (g)

where 5(O, 0') denotes the 5 function on the two-
sphere and may be expanded in terms of Legendre
functions1 d(0 co

2v'(1 2M/r), e""t"—1 4«'(1 —2M/r)
5(O, Q') =—g (2l + 1)P,(cosy)

1

7T f p
(10)

which cancels the effect of the "finite' term.
This suggests that (HI Q'(x) IH)„, and

(UI P'(x)
I U), are finite in the limit r-2M. To

show that this is in fact the case we shall take
advantage of the analytic properties of the
Schwarzschild manifold in order to derive an ex-
pression for the Hartle-Hawking propagator which
will prove to be rather more amenable to our
needs.

Consider the result of setting t = -i t (g real)
in the Schwarzschild line element (1) which be-
co

with

cosy= cos8 cos8'+ sin8 sinG'cos(P —P') .
Vfe may incorporate the desired periodicity with
respect to & by setting

8(g g t) g eon~(t!-P &

27 .=-

Substituting (10) and (11) into (g) we find that we
may expand GH in the form

(12)

mes
I

G„(-i&,r, 8, p; iy', r',—8', p')= —g e'""'~ ~''g P, (cosy) Z,„(r., r')
n-co I 0 4w

with p,„ the Green's function for the radial equation of frequency inK

t'd, d pPK2r4(r' 2M—r) ——l(l + 1)—— y (r, r') = 6(r r'-)—
(dr dr r2 -2Mr

subject to the boundary conditions that y,„(r,r') be bounded as r- 2M and tend to zero as r
The homogeneous equation corresponding to (13) is

I

—(q'-1)—-l(l+1)—, B=0,t d, d n'(1+ q)4

(dq dq 16(q' —1)

the appearance of which has been improved by writing

q= r/M —1.
For n=0, (14) is soluble in terms of the Legendre functions"

P, (rl ) and q, (q) .
When no 0 the solutions of (10) are not simply expressed in terms of known functions.

For n & 0 we denote by P",(q) the solution that remains bounded as q-1 and by q", (q) the solution that

(13)

(14)
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tends to zero as q —, we normalize the P", and q", by requiring

P",(q)-(q —1)" ', q", (q)-(g —1)" ' as q-i.
With these conventions it is easily seen that

M P, (q, )Q, (q,) for n=o1

p,"'(q,)q," (q)) for n w0.

Thus (12) becomes
00

G„(-ig, r, 8, p; it', r-', 8', p') = » Q (2l + 1)P,(cosy)P, (q&)Q, (q&)
p

+ ', , —cosntc(t —0') P (2l + 1)P,(cosy)P", (q, )q", (q,).1
32wM i n l=p

(16)

We have derived the representation (16) in detail
since it seems that it may be of some interest in
its own right.

For our immediate needs, however, it suffices
to have an expression for G„(x,x') for the case
that one of the points, say x', is located on the bi-
furcation two-sphex'e of the horizon (Fig. 1). In
virtue of (15) we then find that all the terms in (16)
with n ~ 1 are zero. Thus, since P, (1)=1, we
have

G„(x,x') =- » g (2l +1)P,(cosy)Q, (q) .
7T ggp

Further simplification results on recalling Heine's
formula"

(2I +1)P,(p)Q, (n) =-
Jap 'g-p,

Thus we arrive finally at the remarkably simple
expression

G„(x,x') =
32m'M(r -M -M cosy)

'

We note in passing that although this expression
has been derived for the region x&2M it is valid
for r&2M by analytic continuation. Inparticular,
we see that (17) is finite at r=2M and r=0 (except
when the points x and x' are connected by a real
null geodesic) even though each of the radial modes

Q, (q) is logarithmically infinite at these points.
Separating our points this time in the radial

I

direction we have when x' is a point on the bifur-
cation two-sphere

1 1
«~'m(» -aM) Bn*rrb: x')) '

a limit which is easily computed yielding

& I&'(")I &- =i92"M

We have thus determined &HI Q'(x) IH)„, for
points on the bifurcation two-sphere. This result
extends to the restof the horizon in virtue of the
invariance of (HI P'(x) IH)„, under the isometrics
generated by the Killing vector 3/at. We have

—,&HI y'(x) IH)...=0.

Noting that 8/Bt may be written in terms of the
Kruskal null coordinates (4) as

a t' a a—=&IV——U
at I aV aU'

we see immediately that

av
'—&Hlq'(x) IH), =0 when U=O

and

U
(H I

Q'(x) IH)„,= 0 when V= 0 .

We display the asymptotic forms for & P')„„in
Table I for each of the three vacua. The inter-

TABLE I. The asymptotic values of (Qt(x))«n.

Boulware vacuum Unruh vacuum Hartle-Hawking vacuum

1 dM M

2x g. -2&X/r), e'~~ "-1 1 1 "dc'(2L+ l)i& (&u)i
t

92&2~2 32@2~2 ~ (p2 &~/K 1)

1 MQ(2l+ 1)l&g(~)l'
8~2+ ~ (~2m GJ /K 1)

1
192& M2

1 dMco

2m e"
0
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pretation suggested by these results is as follows:
(i) The Boulware vacuum corresponds to our

familiar concept of an empty state for large radii,
but is pathological at the horizon in the sense that
the renormalized expectation values of physically
observable quantities are likely to diverge as the
horizon is approached.

