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Two versions of a Kaluza-Klein model of seven-dimensional relativity are discussed. These models are .

characterized by having a fixed geometry for the internal parts of their manifolds. In version (1) the internal
part is flat (T,) and in version (2) it is curved (S,). The physical interpretation of the internal coordinates is
given in both versions. The main differences are that in version (2) the model features a cosmological
constant given by the curvature constant of the sphere and the gauge fields depend in a definite way on the
internal coordinates [they do not in version (l)]. These gauge fields appear as part of the metric tensor in
seven dimensions. The result by Kerner and Cho which states that seven-dimensional relativity contains as a
special case four-dimensional gravity coupled to Yang-Mills fields is rederived. The Dirac Lagrangian is
given for both versions. It is defined to be the free-field Lagrangian in seven dimensions, i.e., it contains
spinors coupled to seven-dimensional "gravity" only. Again as a special case it contains a gauge-invariant
Lagrangian featuring a minimal coupling and a Fierz-Pauli term. The latter can be eliminated by choosing a
particular way for the dimensional reduction procedure. Spinors carry an internal degree of freedom
originating in the use of higher dimensions. For both versions this internal degree of freedom may be
identified with the gauge degree of freedom. For version (1), scalar fields are also discussed and some
restrictions concerning the inclusion of higher groups are given.

I. INTRODUCTION

During the past few years there has been a re-
newed interest in high- (&4) dimensional field-
theoretical models. ' ' As far as the present ren-
aissance is concerned, the first motivation came
from the natural appearance of higher dimen-
sions in dual models. "' Very soon, however,
it was remembered' that high-dimensional models
may sometimes be looked upon as unified models;
the classical example being the Kaluza"-Klein"
(KK) model which gives a unified Lagrangian for
gravity coupled to electromagnetism. The basic
assumption of this model is to identify part of the
metric tensor of the high-dimensional space with
the four-potential of the electromagnetic field.

More generally the present philosophy is the
following: Given a Lagrangian in 4+N dimensions,
X(x, x) (x are the ordinary space-time variables,
x are the internal variables), one derives an ef-
fective (dimensionally reduced) Lagrangian Z r(x)
= J R(x, x)d x. This Lagrangian may exhibit re-
strictions as compared to a Lagrangian for the
same system which has been written down ad hoc.
For example, if one tries in this way to unify
Yang-Mills fields and Higgs fields into a single
type of field (compare Refs. 7-9) one hopes to get
relations between, say, the masses of the vector
bosons and the Higgs bosons. [N.B.: Quite gener-
ally there is the hope that spontaneous symmetry
breakdown may be achieved by using higher di-
mensions (compare Ref. 6).]

The intentions of this paper, however, are some-
what more technical, and I will return to more
physical questions later. I will discuss a KK model

in seven dimensions exhibiting gravity coupled to
a non-Abelian Yang-Mills field and including scalar
and spinor fields which are coupled to the Yang-
Mills field in a gauge-invariant way. The Yang-
Mills field, like the electromagnetic field before,
appears as part of the metric tensor for the high-
dimensional space. For the five-dimensional case
(the gauge group being Abelian) this has been done

by Thirring. " A I agrangian which, after dimen-
sional reduction, describes gravity coupled to a
Yang-Mills field has been derived by Kerner" and
Cho. ' Furthermore, some sequences of an effec-
tive Dirac Lagrangian derived from a high-dimen-
sional one have been discussed by Rayski"; in this
case, however, the minimal coupling between
spinors and gauge field is -inserted by hand.

For the five-dimensional Abelian case it is
known that a gauge-invariant effective Lagran-
gian for scalars and/or spinors coupled to the
electromagnetic field can be derived from a free-
field Lagrangian in five dimensions (compare, for
example, Ref. 12). In this paper I will demonstrate
that the same is possible for the seven-dimensional
(non-Abelian) case.

Concerning the interpretation of the extra (inter-
nal) dimensions I will consider two choices. I will
choose a fixed geometry for the internal part of the
space (some further remarks on this point below
in this section). The first choice is a flat internal
space (a three-dimensional torus) and the gauge
transformations act on the coordinates in a nonli-
near way. The way this works will be made pre-
cise in Sec. VI. The second choice is to identify
the internal part of the space with the gauge group
as a manifold. I will explicitly consider the non-
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Abelian Lie group SO(3) [SU(2)]. As a manifold
this group has nonvanishing curvature and is iden-
tified with the sphere S,.

Mathematically this discrimination seems to be
that one between an associated fiber bundle (first
choice) and a principal fiber bundle (second
choice)." The first choice may be understood by
analogy with the why Lorentz transformations and
Minkowski space are related to each other. A

difference to be kept in mind of course is that in
the present case the action of the group is nonli-
near.

