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The classical theory of the geometrical string is developed as the theory of a simple, surface-forming

timelike bivector field in an arbitrary background space-time. The stress-energy tensor for a perfect dust of
such strings is written down, and the conservation laws for such a dust, as well as the equations of motion
of the string, are derived from the vanishing of the divergence of the stress-energy tensor. (The boundary

conditions for the open string are also derived from the junction conditions for the stress-energy tensor in

Appendix A.) The generalization of this model to null strings, and to a perfect fluid of strings, are
discussed, and will form the subject of the second and third papers in this series. The problem of a fully

general-relativistic string theory, and an alternate approach to the string, based upon defining an

acceleration tensor for two- (and higher) dimensional subspaces, are also discussed.

I. INTRODUCTION

In recent years there has been extensive dis-
cussion of the theory of the geometrical string,
primarily because of its application as a possible
interpretation of the dual resonance model of ele-
mentary particles. ' However, the theory has also
been discussed on the classical level2; and, in-
deed, from this point of view it provides a re-
markably natural generalization of the relativistic
theory of a structureless point particle. This
generalization could have been made at any time
after 1905, and it is rather Surprising that such
a natural structure should not have been investi-
gated much earlier. This paper will be exclusively
concerned with the classical theory of the string;
the hope of generalizing special-relativistic string
theory into a fully general-relativistic one pro-
vides its ultimate motivation. '

The geometrical string will be treated as the
theory of a surface-forming simple bivector field,
subject to field equations which determine the sur-
face. This bivector field is usually treated
mathematically by introducing a parametrization
of the surface, and a pair of linearly independent
vectors, derived from the parametrization, which

span the surface. While there is nothing wrong
with this procedure, it may tend to make one lose
sight of the fact that the resulting theory must be
invariant under the family of possible reparame-
trizations of the surface which leave the bivector
unaltered. However, it is equally simple to treat
the bivector field intrinsically, . as we shall demon-
strate, and perhaps more natural to do so, in the
sense that it is more natural to discuss any geo-
metrical figure intrinsically rather than via its
components with respect to some basis.

The next section will review some well-known
mathematical results on simple surface-forming

bivector fields that will be needed in the following
work. 4 In Sec. III, we shall review the "thicken-
ing" of a point particle provided by the incoherent
dust model of matter, and recall how the equations
of motion and conservation law for the dust may be
derived from the vanishing of the divergence of its
stress-energy tensor. .We shall do the calculations
in a way that brings out the parallel to our treat-
ment of the string case.

Section IV treats the thickened string by intro-
ducing an incoherent dust model; again, the van-
ishing of the divergence of the stress-energy ten-
sor leads to the correct equations of motion for the
string, as well as a conservation law.

In conclusion, we shall discuss why the thickened
string seems a good starting point for developing
a properly general-relativistic string theory. The
possibility of extending -the approach of this pa-
per to null strings, and of developing a theory of
elastically interacting strings —in particular of a
perfect fluid of strings —will also be mentioned.
Finally, an alternative treatment of string as sub-
spaces with a vanishing trace of the acceleration
three-tensor will be indicated.

Two appendices treat the boundary conditions for
an open string, and the reduction of the bivector
conservation law to two vectorial conservation
laws.

II. SIMPLE, SURFACE-FORMING BIVECTOR FIELDS

We shall carry out our discussion using ordinary
tensor analysis, ' although the discussion often
could be done more elegantly by using the language
of differential forms. '

A bivector is, of course, an antisymmetric ten-
sor of second rank. Since we shall always work
in a four-dimensional space-time with metric of
Lorentz signature (+ ——-), we shall not always

1980The American Physical Society



JOHN STACHEI, 21

emphasize the properly covariant or contravariant
nature of the entities we consider; but we should
think of our bivectors as fundamentally contra-
variant, since we want them to span surface ele-
ments. Thus, if the bivector is simple —that is,
may be written as the alternating product of two
(contra) vectors:

S""=h'n" A-" (2.l)
—it defines a surface element spanned by the two
vectors Pan, d q. ' It is easily proved' that a bi-
vector is-simple if and only if it obeys the alge-
braic condition

S[P&Sfc)x 0 (2.2)

where square brackets indicate total antisymme-
trization over all indices included (we shall oc-
casionally indicate that an index is to be omitted
from antisymmetrization by enclosing it between
upright lines). This is clearly equivalent to

S fJ, PSKx 0& p. wee (2.2a)

where q „„,is the four-dimensional I evi-Civita
totally antisymmetric tensor density. Thus, if we
define the dual (properly covariant) bivector den-
sity *S,„by

kit
~p, ~X&

we may also rewrite (2.2) as

(2.3)

(2.2b)

+S 8 S""=0.
tc (2 4)

It follows as a consequence of (2.2b) and (2.4) (as
indeed it must), that any multiple of a field of
surface-forming simple bivectors is also such a
field. In particular, we may multiply the bivector
by a scalar density field p, in which case it will
follow that

*S„„B„(pS"t') = 0. (2.5)

Since the ordinary divergence of a contravariant
bivector density is a vector density, each term
entering the product in (2.5) is a tensorial entity,
while this is not true of the second term in the
product (2.4).

