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Where has the fifth dimension goner
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%'e show that a simple solution to the vacuum field equations of general relativity in 4+ I space-time

dimensions leads to a cosmology which at the present epoch has 3+ 1 observable dimensions in which the
Einstein-Maxwell equations are obeyed. The large ratio of the electromagnetic to gravitational forces is a
consequence of the age of the Universe, in agreement with Dirac's large-number hypothesis.

Over the years there has been a number of at-
tempts' ' to construct unified field theories based
on five-dimensional space-time, going back to that
of Kaluza in 1921. The general scheme is that
four dimensions, say x', .. . , x', are identified
with the observed space-time, and the associated
ten components of the metric are used to describe
gravity. The metric components connecting x'
to {x',.. . , x't give four extra degrees of freedom
which may be interpreted as the electromagnetic
potential. In addition, there is a 15th degree of
freedom (essentially g") which may either be set
to one, ' or else may be allowed to vary, ' ' thereby
introducing a scalar field into the problem.

It is remarkable that, under the assumption that
a suitable Killing vector exists, Einstein's field
equations in five dimensions look exactly like the
Einstein-Maxwell system in four dimensions, with
or without an extra scalar field. The great diffi-
culty with this approach is to understand why such
a Killing vector should exist, or, more loosely,
why the observed Universe is four and not five
dimensional. Indeed, the assumption of a Killing
vector serves at least partially to dismantle the
five-dimensional framework and the hoped-for
unification of gravity and electromagnetism is
severely compromised, if not entirely lost.

In this paper we discuss a model of a five-dim-
ensionaI. universe which naturally evolves into an
effective four-dimensional one, even though all
spatial dimensions are treated symmetrically in
the field equations and the boundary conditions.
As the reader will see, we achieve this at the cost
of making some special choices in the solution to
the field equations. In the absence of any justifica-
tion for these choices, ' we cannot claim to have
proven, given our field equatio. is, that the Universe
must have evolved along the lines we suggest.
Rather, it is our purpose to point out the possi-
bility of such evolution, and to deduce therefrom
certain interesting observational consequences.

We let time be a continuous parameter ranging
over the real line, and we take the spatial x' to
be periodic; i.e., we assume that in a suitable co-

ordinate system, they can be chosen to have the
range

0&x~& I, ,

where L, is some parameter with the dimension of
length. In our model, in the absence of matter
(which we are temporarily disregarding), the bas-
ic equations are then

Rpv=0

where R„„is the five-dimensional Ricci tensor.
We assume that the Universe has evolved ac-

cording to the Kasner solution' to Eq. (1), which
is a particularly simple nontrivial homogeneous
vacuum solution. Furthermore, there is reason to
believe that many other five-dimensional homo-
geneous cosmologies will mimic the Kasner solu-
tion in much the same way that in four dimensions
the mixmaster solutions exhibit Kasner-type be-
havior. " In d spatial dimensions, the Kasner
solution has the form

ds'= dt '+ Q (t It-, )
~ (dx* )', '

which will solve Eq. (1) provided

Except in degenerate cases, these relations re-
quire at least one of the P, to be negative. Thus
in four dimensions the vacuum Kasner solution
is a poor description of the Universe, since it
predicts contraction in at least one dimension.
Conventionally, this situation is improved" by
adding matter on the right-hand side of Eg. (1);
however, we propose to consider the Kasner solu-
tion in five dimensions, in which case the resolu-
tion of this difficulty is somewhat different.

In order to guarantee the appearance of isotropy,
we take Pg P2 P3 p, P, = —&. It is possible that
these choices may be justified by examining the
stability of this solution compared to ones given by
other values of the parameters. Then
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de'= —df'+ (t /f )[(dx')'+ (dx')'+ (dx')'] Dy —(q'-a)y —2iq(X sp) —iq(B ~ X)y

+ (f,/f )(dx')'. —q'(A. ~ A)p —.(A.„)~ 8$+ 2iq(A, ~ A.„)@= 0, (5)

where f/v=1. In so doing, we must remember
that our new x' satisfies

0~ x'& L(t,/r)' '

Now we add a small perturbation h» (p, =0, 1,2, 3)
to this metric, where h» is related to the
electromagnetic potential A „by

(16~G)x/2A
P P5

[This can be derived by demanding that the space-
time components of Eq. (1) take the form

where R& is the usual four-dimensional Ricci
tensor, T~ is the electromagnetic stress-energy
tensor, and T,', is an extra contribution due to the
scalar field. ]

Following Souriau, ' we then consider a quantum
field P coupled to this metric via the equation

, /+a/=0, (4)

where, is the covariant five-dimensional O'Alem-
bert operator. We demand that p be periodic with
period L'=I (t,/v)'/' in the x' coordinate, and we
ignore variations in the quantity t /v, setting it
equal to one. Then, through second order in ~ we
obtain

At the instant t = t„ the Universe was spatially
Qat and appeared isotropic, with four space dimen-
sions. The distance around any dimension was I..
For t « t„the Universe had essentially only one
spatial dimension, whose length approached infin-
ity at the initial singularity t=0. For t »t„ the
distance around the fifth dimension has shrunk to
(t,/t )' 'L, while the other three spatial dimen-
sions have grown to (f /t, )' 'L.