(ii} In theUnruh vacuum we find a flux ofblack-
body radiation for large radii while (P'(x))„, re
mains bounded as the horizon is approached.

(iii) The Hartle-Hawking vacuum does not cor-
respond to our usual notion of a vacuum. (P'&„,
is we1.1 behaved on the horizon, but the state is not

empty at infinity corresponding instead to a ther-
mal distribution of (Minkowski-type} quanta at the
black-hole temperature. That is, the Hartle-
Hawking vacuum corresponds to a black hole in
(unstable) equilibrium with an infinite sea of black-
body radiation.

We shall refine these observations when we
come to study the asymptotic forms for (T,")„,.
However, even on the basis of our results thus
far we would expect that it is the Unruh vacuum
that best approximates the state that would obtain
following the gravitational collapse of a massive
body.

HI. THE ASYMPTOTIC VALUES OF &T '&„„:RESULTS OBTAINABLE WITHOUT RECOURSE TO RENORMALIZATION

The expected regularity of (Hl T„"lH), on both the future and past horizons in a freely falling frame
implies that its components in Schwarzschild coordinates also have a finite limit as r- 2M. This feature
enables us to compute the leading behavior of (Bl T„"lB)„,and the t and r components of (Ul T„"

l
U)

near the horizon since these quantities diverge as r -2M. Thus we have

r 2M

-1 0 0 0
1

1 4(d QP

2v'(1 —2M/r)', e""'"—1 0 0

0 0

— 01

in Schwarzschild coordinates, the last line follow-
ing from a mode sum that is evaluated in Appendix
A. We observe that this stress tensor is in-
finite on both horizons and corresponds, in some
sense, to the absence from the vacuum of black-
body radiation at the black-hole temperature. This
result bears a very close resemblance to the
vacuum stress above an infinitely accelerated bar-
rier. '" It is reasonable to conclude from this
that a physical realization of the Boulware vacuum
would be the vacuum state outside a massive
spherical body of radius only slightly larger than
its Schwarzschild radius.

In fact, on the basis of the similarity between
the result for (BlT„"lB)„,as r -2M and the
form of (T„"),above an accelerated conductor
we are led to conjecture that for a massless field
of spin s

—h(s)
ra 2' (1 2M/r}'

d (d(d((d +S K )
e2r(agK ( 1}2s

-1000
0 3 0 0

0 0 3 0

0 00 3J

0 0 0 3

t

where h(s} is the number of helicity states for a
massless field of spin s. I have verified this
conjecture by direct calculation for the case s = 1.'~

For the Unruh vacuum we have

(Ul T.'I U&...—(Ul T.'lU& -«I T.'IH&
r»2M

(
2M)'

4m

(18)

where a and b range over t and r, and the lumino-
sity of the hole I- is given by

1 "d~&u~, (2l+1}IBq(&u)I'
e2FQ/k

0

Now the regularity of of (HlT2 lH)„, on the hori-
zon ensures that of (Ul T~ lU)„, since these quan-
tities differ by a finite amount. From this we ob-
serve from (18) that(UlT„"lU)„„is regular, in
a freely falling frame, on the future horizon but
diverges on the past horizon.

As r- ~, (BlT„"lB),is expected to be of the
order of the square of the Riemann tensor, i.e.,
O(M'r '), thus we may write
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1 dcoco

2 p& g~&td /ff 10

-1 0 0 0

0 3 0 0

0 0 3 0

0 0 0

(1S)

to denote the indicated two-point functions eval-
uated in the partial coincidence limit

With this understanding we write the point-sepa-
rated stress tensor in the form

—-', ([G,....J
+[G;.sg .g'. 16, (21)

where g 6 is the bivector of parallel' transport.
It is convenient to introduce a modified Kruskal

"time" coordinate y by writing

I,
4my'

1 1 0 0
( )

0 0 0 0

0 0 0 0

where the final expressions in (1S) and (20) again
result from explicit evaluations of mode sums
that are performed in Appendix A. We note that
(1S) corresponds to a bath of blackbody radiation
at the black-hole temperature while (20) corre-
sponds to a flux of radiation outgoing at O'. Thus
we have confirmed that the asymptotic behavior
of (T,"& is as was conjectured by Christensen and
Fulling.

IV. &H IT„"ILO„„ON THE HORIZON

We turn now to the explicit evaluation of
(Hl T„"lH)„, on the horizon. We shall in the first
instance calculate (H

l T," lH)„, on the bifurcation
two-sphere basing the calculation on the represen-
tation (16). The result may then be partially ex-
tended to the rest of the horizon in virtue of the
symmetry generated by the Killing vector e/et.
Unfortunately, however, one component of
(Hl T„"lH&„, remains undetermined by this pro-
cess. I hope to return to the computation of this
remaining component in a future publication.

As has been remarked previously, the evaluation
of (H

l T,"lH)„, on the bifurcation two-sphere will
require us to differentiate the representation (16)
before allowing q' to approach unity. One result
of this is that we shall be obliged to evaluate angu-
lar sums over the radial functions with n = 1, a
task somewhat more involved than that of evaluat-
ing the corresponding sums for n = 0.