The major result of this section that we shall
need is that a simple surface-forming bivector
field can be intrinsically characterized by Eqs.

Now suppose that, instead of a simple bivector at
a point of space-time, we are given a simple bi-
vector field over some region of space-time. The
surface elements so defined at each point of the
region may or may not mesh together smoothly in-
to families of two-surfaces. Again, it can be
shown easily' that the condition for a simple bi-
vector field to be surface forming is

(2.2b) and (2.5).
%e shall also later need the following lemma:

If a vector has a vanishing contraction with a time-
like simple bivector and its dual, then the vector
itself must b'e the zero vector.

By a timelike simple bivector, we mean one
which spans a timelike two-surface element. This
means it can be written as the alternating product
of a timelike and spacelike vector. Its dual will
then be a simple spacelike bivector. This means
that the dual can be written as the alternating
product of two spacelike vectors, which will be
linearly independent of the two vectors spanning.
the original bivector. Thus, the four vectors
spanning the bivector and its dual form a basis
for the four-dimensional tangent vector space at
the point of space-time in question. Thus, the
vanishing of the contraction of any vector with
both the bivector and its dual means that the vec-
tor has vanishing projections on all four vectors of
a basis, and is thus the zero vector.

III. THICKENING OF A POINT PARTICI.E

The equation of motion of a free monopole point
particle is that of a timelike geodesic of the space-
time metric. The geodesic equation can be put into
two equivalent forms, one depending explicitly on a
parametrization of the world line: x' =x~ (X) with

if we used the preferred (affine) parametrization
of the world line. The other form is independent
of parametrization, and uses the unit tangent
vector V' to the geodesic:

V"V„V„=O V"V = j.

Of course, a link between the two is provided by
the explicit parametrization of the V field: V"
= dz"/dX; but the fact remains that the theory of
geodesic vector fields can be developed without
explicit introduction of par ametrization. When
dealing with a single vector field, the result is
trivial. However, in the string case, the choice
of different parametrizations of the surface will
correspond to spanning the tangent space at each
point by different pairs of vector fields; and the
fact that one can develop the theory without any
parametrization is slightly less trivial.

Together with this equation of motion, we have
the (trivial) conservation law that mo, the mass
associated with the particle, is constant along its
world line. The equation of motion can be derived
from a variational principle by demanding that the
proper time along the (timelike) world line be an
extremal with respect to small variations of the
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world line, if we treat the mass mo as a constant
along the world line. However, the result may be
derived from the vanishing of the divergence of
the stress-energy tensor for such a particle,
treated as a limiting case of a perfect-dust stress-
energy tensor in which the density of the dust is
taken as a 5 function centered on the world line.
In this case, the constancy of the rest mass also
follows from the vanishing of the divergence of the
stress tensor for the dust. ' But we need not go to
the point limit: One can obtain these results for a
"thickened" point particle. By this, we mean a
perfect dust, for which the stress-energy tensor
is not a 5 function, but is nonvanishing only inside
of some timelike world tube of finite cross sec-
tion. Indeed, in so far as we look upon a classical
macroscopic treatment of a "point particle" as
some sort of approximation to the behavior of an
extended body (either in the limit when we are
very far away from the body compared to its
characteristic extension, or in the limit in which
we shrink the size of the body to zero while stay-
ing at a fixed distance from it), this seems a na-
tural way of treating such a particle. In any case
(as we shall discuss in more detail in the last sec-
tion}, we are forced to some such considerations
if we wish to consider the body as a source of gra-
vitational field in general relativity, because the
structure of the field near a source simply does
not allow interpretation as emanating from a point
singularity. '

We shall review the theory of such a "thickened"
point particle in a form which brings out the simi-
larity to the treatment of the "thickened string. "
We take the stress-energy tensor of the perfect
dust forming the thickened particle to be

T =V V p (3.1)

~$4 (p)1/2vv VPV

(we use a signature -2}, so that

(3.2)

where v' is a future-pointing timelike vector field,
which is nonvanishing inside some timelike world
tube (we restrict ourselves to a single tube, the
generalization to several tubes is trivial). Clearly,
we can always write v as

v„t'"„=a„(p v")v +p v"v„v„=o (3.4)

We have here taken advantage of the fact that the
covariant divergence of a contravariant vector
density coincides with its ordinary divergence. We
can also remove the covariant derivative from the
second term of (3.4}by noting that the normaliza-
tion of V", Eq. (3.2}, implies that V"V„V„=O, so
that

V"r „V„=V"(s„V„-s,V„) (3.6)

V"v„T",= s„(pv"}=0. (3 6)