Technically the most obvious difference between
the two choices will be that in the first case the
gauge fields do not depend on the internal coordi-
nates, whereas in the second case they do, and
the covariant derivatives of the gauge fields enter
in a different way. The fact that in high-dimen-
sional theories the gauge fields may depend on the
internal coordinates has been observed before
(compare Refs. 6 and IV); in the present case I give
this dependence explicitly; that is, the gauge field
is determined completely modulo its dependence
on the Minkowskian variables (see Sec. VII). Simi-
larly, I give the dependence of the extra fields
(scalars, spinors) on the internal coordinates ex
plicitly (see Secs. III, IV, and VIII).

In more detail, the organization of the paper is
as follows: Sections II and VII (for the first and
second choice for the internal part of the manifold,
respectively) contain in the language of differen-
tial forms the rederivation of the result given by
Kerner" and Cho,"namely, that an Einstein- Yang-
Mills Lagrangian may be derived from a high-di-
mensional curvature scalar. An important distinc-
tion between the two cases is that for the second
there is a (very large) cosmological term which
does not appear in the first case.

It has been observed by Trautmann" that if the
gauge fields appear as part of the metric tensor
and the internal geometry is fixed in the way to be
described in Secs. II and VII, the high-dimensional
manifold is a fiber bundle with ordinary space-time
as a base manifold and the gauge group as the
structure group. It is worthwhile noting that the
statement "a KK model exhibits the geometry of a
fiber bundle" may as well be understood as "a KK
model is a concrete visualization of a fiber bundle
as a high-dimensional manifold. " Technically this
means that though one starts with a curvature
scalar for, say, seven dimensions as a Lagran-
gian, nevertheless the group of allowed coordinate
transformations is no longer the group of general
coordinate transforms in seven dimensions, but
rather a restricted group, which leaves the geo-
metry of the internal (non-Minkowskian) part of the
space fixed

In Secs. III and VIII (for the first and second
choice of manifolds, respectively) an effective
four-dimensional Dirac Lagrangian including
gauge fields coupled in a gauge-invariant way is
derived from a free-field Dirac Lagrangian in
seven dimensions. The Dirac field is coupled to
seven-dimensional "gravity, "of course. The cen-
tral technical problem in these sections is the fol-
lowing: The coupling between spinors and gauge
fields in a KK model appears as

4 x, x P A' 8,4 ~, x d Vq,
S=5

where the integral is an invariant one over the in-
ternal part of the manifold. This has to be con-
verted into

7

((x)I Ng A;T,g(x), (1.2)

where T, give a matrix representation of the gauge
group algebra on the spinor fields, (1.2) being the
expression one is used to from the usual formula-
tion of gauge models. The conversion from (1.1)
to (1.2) is constrained by the fact that the dependence
of the gauge fields on the internal coordinate is
given. The conversion therefore has to be achieved
by a suitable choice for the x dependence of the
spinor fields.

This problem is solved explicitly in both cases,
and the effective four-dimensional Lagrangian
indeed contains a minimal-coupling term. Since
we are working in seven dimensions, in (1.1) and
(1.2) the spinors are eight-dimensional objects;
they may be looked upon as a doublet of ordinary
Dirac spinors. For both choices under considera-
tion, the internal label arising this way may be
identified with the one that the T, are acting upon.
This means that the gauge degree of freedom may
be identified with the spinors' internal degree of
freedom stemming from higher dimensions. That
this identification is possible has been assumed
before. ' "

Furthermore, the Lagrangian contains a Fierz-
Pauli term, as has been observed before for the
five-dimensional case."" What is new in the
present case is that this term can be eliminated by
a suitable solution @(x,x) (for both choices of in-
ternal coordinates). The appearance of the Fierz-
Pauli term means that one is dealing with a non-
renormalizable Lagrangian, a not surprising re-
sult considering that one has started with a non-
renor malizable gravity-type theory. It would be
an interesting ciuestion (though beyond the scope
of this paper) whether the elimination of the Fierz-
Pauli term is preserved in higher orders.