We shall again regularize by separating points
along a radial geodesic. For .brevity let us intro-
duce the notation

[G],[G.„],[G.,„.J, etc.

5= -ip

Recalling that i= -it', we may replace (2) by

x/a
y=

2
——1 e""sin(gg),

z/a

2M
—1 e""cos(vf) .

(22)

in terms of which the metri c becomes

32Mds'= e '""(dp'+ p'~'dl')

+ r'(de'+ sin'ed'') .

It is also convenient to adopt a suffix convention
whereby

a, b, c, d range over (u, y),
i,j,k, l range over (e, Q),

and Greek suffices range over all four coordinates
as usual.

The symmetries are such that on the bifurcation
two-sphere (Hl T„,„,lH)„, must assume the form

Ageyt 0
&Hl T,,„,lH&„, = (24)

a

where A and B are constants whose sum is deter-
mined by the trace anomaly

&ren=2660p
' '"' '

a's'r'6'

1
3840m M

The obvious analogy between (22) and the relation
between Cartesian and plane polar coordinates
prompts us to define yet another radial variable
p by

(22)
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s' )subtract } (25)

Determination of the g„"

In virtue of the symmetries of the manifold we
must have

D a a——= u(p)—
Bp Bp Bp

for some function o(p).
Furthermore, since g,&

——0 we have

(2s)

a 1@i (a D 1a~=g ————I+gl ————
lap ap p a&i (ap ap p a~-j

t'a D 1 al
=gl ————

I—lap' Bp p Bg)

from which, again invoking the symmetries of the
manifold, we may deduce that

a 1 B———= Ia(p)
Bp pK Bf pK Bf

for some function P(p). Now

when r' = 2M.
The determination of the constants A and B in

(24}devolves upon the computation and renormal-
ization of the point-separated stress tensor (21}.
The calculation involved is straightforward in
principle but since it is somewhat beset by detail
we shall pause here to indicate our strategy.

We shall first calculate the bivectors of parallel
transport for two points

x=(g, r, 8, y), x'=(t. ,r', 8, y)

which have the same values for f, 8, P and where
x&2M and r'&2M. A considerable virtue of point
separating in the radial direction is that the g„"
assume a very simple form.

The next step is to calculate the various com-
binations of second derivatives of 6 that we will
require. Some of these may be obtained by direct
differentiation of (lV) while others involve the ra-
dial functions corresponding to n = 1. In particu-
lar, it is necessary to obtain an asymptotic expan-
sion of the quantity

Q (2l + 1)q,'(q)
jao

as p-1. This in turn requires the development
of uniform asymptotic expansions for the radial
functions q', (q). Marshalling these various quanti-
ties we are able to calculate the point-separated
stress tensor (21). It will then remain only to
evaluate the subtraction terms ( T„„),„„„~,(Ref.
6) and to calculate the limit

(a
l r.,"le&...= Iim (&a r.,' la&,.„,...,

r 2M

and

D
Bp Bp~ Bp j

1 B 1 B

Bp p K Bp — pK Bg pK Bg

&D 1 a 1 al
—(Bp pK Bg pK Bgj

1= 2P(p)» g,c,
p K

(2S)

(29)

but since we also have
2 2

gqq= p K gpss

it follows from (2S) and (29) that

o(p) = P(p) = ——lng„.=1 a
2 Bp

(30)

M
1

2M M
r'(I -2M/r) '

2MI"~~"=—r sin'8 1 —,(32)

I"~~ = -sin6) cos8,

In order to apply these results in a more standard
coordinate system we note that in virtue of (22)
and (23) we have

a= a sin(Kt)—= cos(K))——
au Bp pK Bg

'
(31)—= sin(Kg) —+a . a cos(KL) a

ay ap pK ag

from which it is clear that
Da a Da a——= ~(p)—and ——= o(p) —,
ap Bu au apay ay

'

and given (30) it follows rapidly that in Kruskal
coordinates

(g„g"')'~' if a= 5
A'g

0 if a+b.
Similar reasoning reveals that

(g gk lk )1/2 if j
J

~ ~

~

0 if j&k
and that the other components of g„" vanish.

The derivatives of G(x,x')

For completeness we record here the nonvanish-
ing components of the connection:

M
r'(1 —2M/r)
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Let us first consider quantities of the form

[G.,„], [G,.], [G,, . l.
It is evident that the first two of these may be ob-
tained by direct differentiation of (17). The G./, ~,

potentially involve the G, , since there are non-
vanishing connection coefficients of the form

However, we have

gl
G gtg 'LT )tgt ~ gtgt ~ fit

and using (32) we may rewrite the second term as

and

in which we shall take b to denote either of the
Kruskal coordinates. We note that as g'-1

P, (q') =1+O(p")

and

pn(~&) (2&/te-&/tpr)n

(34)

2M gGr, , ' G, , =-g, , , —,y, , +r, ,„'G,r r gr' t

Now we see from the representation (16) that

(
2M t (3G

1 —,~, -0 as t'-2M,

and since we also have

[G )e]=0

we may deduce that

[G. t /]y:[G / ~ t ]

Therefore, by (31), we infer that (33) is zero and
that (34) is nonvanishing only for n = 1, and that for
this case we have

lim, p, '(q') co(sg —g') = 2'/'e '/'cosmica

„, , au'

From which it rapidly follows that

Thus the G.&.~, may also be obtained by direct dif-
ferentiation of (17).