This is the differential form of the conservation
law for the world tube, to which we shall return
in a moment. Turning back to (3.4), we see that
the first term vanishes; the vanishing of the
second term is just the condition that the V" field
be the unit tangent to a family of timelike geodesics
which must thus fill up, and form the boundary of,
the world tube. While the fact that V"V„V"=0 is
equivalent to the geodesic equation is well known,
we shall sketch the derivation here, just for com-
parison with the string case in the next section.
Since V~ is tangent to a timelike world line, we
can write it as

dx
dX

(3.6a)

where X is aparameter along the world line which,
from the normalization of V", Eq. (3.2}, is seen
to be the proper time. Thus, we can expand
V"V„V"=0, getting

dx 8 dx
l~ J ~) dx

dA. ' ex" dA. )
""

dA.

or

(again taking advantage of the fact that the anti-
symmetrized convariant derivative of a covariant
vector equals its ordinary curl). Thus, we may
rewrite (3.4) in a form free of covariant deriva-
tives'.

V„T"„=9,(pv") V„+ V"(s„v„—s „V„)= 0. (3.4a)

Now, contracting (3.4) with V", we see that the
second term vanishes, while V"V, =1, so that

T "=pV V" p) O. (3 3) (3.6b)

T"„=pV„V", (3.3a}

where we have put the tensorial density factor into
p. Now, we take the divergence of (3.3a) and set
it equal to zero:

Actually, it will prove better to use the mixed form
of the stress-energy tensor density (basically,
this is because its divergence will then be a force
density, which is properly a covariant quantity):

the usual form of the equation for a geodesic in
terms of the preferred (affine) parameter, in this
case the proper time along the world line.

The differential form of the conservation law
(3.6) can be changed into the integral form in the
well-known way using the Gauss-Stokes formula.
We integrate it over a four-di. mensional volume
and transform to an integral over the closed three-
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surface bounding the four-volume. " Choosing the
closed three-surface to be the surface of the time-
like tube bounding the dust, plus two spacelike
cross sections of it, and noting that no matter can
flow across the timelike bounding tube, we finally
get the law of conservation of mais for the tube:

p V"ds „= Jt p V'ds „.
Sy 82

(3.7)

Thus, we may take a slice of any shape across the
world tube to define the total mass of our "thick-
ened" particle. In the limit of going far from the
world tube compared to its extension, or letting
its size shrink to zero while remaining a fixed
distance from the tube, the motion of the dust can
be roughly characterized by a single "represen-
tative" geodesic and by this mass.

A more detailed characterization of the dust
would lead to a discussion of source multipole
moments. "

Notice that the form of the conservation law,
which relates a four-volume integral to a three-
surface boundary integral, forces us, in a sense,
to thicken a point particle to an entire world tube.
We shall see that the situation is somewhat dif-
ferent in the case of the string.

Finally, we note that we can formally pass to the
limit of the point particle by taking p(x) as propor-
tional to a 6 function along the world line of the
particle

p(x) = m(X)6'[x- z(X)]dr,
«CO

(3.7a)

where z (A) is the parametrization of the world
line. Integrating o.. er a narrow tube just surround-
ing the world line and bounded by two spacelike
disks, we see that the integral conservation law
gives us

m(X, ) =m(X,) =m„
where X, and X, are the values of the parameter
at any two points along the world line. Hence,
the constancy of m, along the world line is the
content of the conservation law in this case.

equivalent forms. We form the stress-energy ten-
sor

T" = S'"S'"
u (4.l)

and again impose a normalization condition, so
that we can write

S P&
( p)1/2 ZPP Zw&Z 2 p ) Q (4 2)

Again, we introduce a tensor density factor into

p, so that

k (4 3)

Now, we take the divergence of (4.3} and set it
equal to zero:

v„T"„=s„(p "")Z„„+pZ""v„Z,„=Q. (4.4)

&g", = 8„(pz"")Z„„+2 pZ""e„Z,„,. (4.4a)

Now, contracting (4.4a) with Z"", we see that the last
term vanishes, since Z""Z'"8&„Z,„,= ~'"~"
=0, by (2.2) applied to Z"". So

Z~ V„T"„=8 (pZ"")Z Z" =0 (4 6)

But, it is easily seen that if a vector has vanishing
contraction with Z,„Z'', then it has vanishing con-
traction with Z,„alone (write Z""as the alternat-
ing product of two vectors to prove this). So

We have again taken advantage of the fa.ct that the
covariant divergence of a contravariant bivector
density equals its ordinary divergence to get rid
of the covariant derivative in the first term. We
can also remove the convariant derivative from
the second term, by noting that the normalization
of Z"", Eq. (4.2) implies that Z""V,Z„„=O, so that

Z""~„Z.„=—,
' Z""(V„Z,„+V„Z„„+V.Z„„), (4.5)

(using the antisymmetry of Z"" shows that the first
two terms on the right are equal, while the last
one vanishes). But the terms in parentheses on
the right-hand side of (4.5) are just equal to the
ordinary curl of an antisymmetric tensor, itself
always a tensor. Thus, using square brackets to
denote total antisymmetrization divided by 3 t, we
can finally eliminate the covaxiant derivative from
the second term of (4.4), getting

IV. THE THICKENED STRING
s„(pz"")Z „=0. (4.6a)

We can parallel the treatment of the "thickened"
particle in the last section, replacing the timelike
vector field by a, timelike simple bivector field.
We can go a certain distance without even having
to demand that the field be hypersurface forming.
But eventually we shall need that assumption, and
thus be led to a theory which will be shown to be
the "thickened" version of the classical string.