Assuming (f,/f )' 'L is sufficiently small, i.e.,
that the Universe is sufficiently old, the fact that
the fifth dimension is not observed is a consequence
of the dynamics of the evolution of the cosmos, and
not of the preordained existence of a Killing vec-
tor' ' or of spontaneous compactification" or
some similar mechanism.

We can attempt to estimate the magnitude of
(t, /i)' '/Lin a standard way. First we rescale
our coordinates so that the Kasner metric takes
the form

ds'= —df '+ (t/v)(dx)'+ (v/t)(dx')',

where

Q = Q(x")e~~, q= 2~n/L'.

Thus the basic unit of charge obeys the relation-
ship

e2 cs
4mkc 16~'GN I." t, I.' (6)

where v is a time characteristic of the present
age of the Universe and t, is the time at which
the four dimensions of space were equally large.
Putting in the known value of the left-hand side,
we conclude that

(i /g)~/2L = 2.36x10-» cm.

Thus the distance around the fifth dimension is
currently very small.

It is interesting that Eq. (6) is in conformity with
Dirac's large-number hypothesis". The large
value of the ratio of the electromagnetic to gravi-
tational coupling constants is a consequence of the
age of the Universe. When t was =t„ the two in-
teractions were of approximately the same
strength.

It should be noted, however, that Eq. (4) is not
satisfactory as it stands as an equation to describe
any of the known elementary particles (even in an
approximation where spin is neglected). The rea-
son is the q'P term in Eq. (5). With the value of
q' that follows from Eq. (V), we find that this
corresponds to a mass for the particle of 5.22
&&10" MeV (9.3 &&10 ' g). One way out is to adjust
the constant a so that q' -a is in the range 0.5 to
5& &0' MeV. This means fine tuning a to 20 deci-
mal places. It also means that the particle under
consideration was a tachyon in the past and will
become very massive in the future. Altogether,
this seems an unsatisfactory resolution to the
problem. Other schemes for coupling matter to
our five-dimensional metric are currently under
investigation.

While the fifth dimension has been shrinking, the
other three spatial dimensions have been expand-
ing, with the radius of the Universe given by

This is the same as the Klein-Gordon equation in
the presence of an electromagnetic field (plus
some other interactions due to the possible varia-
tion of A in the fifth direction), provided we identify
the charge e„as

e = q" (16 6)'/'.k
c
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R(t ) = (t /t 0)'/' L .
Thus R /R = H = 1/2t .

The quantity Jf is the observed value of Hubble s
constant. The reader may be worried that we have
ignored an additional effect, namely, that accord-
ing to Eg. (6), if we assume

a = e'/4xkc

is constant over cosmological times (and choosing
units so that c= 1) then the product GN must vary
as 1/t. If this leads to variations in atomic fre-
quencies, then the observed value of 8 could be
different from that predicted above.

Let mbe a typical mass in atomic physics (e.g. ,
the mass of electron). Then the ratio of electric
to gravitational forces among atomic particles is
-e'/Gm '. In atomic units, we have I=const, and
therefore Go-1/t. We also take mto be constant
in atomic units. [Strictly speaking, this is an ex-
tra assumption that does not follow from Eq. (6),
but it is a most natural one. ] This gives e'/Gm'
cf-t, as expected from Dirac's hypothesis. In
gravitational units, we have G=const, 0~1/t, and
since a = const we conclude that e'~1/t. Then, in
order to have e'/GtrP ~ t, we conclude that m ~1/t
in gravitational units.

Now let us examine atomic frequencies. A typi-
cal atomic energy level will be given by

E = mf(a)

and a typical frequency by

a =(I/h)mf(a) .
We see that in both atomic and gravitational units
the quantity m/I is constant, so that no correction
is needed to our value of II, which ia determined by
measuring the red-shift of atomic spectral lines. "
However, one must make the added assumption that
the usual methods of determining galactic distances
continue to hold in our cosmology.

Besides the value of Hubble's constant, we also
predict the deceleration parameter:

qo= -RR/R'=1.

We have chosen to treat the case of five dimen-
sions as the simplest generalization of the usual
four. In order to include other interactions be-
sides the gravitational and the electromagnetic in
this scheme, it is necessary to generalize our
picture to more dimensions. A vacuum Kasner
solution of the form Eg. (2) exists in any number
of spatial dimensions, provided that Eg. (3) is
satisfied. If we choose the three positive powers
to have the same value p, and let the remaining
n powers have the same negative value P, we find

3+ (3n'+ 6n)'/'
3(n+ 3)

n —(3n'+ 6n)'/'
n(n+ 3)

so that for ~ large,

p, = I/vS

and therefore

II= I/Mat

qo= 0.73

in that case. Thus, modulo the assumptions men-
tioned above, we have

1/2t & a & I/v 3 t

0.73 c
qo

c 1.
In this paper we have attempted to convince the

reader of the possibility that extra dimensions of
space, which have appeared for technical reasons
in the literature from time to time, may possess
a hitherto unsuspected historical reality.
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