We now turn to the quantities

[G .,], [G ., ], [G ., ] .
Of these the first may again be obtained by direct
differentiation of (17) while the second and third
are more complicated. However, since it proves
sufficient for our purposes to have a knowledge of
the (two-dimensional) traces of these quantities
we may evaluate the relevant part of the [G, , ]
by invoking the wave equation. Thus we have

where

cos2v) sin2vf

sin2v) -cos2yf

(36)

a quantity which we have already evaluated.
Thus of the derivatives of G it remains now only

to calculate the [G.,t, ]. Referring back to (16) we
see that this quantity devolves upon a determina-
tion of the limits

(33)

The results for the various coincidence limits of
the derivatives of G have been gathered together
in Table II.

Bather than calculate all the components of
(H

~
T,.„,

~
H) „t„„,d directly it proves sufficient for

our needs, and somewhat simpler, to calculate the
partial trace (H~T, ,' ~H)„t„„,q. From (21) this is
given by

TABLE II. Partial coincidence limits of the two-dimensional traces of the second deriva-
tives of Gz(x, x') for x' a point on the bifurcation two-sphere.

—32/+2~ [6Qj
2~(r-M)
r~(&- 2M)~

Vao
aI"

eKr „)i/2 t 6F
16M2 N) Bp pJ

g lyl
g Vglyl

1
2P -2M)'

-»~~'u'f co)

gpss V Pa'V

M
r(r- ag'

~lyl
g Vglpl

1
2(r-2~}2
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«I T. "I»-.-."= -2(l((G,.bg"'] —IG,, «g"1}——,
'

((&,.'j+ [&,.'1H.

Substituting for the derivatives of 6 we find

(36)

y ~2 gF F y +8~/' —4~
1636m M M 3p p 384ti M r (r —2M)

(37)

It is now incumbent upon us to evaluate ( T,„.),„b„„,the subtraction terms of Christensen and subtract
these from (37) in order to evaluate (H~ T,, ~H)„,. From Ref. 6 we find that for a Ricci flat space

/m2/ m ~ of 0'v 1 ~ply'K'I, ' ~ 0'g 'ov'
~ ~ ~ g Iv'I subtract — p' Ng'vl ~ p' 'I 24plylKl I pl0'p. 0' 0'p, 0' Opl 0'

n' 8'
R

I
R p'7I 1 n p'~

45 real V I CLpI nl plgl + Rglp Ip ln I mVI BI + R&lpI+I nIRV ~ BI / pr45 45 0pl (T

n I nr 8I
1 p'w'K' +v' )+ pI7IKI 0 0 0' 0'v——R n'Rp'7'K' ( ll' p ' 1 p'T 'K' n'

0 0 180 gl ps gglV I pI
0'p, 0' 0'p, 0' )

ns 8I yl
4 p. 0'v )0' 0' 0'

46 RI'6'r'r'+ 6 t t u & 'I')2(0 .0'

gI yl 6I
1 p' T 0 0 0 o o„,ovl

90 n' 8' p'r'7'6' I p' &2 gf. v
—

P

n' 8' r' 6'+(1 n 1 ~p' 0 O 0 0
90

+ g R& Inlvlgl .&I6I 4 Ll nlii Ig p y v 6 +
36 n p Rpr&I &I6Ig&lvl /

(O' 0' I, ), . (38)
( pl

The evaluation of the above is a straightforward
calculation which is simplified by the observation
that the nonvanishing components of the Riemann
tensor may be expressed in the form

1
&res =

768&2M4

x lcm —— —+—
16M

Rebel r6 (gee ge4 gal 8'ec) r

8m4

Ragbag

6 Cab@A ty'
(38)

4M'

(r —2M)' (r 2M}—

16M
fttiat = r6 4'tent gtt gib) ~

For completeness we compute the values of the
individual terms in Appendix B. The result of this
calculation is that the first term in (38) which is
the quartic infinity gives rise to a term

(T,' 1
a' )ttuattic subtract 64+M2(r 2M)2

1

182v'M'(r —2M }

17
1162O 'M'+

(42)

It remains now only to develop an asymptotic
expansion for F as far as the order that is re-
quired to perform the limit (42), i.e. , O((r —2M)'~').
To this end we shall develop asymptotic expansions
of the radial functions II', (ri) that are uniformly
valid with respect to the angular momentum param-
eter l.

Consider the radial equation (14) for values of rt

very close to unity. In particular, we observe that
the last term in this equation contains the factor

(1+q)4 1

16(q'-I) „,q'-I '

Thus there is some sense in which rett(t7) is asymp-
totic, as g —1, to a solution of

The finite direction-dependent terms in (38) give
rise to a contribution (

d d n'—(g -I)—-I(I+ I) —, n=O
de de n —1

(43)

1
fmite subtract 288Ott2M4

(41)

Thus subtracting (40) and (41) from (37) we ar-
rive at the expression

which we recognize as the associated Legendre
equation corresponding to parameters (l, n).
Therefore, recalling that

Wt(n) -(ti —1) '"
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as )I —1 for fixed l we see that there is a sense
in which a uniformly valid asymptotic form for q,

'
is given by

this relation being uniformly valid in l. By con-
sidering (50) as q-1 for fixed l we see that there
exists a solution to (49) which satisfies the asym-
totic condition

q', (n) ~& 9', (n) . (44)
q', (~)- „'.. (n- I)"'I (n-l). (51)

The freedom to add a multiple of the "small" solu-
tion P', ()I) of (43) to the right-hand side of (44) is a
point that will be subsumed in what follows.