We start from a simple timelike" bivector field
S"", which therefore obeys Eq. (2.2) and any of its

s„(pZ"")*Z„„=0. (2.5')

The lemma of Sec. II now shows that the diver-
gence of pZ"" must vanish, by virtue of (4.6a} and
(2.5 ):

s (pzkv) —Q (4.61}

Thus far we have not had to assume that Z'" was
surface forming. , We now use that assumption, in
the form of Eq. (2.5):
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z"m„z„„=0, (4.7b}

form a complete set of equations for the simple
bivector field —of course, remembering the alge-
braic condition (2.2), which assures us that Z""
is really a simple bivector. It only remains to
show that the equations of motion are equivalent to
the usual parametrized form of the classical
string equations of motion.

To do this, we note that if the simple bivector
field S""is surface forming, there must exist two
parameters 2'A (A, B, etc. = 1, 2) such that the
equations of each two-sheet take the form

Note, incidentally, that Eq. (4.6b) itself implies,
for a simple bivector, that it is surface forming.
If we expand (4.6b) and multiply it by *Z„„,we get

p*z„„a„(z"Q+*z„„z"(t„p=0.

The second term vanishes by (2.2), so the first
term must vanish. But this is just the condition
for a surface-forming bivector, Eq. (2.4).

Thus, Eq. (4.6b), together with the equation of
motion gotten by noting that the first term of (4.4a)
vanishes by virtue of (4.6b)

(4.7a)

or the equivalent form gotten by going back to
(4.4)

mains to show that the equation of motion (4.7b) is
equivalent to the usual parametrized form of the
string equation of motion. To do this we substi-
tute (4.10} into Eq. (4.7b), getting

~ABp ~V lp (p-1/2~CD~V~V) 0 (4.13)

where we have raised the p, index, and eliminated
an overall factor of p '/'. Now, putting eAB)„A in-
side the covariant derivative, and subtracting the
extra term, we get, using (4.12) and the fact that
P= g, -2

~v ~ (gBC~v) P-I /2~AB~CDv M ~2 ~v~ ~. 0 (4 14)

Here, g"B=(—2g)'/2gAB. Now, the second term in
(4.14) vanishes. To see this, note that

~sA gVX~A I (4.15)

and that g„„may be taken out of the covariant de-
rivative. Then, expanding the covariant derivative
and remembering (4.9), we get for the relevant
factors in the second term

(4.16)

hence it vanishes, due to the symmetry in AB of
the terms in the parentheses and the antisymmetry
of g"B. Expansion of the first term in (4.14) gives

.2' = X"(7'A) . (4.8) 8 8BC V +/ V}~v~v ABC 0ve B C (4.17}
Then, the tangent surface element at each point of
the surface is spanned by the two vectors $A'

= &x"/S2 A

ex ex
87" 87.B ' (4.9}

Z llV p-1/2 (LAN (Bv (4.10)

It is then easily checked that the condition Z "Z„„
= -2 normalizing the bivector implies that P = -2g,
where 'g is the determinant of the two-metric g»
induced on the timelike surface by the four-metric
gP, V:

gAB gVv~A~B '

[The identity

(2g)gtB ~A C~ BDg

(4.11)

(4.12}

will be found useful in proving this and other later
results ]Zv" as d. efined by (4.10}obviously obeys
the conditions for a simple surface-forming bi-
vector, Eqs. (2.2) and (2.4). Thus, it only re-

where q" is the two-dimensional Levi-Civita
alternating tensor density. So it must be possible
to write Z'" as proportional to the alternating pro-
duct of the two $A vectors If we .call the factor of
proportionality (P) '/', we have

This is just the covariant form of the string equa-
tion of motion in an arbitrary background metric. "

Thus, each world sheet into which the "thickened"
string naturally divides is an extremal sheet,
obeying the string equation of motion; just as each
world line into which our "thickened" particle
naturally divided was a geodesic, obeying the par-
ticle equation of motion.

We have carried out our discussion using an ar-
bitrary parametrization 7'~ of the world sheet.
However, it is easy to see that by a reparametri-
zation of the world sheet, one can multiply the
simple bivector S'" by any arbitrary factor; so
that we could just as well have made P a constant,
for example. In particular, we can adopt a nor-
malization analogous to that in the particle case,
where V "V,= 1 implies that V' = dx "/d X, where X

is the proper time along the world line; i.e. , the
arc length along the world line is given directly by

fdACorres, pondingly, Z""Z„„=-2 implies that
there is a parametrization for which

AB BX" 8@v

egA 8~B

with 2g= -1, so that "area" on the world sheet is
given directly by
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A= d 7'.