A Fierz-Pauli term furthermore violates CP in-
variance. (Phenomenologically, like in the five-
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dimensional case,"the Fierz-Pauli term occurs
with too small a coefficient to account for the ob-
served CP violation. ) This does not mean, how-
ever, that a five-dimensional free-field Dirac
Lagrangian would be less symmetric than a four-
dimensional one. There exist three discrete sym-
metry transformations but they are not the same
as in the usual (four-dimensional) theory The
observation that higher dimensions have nontrivial
consequences for discrete symmetry transforma-
tions is due to Rayski" and Thirring. " The paper
by Thirring, in particular, contains an exhaustive
discussion of the five-dimensional case. I will
discuss discrete symmetry transformations in a
forthcoming paper. "

The last term in the Lagrangian originating from
higher dimensions is a mass shift for the. spinor
field of the order of Planck's mass, i.e. , 10"
GeV. The appearance of such high masses in KK
models in well known (see, e.g. , Ref. 12) and is
one of the undesirable features of these models.

Theremaining Secs. IV, V, and VIareall written
for the case of the flat internal geometry. Section
IV contains a discussion of the Lagrangian for
scalar fields. In Sec. V an argument is given
which, for gauge groups of rank 2 or higher, re-
stricts the type of representations given by the
spinor fields which can consistently be used. In
case of SU(3) the representations excluded are
those with noninteger triality.

In Sec. VI I discuss the relation between (global)
gauge transformations and internal coordinate
transformations. This need not be done for the
alternative choice of manifold since, if the inter-
nal part of the space is identified with the group as
a manifold, this relation is obvious.

Section IX contains some concluding remarks.
Finally, the Appendices contain some calculational
details which have been left out from the actual
text. The last Appendix, E, is a glossary, where
I compile the notations used in this paper.

II. THE KALUZA-KLEIN ANSA TZ FOR THE METRIC:
FLAT INTERNAL SPACE

I will consider a seven-dimensional space with
signature (- ——+; ——-). The restriction to
seven dimensions is made with hindsight to the
later sections of this paper; the results of this
section can be formulated for higher dimensions
as well. The internal dimensions are chosen to
be spacelike in order to reproduce the right
coupling of gravity to the Yang-Mills field (see
below).

The starting point for a Kaluza-Kleiri theory is
to assume the following decomposition of the
seven-dimensional metric tensor G „:

G n=

a g, ~+g,„A,'A~~ -g,A,'

-g, Ab

(2.1)

R„,4 =R4- E'/4, ('2.3)

where R4 is the four-dimensional curvature scalar
constructed from g, ~ and E' is the ordinary Yang-
Mills Lagrangian density. This means that g„ra-
ther than G,„ is the physical four-dimensional
metric tensor, i.e. , the metric tensor which de-
scribes gravity (see below as well). The expres-
sion on the right-hand side of (2.3) is independent
of the internal coordinates and thus gives the or-
dinary Einstein- Yang-Mills Lagrangian.

The derivation of (2.3) will involve the following
steps. The curvature scalar in seven dimensions
is defined as

RN+4 —R )t ~=R g ~+2R T ~+R (2.4)

where the curvature tensor R„„„is defined via the
expansion of the curvature two-forms 0„„in terms
of the basic one-forms 8',

(2.5)

The curvature two-forms will be determined from
the connection one-forms co„„via Cartan's second
identity:

COgv+ (a)~~a, CO v= ~~v ~ (2.6)

The connection one-forms in turn are determined

The conventions about indices are as follows: La-
tin indices are world indices, Greek indices are
frame indices (for a definition of frames and other
basic information on differential forms see, e.g. ,
Ref. 21). Indices early in the alphabet run from
1 to 4: a, P, y, 5=1, . . . , 4; a, b, c, d=1, . . . , 4;
middle indices run from 1 to 7: p, v, A, p
= 1, . . . , 7; m, n, l, k = 1, . . . , 7; late indices fx om

For this section as well as for Secs. III-VI the
internal part of the space will have the structure
of a three-dimensional torus, T3= Ty & Ty x Ty.
Since T, is flat, it is no restriction to write

(2.2)

The motivation for this choice is that (2.2) con-
stitutes the Killing-Cartan metric of the group
SO(3), which appears in the setup of a Yang-Mills
theory.

Our aim now is to work out the curvature scalar
corresponding to the metric tensor (2.1). It will
be demonstrated that the A+4= 7 dimensional cur-
vature scalar A„,4 decomposes as
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from the basic one-forms via Cartan's first iden-
tity

G „do not depend on the internal coordinates.
Therefore in particular from (2.13) and (2.14),

dg +(o „Ag"=0. (2 .'I) dA'=D A'dx'.
b a b (2.18)

The first thing to be done is therefore to make a
convenient choice for the basic one-forms, i.e.,
to choose a frame.