It turns out, perhaps somewhat surprisingly,
that although we have to go to an asymptotic ap-
proximation of higher order than (44) in order to
correctly compute the limit (42), the lowest-order
asymptotic form (44) already suffices to correctly
determine the infinite part of (T,„,).

In order to improve on (44) we may, with a cer-
tain prescience, write

q', (n) = P, p', ()I) ~& 9', (n)

-f(~K, (~) + q', (~), (45)

where the P, are constants and f(q) is a function
independent of l. We shall now show that it is pos-
sible to choose f(nl) and the coefficients p, in such
a way that the "remainder" terms q', ()I) do not con-
tribute to the limit (42).

I et us denote the differential operator (14) spe-
cialized to the case n= I by L. Then in virtue of
the properties of the Legendre functions and the
fact that Lq', and Lp', both vanish we find that

q', (q)WZ [16—(1 + q)4]
Lql

16(q' —1)

We remark (i) that the differential equation (49)
subject to the boundary condition (51) possesses a
unique solution, and (ii) that no loss of generality
is entailed by taking q, to be this solution since,
in virtue of (16), (45), and (49), the only freedom
that remains in the choice of the q,

' consists of the
possible addition of multiples of the p', . This
amounts to no more than a redefinition of the, as
yet unspecified, constants P, . These are now deter-
mined by the imposition of the condition that q', (q)
should vanish as g —~.

Consideration of (50) for large values of l reveals
that (51) provides a tolerable approximation for
values of la A with

A = (q I)-'/' ~

for l && the combination q', (r/)+ p, p', (q) cuts off
exponentially in l. Therefore, we are able to esti-
mate the contribution of the terms qt(g)+ p, pt(q)
to the sum (35) to leading order in (r/ —1):

g (2l+ 1)[q', (n)+ O, P', (n)]
l=0

-
(n - I)"' g(21+ I)I3, +O((n- I)"'}. (52)

~=0d, d (1+a)'
+Q, (n) d„(n' — )d——„—16(„. 1) f(&)

+ 2(n'-1) —e, (~)—f(n) .
dn ' dg

Now

—q ()7)= (rl' —1) '"9'(1).

(46)

(47)

Thus the q', (r/) can be said not to contribute to the
limit (42). The convergence of the sum over P,
presents no problems since it can be shown that
P, is of order l ' for large l.

Putting these various results together, recalling
Heine's formula from Sec. II, and using (47) we
find

f(n)=
nn f . ) „,(()+()' —)()I. (48)

With this choice then

Thus by an appropriate choice of f(q) we can ar-
range for the third term on the right-hand side of
(46) to cancel the first. This is accomplished by
choosing

F(~)= 2 1

(g 1 )3/2 2 ()7 I )~ /2

1
+(n —I)'" g(2l+I)V, —

—,',
~ )sQ

L 16

+ O((q —1)'/' In()7 —1)). (53)

4

Lnl(n)=e, (n)(„—(n*-()——, , " lf(n). (n())

From (48) and (49) it is readily shown that

Thus we are finally in a position to compute the
renormalized value of the stress tensor. Sub-
stituting (53) into (42) we find the value of the con-
stant A occurring in (24):

I q', (~)„-,——„;(n- I)"'e,(n), (50) + 2l+I P,
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The value of B follows immediately from the known
value of the trace anomaly:

TABLE III. Values of the Pq coefficients.

2o
— 2'+'

~ ~

l=o

In Table III we display the results of a numeri-
cal computation of the P, . The details of this cal-
culation may be found in Appendix C.

From the Table III we find

Q(2l + 1)P, = 0. 1286 .
%e observe from this that both A and B are posi-
tive or equivalently (referring now to the physical
manifold) that the energy density is negative and
the principal pressures are positive.

The extension of &T ) away from the bifurcation
pv ren
two-sphere

An elementary calculation reveals that if
(T„„(x))„„is to enjoy the symmetries of the
Schwarzschild manifold then it must have the
structure

(r„)„..=X(r)g.,+ C(r)n„,

(Tta)...= B(r)g)»

with

cosh2~t -sinh2~t
cb y'

2N

-sinh2zt cosh2et

in (u, v) coordinates and where C(2M) must vanish
in order that ( T,~)„„bewell defined on the bifur-
cation two-sphere. Our calculation has yielded
the values of A(2M) and B(2M). The term involving
C(r) gives a contribution to the expectation value
of the stress tensor for points on the horizon
away from the bifurcation two-sphere since for
these points ~t ~- ~. We find, in fact,

r
C(r)O, o

—8M e C'(2M) V
'&-1 1 J

for points on the future horizon and

'1 1'
C(r)Q, „—8M'e 'C'(2M) U

0.119377314
0.002779253
0.000144501
0.000018365

with internal degrees of freedom which enable it
to be in states corresponding to varying degrees
of excitation. A concrete example of this sort of
device is the one originally proposed by Unruh
which consists of a rionrelativistic Schrodinger
particle that is confined inside the box. If the box
is at rest in a static gravitational field the regime
inside will be static and the internal degrees of
freedom will be able to assume various energy
eigenstate8.