We now turn back to the conservation law (4.6b).
This is the differential form of a conservation
law, which we can transform by the Gauss-Stokes
theorem into an integral form. But this time it
relates a three-volume and a bounding two-sur-
face, and tells us that the integral over any
closed two-surface of pZ'" must vanish:

P~""der„„=o, (4.18)

T3

I

I

S2

T4

s.
1

FIG. 1. Closed two-dimensional hypersurface in
three-dimensional space-time. With an additional di-
mension of space, the enclosed three-space would not
be unique. This can represent a one-parameter family
of open strings, with T& and T3 representing bounding
strings, and T2 and T4 representing one-parameter fam-
ilies of null curves formed by the string end points (see
Appendix A). S& and 82 are two spacelike two-surfaces
intersecting the family of strings.

where do „ is the element of two-surface area.
Of course, just as in the'application of the ordi-
nary Stokes's theorem in three-dimensional space
a closed curve bounds an infinity of two-surfaces,
in our case the closed two- surface bounds an in.-
finity of three- spaces. But this does not matter:
We need only fix our attention on the closed two-
surface.

One similar integral conservation law is very
familiar: the conservation of charge, resulting
from the fact that the divergence of the Maxwell
tensor is equal to the charge-current vector. But
in that case, we usually take our closed two-surface
entirely in a spacelike three-hypersurface ("at a
given time") to calculate the total enclosed charge.
In our case, since the two-surfaces representing
the movement of the strings are timelike, the most
important application of the integral conservation
law (4.18) will be to closed two-surfaces with time-
like portions; in particular when a timelike por-
tion i.s formed by the motion of a string, there
will be no flux through such a portion. We picture

FIG. 2. Closed one-dimensional curve in three-dimen-
sional space-time, with one possible two-space it
bounds. Here, it is easy to visualize how the same
boundary can enclose different spaces.

such a closed two-surface in Fig. 1 (with one spa-
tial dimension suppressed, unfortunately). The
possible shifting of the "enclosed" three-space
cannot be easily visualized; to help visualize this,
we look at a corresponding one-dimensional closed
curve (Fig. 2), where it is easy to see how the
two-surface bounded by the curve may be shifted
without altering the boundary;- The reader hope-
fully will be helped by the similarities and con-
trasts between these two figures to "visualize"
('?) the case of a two-dimensional boundary in
four-dimensional space-time —admittedly no easy
task.

So, for example, we could imagine that T, and
T, are two-surfaces formed by motions of the
string (i,e., by the Z'" field). Then (4.18) would
tell us that the flux through T, + T, +S,+S, must
vanish, with orientations on each as indicated. Of-
course, if we reverse the orientations on S, and

T4, say, so that they have the same orientation as
S, and T„respectively, we see that the flux
through Sj+ T2 must equal the flux through S,+ T4.
Notice that this integral conservation law connecting
an integral over a three-volume with the integral over
its bounding two-surface does not force us, as did
the thickened particle integral conservation law,
to thicken our string into a world tube. We could
just thicken it by one dimension, to get a three-
dimensional thickened string. Of course, this
would mean that the density factor p for the string
would still have a one-dimensional 5 function in it,
which would create problems in the extension to
general relativity to be discussed in the last sec-
tion. On the other hand, nothing prevents us from
thickening the string into a world tube, eliminating
all 6 functions from the string stress-energy ten-
sor. In any case, for our discussion of the conser-
vation law, we need only consider a onefold infinity
of strings chosen in such a way as to fill up some
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to the bivector; so once again we get Eq. (4.19),
but applied to Fig. 1.

These are the conservation laws for the closed
and open thickened strings.

We can again formally pass to the limit of the
"thin" string by writing p as a 5 function over the
string'"

/
S)

FIG. 3. One-parameter family of closed strings. The
boundary T represents one such strixg. S& and S2 are
two spacelike two-surfaces intersecting the family of
str ings.

three-volume bounded by the two-surface in ques-
tion.

Now let us apply these ideas to the usual models
of classical closed and open strings. For the
closed string the whole timelike part of the boun-
dary (corresponding to T, + T,+ T, + T, in Fig. 1)
is formed by the Z"" field (see Fig. 3}. Thus, the
integral form of the conservation law is

J pz'"pv„„= f pz""pv„„, (4.19)
S1 S2

with similar orientation of S, and S, as pictured in

Fig. 3.
For the open string, we must add the usual

boundary conditions, which assure that there is
no flux of momentum out of the end points of the
string. An analysis of this condition shows that it
requires that an end point of the open string move
at the speed of light, i.e. , that it sweep out a null
world line (not a null geodesic, of course). Such
an analysis, starting from the stress-energy tensor
for the string dust, is given in Appendix A; it
shows that the bivector field S'" must become null
at the string end points. The usual derivations of
this condition" based on a variational principle '

leave something to be desired in rigor, since the
parametrization on which they are based breaks
down just at the end points.