The seven-dimensional line element correspond-
ing to (2.1) is

dS'=G „dx dx"=q~„g 8"

It is worthwhile to remark that for a curved inter-
nal manifold the gauge fields have to depend on the
internal coordinates, and the gauge-covariant de-
rivative can be introduced in quite a different way
(see Sec. VII). From (2.11), (2.18):

dg'= ——'D, A;dxbA dx

=g dx'dx'+g (dx'-4'dx')(dx"-4"dx') (2.8)

where

= ——' E' dx'n dx" = ——' E ' 8 n g~ .cb 2 ~g

Cartan's first identity reads [see (2.'I)]

(2.IV)

q, „=diag(- ——+; ——-) . (2 9) dg =-(g A g —~ Ag (2.18)

The first line of (2.8) defines the frame 8". A

suitable frame for us will be one with (0' =01' (2.19)

from which, comparing coefficiencts, one finds

dS = @~~8 g~+ q, 8'8', (2.1O)
QP = E 8

at 8 (2.20)
where the basic one-forms are given by"

8 '= dx' -A'dx . (2.11)

Barred quantities such as 8 are to be understood
in such a way that they refer to quantities defined
with respect to the physical metric tensor g,b, ra-
ther than with respect to G„=g„+g„,A,"A,'. To
simplify formulas in the text I extend the definition
of A", to A", where the extra components are de-
fined to be

A„'=A, =0. (2.12)

In order to apply Cartan's first identity to (2.11)
it is necessary to define the one-form dAbt. I will
set

dAt D At dx" D At dx~I+ D Atdxs
b tf b c b s b (2.13)

where (the I'„', are the structure constants of the
gauge group)

(2.14)

D A'=V'A =8 A'
s b s b s b

(2.1s)

The statement (2.13) and (2.14) is the requirement
that the A behave like gauge fields, and the two-
form d(A. ' dx ) is constructed by means of the
gauge-covariant derivative D„. Mathematically
one may understand this so that A,'dx' is treated
as a connection one-form and the covariant deriv-
ative is defined to give the gauge-covariant curva-
ture two-form. If one proceeds this way, one may
as in the five-dimensional case consistently as-
sume that the components of the metric tensor

contains the usual partial derivative and the Chris-
toffel symbols constructed from g„and g„„. One
has, in particular [remember (2.12)],

d8 =dg =-(o Ag'-(o, .Ag',
8

and one finds

(2.22)

1 'r
(o~g —Q) ~+ 2 /gal F ~gg o (2.23)

All connections are now known in terms of physi-
cally identifiable quantities. One may therefore
proceed to work out the curvature two-forms. "

It is convenient to work out 0 ~, 0 „0„,sepa-
rately. From Cartan's second identity [see (2.8)],

Q~g= dGOog+ Q7~~ A CO ~+ CO~~ A (0 ~ ~ (2.24)

Using the information given above the terms on the
right-hand side turn out to be

dvfL&=dna, &
—4 q&&E zF zg" A g (2.2s)

co~a A (d g (4)~y A (d g)+ g TJ~~gy~7f F ~yF yegg h 8

—2'gggE ~yg A (0 g
—2'gy~g E ig(O~y A 8

Or~, A V'~= ——4q„E'~„E~,8" A 8'.
(2.26)
(2.2V)

The other elements of the curvature two-forms are

Q~~= d(d ~+ (d~& A (d ~+ CO~+ h CO ~ & (2.28)

where

(2.29)

The barred connections co ~ are introduced by

dg = —GO gA 8 (2.21)
This equation separates the effect of physical gra-
vity (g„) from the remainder of the metric ten-
sor: 9 ~ is that part of the connection which is due
to the presence of physical gravity (which is de-
scribed by g, ~ rather than 6,„). On the other hand,
from (2.11)
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+ 4 g „q„,E" ~F"~„8' 8 (2.30)

lated to the gravitational constant g via

(2.42)

(d~y h 07

and finally

Qy7 —dQ)yT+ Q7 ~ h CO 7+ (d h CO T q

dQ) T=O=COy~ h

(2.31)

(2.32)

(2.33)

(4) It is straightforward to generalize the re-
sults of this section to more than seven dimen-
sions.

III. THE DIRAC EQUATION

The covariant derivative y, „of a spinor and/or
tensor field is given by '

1
4'g+ yi'g77n g F egF +i&8 h 8

(2.34)

R~,~ =R4 —E /4,

where

F = —Qv, sv;

(2.35)

(2.36)

Some remarks are in order.
(1) Had we chosen a signature (———+;+++ )

rather than (- ——+; ——-), then the minus sign
in (2.35) would be reversed. The relative sign as
in (2.35) would be reversed The rela. tive sign, as
in (2.35) is, however, the wanted one.