The internal degrees of freedom of the box are
now weakly coupled to the fluctuations of the scalar
field via an interaction described by adding a
term

g„,(x)=m(x)y(x)

to the Lagrangian of the scalar field. m(x) may be
thought of as some sort of monopole charge which
for Unruh's original box might be related to the
wave function 4(x) of the Schrodinger particle by

m(x) = ~+*(x)Oe(x)
P

with 0 some operator and A. a small coupling con-
stant.

The box is assumed small in comparison with
the length scale associated with variations in the
spacetime geometry so that m(x) may be written
in terms of the box's path

x(T)=(t'+ T, r', e', y')

as

m(x) = q(T)~(r r')~(n, n'). -
A short calculation analogous to that of DeWitt

then reveals that the rate, as measured at the box,
at which the box makes transitions from a state 4o
to a state C„which differ in energy by an amount,

for points on the past horizon. Unfortunately,
C'(2M) remains undetermined by our analysis. (' ")

V. ON THE RESPONSE OF AN UNRUH BOX

The response of an idealized "particle detector"
has been considered by Unruh and has been further
examined by DeWitt. " A black box is endowed

as measured at the box, is

a(~ l~ )= I& o. I,.)o) lo, ) I'()

x d7e ~"' 7 0
~ OO

(54)
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in which Q(v }has been used to denote P(x} eval-
uated at x(r}. An important observation to be
made from (54) is that 6Na) ~r) is essentially deter-
mined by

n(~l~) f=d'~ '"(y(~)y(0)),

the Fourier transform of the autocorrelation func-
tion of the field.

The calculation of II(~
~

r) in the various regimes
of interest is a straightforward matter since no
renormalization is involved. The results are sum-
marized in Table IV.

As r- ~ we see that the asymptotic forms of
II(ru~ r) are in accord with the response expected
from a "particle" detector given the interpretation
that we have placed on the three vacuum states.
Note, however, that the same cannot be said as
r-2M. We find, for example, that in the Hartle-
Hawking vacuum the response of an Unruh box be-
comes infinite as the horizon is approached while
(H~ P'~H)„„and (H~ T,"~H)„, retain an unremark-
able appearance.

The origin of this apparent paradox lies in calling
Unruh's box a particle detector. We have seen
from (54) that the response of the box is deter-
mined not so much by "particles" as by the Four-
ier transform of the autocorrelation function of
the field which, by the Weiner-Khinchin theorem,
is the sPectrum of the fluctuations of the field. In
more graphic terms, Unruh's box is a "fluctuo-
meter" rather than a particle detector and, there-
fore, contains information both about the fluctua-
tions of thefield and the motion of the box. Thus
the readings of the box in the Hartle-Hawking
vacuum as r -2M need occasion no surprise since
the acceleration to which the box must be subject
in order to maintain it at constant radius tends to
infinity as r —2M.

VI. THE RATE OF AREA DECREASE

note that this property combined with the diver-
gence condition suffices to determine the rate of
decrease of the area of the black hole.

The rate of area decrease is determined by the
Newman-Penrose equation

&P a—= ap+ p +cro*+4s (T„„)„„I "I", (55)

in which p is the convergence and o the shear of
the null congruence /' which generates the hori-
zon. In (55), p' and dp/dv are second-order
quantities. If we neglect also the back reaction
due to the radiation of gravitons (we shall return
to this point) we may omit the oo* term. The
lowest-order solution to (55) is then

p= ——(T „)„„I~I"
K

with

and therefore

(T )„,I~I"=-((T„),+ (T„„„),+2(T,„))
—(T,„„) as r-2M .

The last line follows from the fact that we must
have

(T„)„„+(T„„)„,—2(T)„„)=O((r —2M)a)

as r-2M

in order for (T,„), to be regular in a freely fall-
ing frame on the future horizon.

The divergence condition for the flux compo-
nents implies that

We have argued that the Hawking and Unruh
vacua give rise to stress tensors that are well be-
haved on the future horizon. It is of interest to with L the luminosity of the black hole at infinity.

TABLE IV. The asymptotic values of the function II(cu~ r) which determines the response of
an Unruh box. 8 denotes the step function.

Boulware vacuum Unruh vacuum Hartle-Hawking vacuum

2M
~ 0(—(d)

2~(1 —2&i/r) 2g(1 —2~/y) (g2 &~/K 1) 2g(1 —2~/r) (e ~~i'" —1)

——8(-cu)
27r

1 Z(2l + 1) ~ B, {e)) ~

t a)

8xcu (e~ ~ ~~K —1) 2x 2&(8P +~/K —1)
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Now the rate of area decrease is given by

dv
—= -2 pdA

from which it follows that

(55)

Fulling, and to thank D. Deutsch for assistance
with the numerical computations. The analysis of
See. VI, relating to the back reaction problem, I
owe in large part to suggestions made to me by
D. %. Seiama.