We may again take a onefold infinity of such open
strings, chosen in such a way as to fill up some
three-volume bounded by a closed two-surface like
that in Fig. 1. Now T, and T4 are the timelike two-
surfaces formed by the one-parameter family of
null curves swept out by the end points. (It is also
possible they could be null surfaces, i.e., be built
uy of two-surface elements tangent to the null
cone at each point of the surface. ) The integrals
over T, and T4 still vanish, because the end point
null vector is common to the surface element and

We now integrate this over a two surface bounding
a three-volume which just encloses the portion of
our string between two spacelike curves on it, s,
and s,. Inserting the above p into the conserva-
tion law (4.19}, we see that it gives us

s ds= p w s ds,
S2

where the integral is to be taken over a closed
curve for the closed string, and between the limits
of s that correspond to the end points of the open
string. Hence, the constancy of the integral for
any such curve on the string world sheet is the
content of the conservation law in this case. It is
also yossible to convert the bivector conservation
law we have been discussing into two vector con-
servation laws, as shown in Appendix B.

V. CONCLVSIONS

Now that we have shown how to form a perfect
dust of strings, quite analogous to the perfect dust
of particles long familiar in special and general
relativity, the question naturally arises whether
strings can be used as building elements for more
complicated phenomenological models of matter.
The answer is yes. In another paper, it will be
shown that a relativistic theory of a perfectly elas-
tic medium composed of strings can be set up by
analogy with the usual elastic theory built up out of
particles. In particular, the theory of a string
perfect fluid and its derivation from a Clebsch-
type variational principle will be developed.

The question of possible quantization of such
models of matter is also of interest. Such a quan-
tization presents some interesting problems com-
pared to the usual fluid case. In the fluid model
composed of particles, each particle has only a
finite number of degrees of freedom, of course,
and an infinite number of degrees of freedom arises
only from the passage to the continuum model.
In the case of. the string fluid, each string posse-
sses an infinite number of degrees of freedom to
begin with, which already presents difficulties in
their quantization. "

It is also clear that there is nothing in our theory
of the string dust which cannot be generalized to
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an m-dimensional "string" in an n-dimensional
space-time. " This generalization, and its connec-
tion with the theory of "congruences" of m-dimen-
sional submanifolds in an n-dimensional Riemann
space of arbitrary signature will be discussed in a
joint paper with J. Plebanski now in preparation.

Another case of interest is the classical null
string"; if the string two-surface element is tan-
gent to the null cone at each point, our previous
considerations must be modified, just as in the
case of point particles following null geodesics.
This problem will be treated in the next paper of
this series.

All of this work is based on the mathematical
representation of the string subspaces by a bivec-
tor (or multivector, in the case of higher dimen-
sional subspaces). But consideration of the parti-
cle case suggests another possibility. The time-
like unit tangent vector to a family of particle
world lines can be analyzed in terms of its rota-
tion, shear, expansion, and acceleration. " The
free-particle world lines (timelike geodesics) are
then completely characterized by vanishing acce-
leration. Is any generalization of this approach
possible for higher-dimensional subspaces? It
turns out that there is. Three-index tensorial ro-
tation, shear, and acceleration tensors may be
defined for congruences of timelike subspaces of
any number of dimensions. " The string equations
of motion then prove to be equivalent to the re-
quirement of vanishing of the (unique) trace of the
three-index acceleration of the (holonomic) con-
gruence of subsyaces. This will be proved else-
where. "

Uy to now we have only discussed strings moving
in an arbitrary background space-time metric.
Now we come to the question of a possible fully
general-relativistic theory of the string, in which
the string stress-energy tensor acts; via the Ein-
stein equations, as a source of the gravitational
field. One might think that a11 that had to be done
was to yut the "thin" string stress-energy tensor,
formed with a four-dimensional 6 function over the
two-dimensional world sheet in question, into the
field equations. However, there are a number of
problems with such a procedure. In the first
place, there are mathematical problems involved
with the use of the 6 function in nonlinear equa-
tions; they do not show uy when one considers
only the conservation laws for the stress-energy
tensor (the integrability conditions for the Ein-
stein field equations} which are linear equations,
but would have to be faced in treating the full Ein-
stein equations. Secondly, if one looks at the cor-
responding structureless-point-particle problem,
one sees that the exact solution for the "particle"
at rest (the Schwarzschild solution) has quite a

different structure, involving topological com-
plexities and singularities of a nonpointlike nature
(i.e., not along a timelike world line). This has
been emphasized by Dirac, who was led to postu-
late quite a different model for a particle in the
attempt to derive gravitational equatioris of motion
for such a particle. 2'

Of course, in a linearized approximation scheme
to the field equations, it is perfectly acceptable to
introduce a 5 function source, since the field equa-
tions solved in each approximation are linear. If
one does this in the spherically symmetric case,
one gets in the first approximation a Coulomb-
like solution with only a singularity at the point
mass. Indeed, as Trautman has shown, "one can
iterate this solution to all orders and sum the re-
sulting series to get the Schwarzschild solution.
But, of course, this just emphasizes the point that
the exact solution has quite a different structure in
the neighborhood of the "particle" from the ap-
proximate ones.