APPENDIX A: ON THE ASYMPTOTIC EVALUATION
OF MODE SUMS

which is (of course) just the relation that was to
be expected, since setting A = 16'' this equation
becomes

dM
dv

We review here a number of techniques which
prove useful in the evaluation of the results quoted
in See. II.

Consider, for example, the quantities

It is curious fact that one may deduce the value of
( T~„)„,l "l"on the horizon without actually doing
any renormalization; simply the knowledge that
the renormalized stress tensor is finite there suf-
fices. From the way that ocr* enters into the New-
man-Penrose equation (55) it would seem that we
must also have

and

Q(2l+I)IR (~lr) I'
l=o

Z (2i+ I) IIti(~lr) I'.
l~p

(Al)

(A2)

1
-4M '.- "-

as x-2M.
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The asymptotic forms of (Al) as r-2M and of
(A2) as r- ~ may be obtained directly by sub-
stitution of the asymptotic forms that define the
radial function.

The asymptotic form of (Al) as r- ~ may be
found by use of the WKB approximation. In par-
ticular, we may consider the WKB approximation
to the point-separated Boulware Green's function.
As ~- ~ for fixed t & 0 we have

00 OO

&,(t, r, e, e;O, r, &, e)=l I6p ~ '"' Q(2l+ I)I:IR, (~lr) I'+ IR, (~lr)l') „-„.',.0 l=o

and hence

E (2l+ I) IRi(~ lr) I' 4~' ~

lsP gA OQ

The remaining case is the asymptotic form of
(A2) as r 2M wh-ich requires a certain amount of
care. A possible line of attack is to implement
the WKB approximation; however, this suffers
from the disadvantage that in its naive form it is
not uniformly valid with respect to E. This fea-
ture can be remedied' but the whole procedure be-
comes then somewhat ungainly, especially for
fields of nonzero spin. Moreover, when dealing
with fields of spin greater than zero it is all too
easy to discard important terms and lose the low-
frequency behavior of angular sums near the hori-
ZOll.

Since no great complication is introduced there-
by we shall treat the problem in rather greater
generality than is in fact required and seek asymp-

totic solutions to the radial Teukolsky equation for
the Kerr metric. The scalar radial equation for
the Schwarzsehild metric results from this by
setting both the spin parameter s and the Kerr
parameter a equal to zero. In standard notation"
the Teukolsky equation assumes the form

, +2(s+ l)(r M)—d R dR
&' &'

K K 2' f M + 4 0 A3

with

A = (r'+ a')(u —am .
If we seek solutions to (A3) as r- r, then by setting

q= [(o(r, +a ) -am]= —((u-m&)2 2 2 1
y' —y' K

we may wrzte
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(r r-, ) + +(s+1)dR dR

q(q -2is) l'
+

4( )
—

( )
R=0. (A4)

In the above we have replaced A. by its asymptotic
form for large E since it is only when l is large
that it may not be neglected in comparison with

The contribution of a mode u to the (conformal)
stress tensor is

got
ggp Qc/Qu ~

Therefore, choosing modes u appropriate to the
Boulware vacuum, we may write'

Let us define a new radial variable by + Ttttu[ u2 u ]3 1

y+ —y'-

in terms of which (A4) may be rewritten as

(1 ]2'..]I

tt& = Q f do(ecto(coiu)1' [u, u ]
lm 0

d'ft (2s + 1) dR q(q —2is)
+T,„[u,u*]j, (A8)

(A5) admits solutions which may be expressed in
terms of modified Bessel functions as

~-'Z, „,(2t(), ~ 'I, „(2&~). (A8)

The virtue of these solutions being that they axe
uniformly valid zvith respect to l.

We specialize now to the case s =0 and the out-

going function R, (&u ~r) for the Schwarmschild
met'ric and write

(ldll' I»=.g f drccotc (T Iuu]„„,
lm 0

+ 7',„[u,u*]).

It is a straightforward matter to evaluate the
mode sums involved in differences of stress ten-
sors by employing the methods that we have dis-
cussed. As an example consider the limit as
~-~of

(H [ r,„fH ) —(B '/ I „„f11}
R, ~ a, Z&, (2l))+b, I &,(2l]). (A7)

We observe that as l —~ for fixed ( R, ((t) ~r}—0
since r lies then in the region for which the effec-
tive potential' for the radial function is large. We

may deduce from this that b, is an exponentially
small function of 1 for large l. The second term
in (A7) will therefore make a contribution to the
sum (A2) which remains bounded as $ —0 and

which may be neglected in comparison with that of
the first term which will be of order ~ '. The co-
efficient a, may be determined by taking the
asymptotic limit f -0 for fixed t in (A7) and com-
paring the result with the WKB form

=2 '""'"—1 T» u, u* + T» u, u* . A9e2ff~A/k 1 gp

1
2''7'

-3 0 0 0

0 1 0 0

0 0 1 0

0001

Now the WKB approximation to the point-sepa-
rated Boulware stress tensor in which the two
points are taken to be (t, r, 8, p) and (t + T, r, 82 (])))

is known, ' in the limit z- ~ for fixed v, to be

Thus we find However, this quantity is also given by inserting
a factor e '" into (A8b), which implies

and hence to leading order

r& (2) + 1) ]Rr(tu nic) ] M 1, 1
. f rill ter (2l1)

1=0

4'
1 —2M/r '

3

T~„u~ u + Tgp u~ u

which establishes (19).

000
0 1 0 0

0 0 0 1
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APPENDIX B: THE EVALUATION OF |' Ta )subtract

We record here the values of the individual finite
direction-dependent terms in (38) since these
terms will be required to repeat the calculation of
(T„,„,)„„for higher-spin fields. We shall number
the terms in (7', .')r „,„b„„, from 1 to 11, and

by "term" we shall understand a product of Rie-
mann tensors and separation vectors with numeri-
cal coefficient unity. Thus, for example, term 7
is

g a'0. fz
(T 8 0. 'Y

Rp'8'v'v'R n' a' i v')2(Pp. 0

which appears in the expression for
-Sm'(T, , ' )~,.„,„„„„,with coefficient —,', . With this
understanding we record the values of the various
terms in Table V.

The evaluation of the entries in Table V is
straightforward given Eq. (39) with the possible
exception of term 9 which involves the second co-
variant derivative of the Riemann tensor. In order
to evaluate this term we set

ggv=pf v+qgv

with

2ra ra
'Vvv;8= Vvv (0 aVlv+ll' villa)=0 ~r r

Since, trivially, p, v. = -q„„. , we have estab-
lished (Bl).

Now

p„...,= (p...), 5
—I'.5 p,.

~va"p v, x'a ~ay"p p,v 'K

g= -~a& p~', .

since by (32), I'„"= 0, and this establishes (B2).
We are interested in the quantity

RvnvB;vP;5 Rvnva;BP;&j '
Now

p"".„0'0'=0 and p"". o"=0
in virtue of the lemma. We also have

2Mp""R„„,=, (p„, —q„B)r
and the required result follows from an elemen-
tary calculation.

0 0

and

p,„.,=q„v.,= 0

g,~ 0
pgv and g~v =

0 0 "" 0 g&

and first establish as a lemma that

(Bl)

APPENDIX C: THE NUMERICAL EVALUATION OF
THE P( COEFFICIENTS

It follows from (14) and (15) that the Wronskian
relation between the radial functions p', and q',

takes the form

p'(n)
d
—„q', (n) —q', (v) d

—„p', (q) = —,
pwv;ab qgv;ab 0 ~ (B2)

8
ql v, a —r, a ) qf v

—
ga q&v

—
va ql g ~

a 2

To establish the lemma we note the following
identities:

l 2 l
0l (q) pl (1)

(~2 1)[pl(()J2 (C1)

Now, by obtaining a series solution to (14), it
is easy to show that as $ —1

If we divide this equation by (p', )', integrate and
recall the boundary condition that q', (q) —0 as
g--~, we obtain an integral representation of q',

in terms of p',

r '=q'
ua

the last of these is true in Schwarzschild coordi-
nates and follows from (32). Thus

1 1 I(l+1)
[p', (~)1' (~-1)

We now rewrite (Cl) in the form

(C2)

TABLE V. The values of the individual terms needed for the computation of
2 a'

te subtract ~

Term number 10 11

Coefficient

M x (term)

1
45
1
8

1
4K

3
32

1
45

5
32

1
45

3
16

180 45
3

32

1

90
3
18

1
90
3

32

1
45
1
18

1

38
3

18
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e', (n) = 2p', (~)

d$ 1 1 l(l+1)~
(&'-1) [p', (~)]' (& -1)

"~'"'~ (~'"-~)(~-~ ~ ) (C2)

and observe that the second integral can be eval-
uated exactly and that in virtue of (C2) the first
integral converges as q —1.

From (C2) we obtain an asymptotic expansion of
0(('1) as ) »

g(~) = (~ —1) '"+ l[f(f +1)+1](n—1)"'»(g —1)

+ (2 I, + —,'l (l + 1) ——,
'
[f (I + 1) + 1]ln2)(g —1)'~ '+ O((q —1)'~ 'ln (q —1)),

where

d$ 1 1 l(l +1)
(&'-1) [p'(&)]' (r-1) (C5)

Alternatively, we may expand the relation (45) near q=1 to obtain

~'(n) = (~ —1) '"+ -'[l(f + 1)+ 1](n —1)'"»(q —1)

+ f[l (l + 1) + 1][$(l+ 1) + y -
& ln2 ——,'] + —,

' + P](q —1)'~'+ O((q - 1)'~min(q —1)), (ce)

q(z) =—lnl (z)
d

QZ

and y is Euler's constant.
Comparison of (C4) and (C6) provides us with an

expression for the P, that is amenable to numeri-
cal computation:

P, = 2 I, - [l (l + 1) + 1][g(l y 1)+ y
' ]

The evaluation of (C5) is conveniently per-
formed by dividing the range of integration into the

two ranges 1 & f & 2 and 2 & t' (~. In the former
range the function P', is rapidly calculated by sum-
ming a series solution to (14). The p', was eval-
uated in the latter range by a fourth-order Runge-
Kutta scheme to integrate (14) using as starting
values the p', (2) and p', (2) calculated from the
series solution. The aavantage of basing the cal-
culation on the numerical integration of (14) for p,

'
rather than attempting a direct numerical integra-
tion of the q', is that it is difficult to perform the
latter in a stable manner. It was found that a
programmable calculator sufficed to determine
the P, to nine decimal places.
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