If we try to use the linearized field equations
with the string 5-function stress-energy tensor,
we meet with another problem, at least in one sim-
ple case we were able to investigate in detail. '4

The simplest solution for the open string is the
rigidly rotating string, in which none of the in-
ternal degrees of freedom of the string are exci-
ted. The linearized field of this string looks
roughly like that of a rigidly rotating rod in the
linearized approximation, except near and at the
end points, which move with the speed of light as
mentioned earlier (see Appendix A). The linear-
ized field becomes singular, not only at these
end points, but along a line emanating from each
end point and extending out to infinity, so that the
total radiated power diverges. Clearly, the linear
approximation has broken down. By taking the
"realistic" (or massive} string model of Taka-
bayashi, "and going to the limit of the "geome-
trical" (or massless) string model, one can verify
that the infinity only arises in the massless limit
for which the end points move at the speed of light.
There is reason to believe that this behavior will
persist for more complicated motions of the open
string in the linearized approximation. Thus, it
becomes a very interesting question whether the
exact theory of the thickened open string will ex-
hibit a similar pathology; or whether the thicken-
ing —plus nonlinearity —will allow regular solu-
tions.

Returning for the moment to the particle case,
the problems of the point particle source are
alleviated by use of the thickened particle, or
perfect dust model. In the case of spherical sym-
metry, the external field of the dust will continue
to be the Schwarzschild field (by Birkhoff's
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theorem), while the collapse (or expansion) of the
dust may be studied. Collapse beyond the Schwar-
zschild horizon has been extensively studied, of
course, in connection with the black-hole prob-
lem. Various nonspherical dust motions have also
been investigated.

We hope that the use of thickened string sources
will enable us to investigate similar collapse
problems, the possible formation of horizons, the
nature of singularities, etc. , for a new class of
stress-energy tensors, which represent in one
sense the simplest possible generalization of the
particle perfect-dust model.

What hope is there to actually construct such
solutions'? A11 one can say at this point is that
there is some hope. As we have showed else-
where, "the perfect-dust stress-energy tensor
conservation equations (the integrability conditions
for the field equations) can be solved without any
essential restrictions on the metric, before the
field equations are tackled. It seems that a simi-
lar technique may work for the thickened-string
stress-energy tensor conservation equations.
This would at least constitute a big first step to-
ward the solution of the field equations.

Beyond that, one may hope that general consid-
erations will enable one to make some progress in
discussingsuch questions as the existence of solu-
tions, whether there exists a correctly posed
Cauchy problem, whether regular solutions exist
for open strings, and the nature of the horizons
and singularities that may arise in the collapse of
a string dust.

APPENDIX A: BOUNDARY CONDITIONS FOR THE
OPEN STRING

As mentioned in the text, most proofs of the
boundary conditions for the end points of an open
string are based upon use of a parametrization
of the string which breaks down just at the end
points. Our parameter-independent thickened-
string technique enables us to use the standard
jump conditions for a stress-energy tensor to
establish the boundary conditions.

We shall show that the only boundaries on which
the thickened-string stress-energy tensor can end
are either hypersurfaces formed of string two-
sheets; or, in the case of open strings, hyper-
surfaces formed by the end points of the string
which sweep out null curves in space-time.

For this purpose we assume that we have a two-
parameter family of string world sheets filling
some four-dimensional world tube with timelike
boundary, and investigate the junction conditions
that must be satisfied at the boundary, outside of
which the string dust vanishes. Since the equations

of motion of the string dust follow from the con-
servation law for its stress-energy tensor, it is
sufficient to examine the junction conditions for
the stress-energy tensor at the boundary. As is
well known, " if /= const is the equation of a
bounding hypersurface such that the stress-energy
tensor vanishes on one side of the hypersurface,
then

T"„p „=0 (A1)

must hold on the other side. Physically, this is
the requirement that there be no flow of energy-
momentum across the boundary, i.e. , that the hy-
persurface not act as a source or sink of energy-
momentum. Thus, the boundary condition basically
is dictated by global conservation of energy-mo-
mentum.

We take the string stress-energy tensor in the
form [Eq. (4.1)j

(A2)

we do not adopt the normalization condition Eq.
(4.2) because this would presuppose that the string
remained timelike on all portions of the bounding
hypersurface, and thus preclude an important pos-
sibility, as we shall see. Combining (Al) and (A2),
we see that the boundary condition can be satis-
fied if (and only if) one of the following conditions
hoMs:

I: SP „=0; II: SP „=X„, and SX„=O.

S""=X'W"- X"W", (A3)

where % is some other vector in S. Then, the
second part of condition II shows that

(A4)XX =0 X W =0.
k

Thus, X is a null vector, and W must be an ortho-
gonal spacelike vector. S is therefore a null bi-
vector. At a portion of the boundary characterized
by condition II, S must therefore degenerate from

We shall examine these two possibilities in turn.
Case I. This condition implies that the two-space

spanned by the timelike bivector S lies in the hy-
persurface P= const Thus. , this hypersurface is
formed by a one-parameter family of string world
sheets. So, one portion of the bounda, ry of the
string world tube can be formed of such a one
parameter family. For closed strings, this is
the only possibility.

Case II. The first part of condition II implies
that A,„ lies in the two-space spanned by the bi-
vector S. The second part of condition II implies
that it nevertheless has a vanishing scalar pro-
duct with all vectors in S. Clearly, S cannot be a
timelike bivector. Indeed, since A.„ lies in S, we
can write S as
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timelike to null. To see what this implies for an
individual string, note that it implies that 9 does
not lie in the hypersurface $ = const, and that the
intersection of S with P = const is formed by the
null trajectories of the X„ field. To see this, in-
sert (A3) into the first part of condition II, which
yields

(A5)W"P „=1, Z"y „=0.
Thus, W does not lie in P = const, while X does,
proving our assertion. This means that an open
string can end at a null curve (which will lie in the
timelike surface P= const if we consider a two-
parameter family of such open strings). In this
case the stress-energy tensor at such a portion
of the boundary takes the form [gotten by inserting
(A3) into (A2) and using (A4)]

T"„=-(W„W")X„X". (A6)

x=xcoswt, z=o,
y=y sin&t,

(A7)

express the space-time inertial coordinates in
terms of the two parameters and &.

The string bivector is spanned by

ax =(0, cosset, sinvt, 0),

~X = (1, -&or sinu& t, &or

cosset,

0) .
et

Note that $ and q are orthogonal, and that while $
is always spacelike, q is timelike for re+ I/~,
but becomes null as r +1/v. Th-us, the string
bivector S "=

$ q"- f"q" is timelike except at the

Thus, energy-momentum flows along the boundary
of each string, which is why the boundary does
not act as a source or sink of energy-momentum.

A simple example shows that case II may easily
be realized. Consider the spinning string, which
is kept extended by the tension produced by its
own rotation. We place it in the g-y plane of some
special-relativistic inertial system, with its cen-
ter at the origin. It may then be parametrized by
distance along the strong, r, and inertial time t;
i.e., r"= r, t, with —~ ~ t ~ ~, -I/&o ~ r ~ I/&o,
where co is the angular velocity of the string (c= 1
in our units}. Then

APPENDIX B: REDUCTION OF BIVECTOR
CONSERVATION LAW TO TWO VECTORIAL

CONSERVATION LAWS

If we choose a particular pair of bivectors v„' to
span the bivector Z'",

Z'"= "BV"
A B &

we can rewrite the conservation law (4.6b) as

v„(pZ'") = v„(pv,')v," v, (pv,')v)+ p[v„v, ]"= 0,
(B2)

where [v„v,] is the I.ie bracket of the two vector
fields. Since they are surface forming, their
bracket is always a linear combination of the two
fields [indeed, this condition on the two vector
fields is just equivalent to condition (2.4) on the
bivector field Z]. Now it is always possible to
choose the two vector fields so that this bracket
vanishes, while preserving the normalization
condition (4.2) on Z. (This is just equivalent to
saying that a parametrization exists such that
v„'= a~"/sr„and

~X ~X
gAB +u~ g7A g+B

has determinant -1.) In that case the last term in
(B2) vanishes; and since v~~ and v2~ are linearly
independent, the two conservation laws

V, (pv,') = 0,
must hold.

v„(pv,")= 0

end points, where it becomes null. Thus, except
at the end points, we can normalize S'", to get

guv (I 2 2) 1/2guv

It is easily checked that (A7) obey the parametrized
form of the string equations of motion (4.17). It is
also easily verified that the string stress-energy
tensor at the string end points assumes the form
(A6), where X" is the null limiting form of q" at the
two end points.

By taking a two-parameter family of such spin-
ning strings we can fill a timelike world tube in
various ways. For example, by filling a sphere
uniformly with such strings, we can get a spheri-
cally symmetric string dust, etc.

*A preliminary announcement of the results of this pa-
per appeared in QR8: A.bstracts of the Contributed Pa-
pers, 8', International Conference on General Relativ-
ity and Gravitation (Univ. of Waterloo, Ontario,
Canada, 1977), p. 324.

/On leave from Department of Physics, Boston Univers-
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~For recent reviews, see M. S. Marinov, Usp. Fiz. Nauk

121, 377 (1977) [Sov. Phys. Usp. 20, 179 (1977)] and
J. Scherk, H,ev. Mod. Phys. 47, 123 (1975). These in-
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easily worked out [see M. Gurses and F. Gursey, Phys.
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string, see the reviews referenced in Bef. 1, and pa-
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