(2) The formalism allows the following freedom:
to replace

(2.37)

by

(2.36)

where f is a constant. Furthermore (2.14) may be
replaced by (e = const}

so that there are no contributions to the seven-
dimensional curvature scalar from A„. .The fol-
lowing terms contribute to the curvature scalar
~4.N:

(i) To R,: The first terms on the right-hand
sides of (2.25) and (2.26), respectively.

(ii) Extra contributions from higher dimensions,
giving F'—the second terms on the right-hand
sides of (2.25) and (2.30), respectively, and the
right-hand side of (2.27).

Putting everything together one finds eventually'4

0']p, =9 p, +~ t v)t9 ~ (3.1)

yVv L [I V, rv] (3.3)

where the I"~, p = 1, . . . , 7 are a set of generalized
Dirac matrices. They are explicitly given in Ap-
pendix B. It is important to note. that the general-
ized Clifford algebra has the form

Ir", r "}=2q'",

which is just the usual form. Using the basis dx
rather than the frame 8 would mean that one would
have to deal with a space-time-dependent Clifford
algebra:

w In} 2Gmn (3.4)

Here the Z give a finite-dimensional representa-
tion of the frame group (see Appendix A) with the

y as representation vectors. The co, „~ are the
Ricci rotation coefficients. They are related to
the connection one-forms via ~,„=w, ~8'. lf no
torsion is present and the natural basis 8„=dx„ is
being used, the w„„, are the Christoffel symbols.

It is elucidating to work out (3.1) for a known
case. In fact, if y is a vector field, then the ma-
trices Z„„have elements

(3.2)

and for 8,=dr, —the co„~ being the Christoffel
symbols —(3.1) reduces to the ordinary covariant
derivative of a vector. An intuitive meaning of
(3.1) emerges if one thinks of y~„as a gauge-co-
variant derivative, the gauge group being the
frame group.

In the case under consideration, the frame
group is So(6, 1}(see Appendix A) and y is a spi-
nor with eight components. The generators Z'"
can be written as

Then instead of (2.35),

R„„=R~ —(f'/4)E2,

where now

Ft = V At —V A'+ eI't A"A'
ab a b b a rs a b'

(2.39)

(2.40)

(2.41)

For the following we rewrite (3.1) in terms of
forms. Using (3.3) one has

Dy = dy+ —,
'

(o„,[r",r"]p,
with

Dy = y„8', dy= q„8".

(3.5)

(3 6)

(3) From (2.40) one concludes that f must be re- Here the relation between the Ricci rotation co-
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efficients and the connection one-forms has been
used. It may be stated as

cal frame index has been written with a bar. For
~=5, 6, 7 one has

((O„e,)=(d „ (3.'I) (3.13)

where the scalar product ( ) is defined by

(gx, g ) (3 8)

We are now in position to write down the general-
ized Dirac equation for the generalized Dirac
field 4'. It reads

In order to work out the second half of the right-
hand side of (3.9) one has to remember that the
absence of gravity means for the connection one-
forms

(3.14)

(3.9)
Here d, are the frame components of the seven-
dimensional gradient (the partial derivatives).
Their explicit form is given below. The + is an
eight-dimensional spinor field depending on seven
variables, + = @(x,x). I will use the notation that
x= (x') means the Minkowskian part of the gen-
eralized space-time and x=(x') means the inter-
nal part. Defining the generalized Dirae-adjoint
spinor by 4'= +~X', the four-dimensional effective
Dirac Lagrangian is given by"

)'(x) = Jd x. (im @'+ —'+I'"4, „). (3.10)

d,+=e „d +, (3.11)

where the components of the (4+N)-beins are in-
troduced by

e~= e" dx, dx = e „8'.
They are explicitly written down in (A4) and (A5).
In (3.11) d is the ordinary partial derivative,
d, 4 = (s/sx ')4 = O', , Explicitly, one then finds for
the frame components of the partial derivative for
m =1 [remember (2.12)]:

(3.12)&1 &1 j. lm &1 1

and similarly for m =2, 3, 4. In (3.12) the numeri-

Note that d'g is indeed the invariant volume ele-
ment for T,. It has been shown" that in the case
of a five-dimensional KK theory an Ansatz +(x,x')
can be found such that (3.10) reduces to the ordi-
nary Lagrangian density for a generalized eight-
component Dirac field coupled to the electromag-
netic field. This coupling contains a minimal-
coupling term and a Fierz-Pauli term. The cor-
responding result will now be demonstrated for the
present case.

As a first step it is convenient to rewrite the
generalized Dirac equation (3.9) in terms of 4',

and I". For convenience I will in the fol-
lowing assume that no gravity is present. For
mally this means 8 =de, g"=g".

The frame components of the partial derivatives
are given by

=pE ~g8 o

Using (3.8) one then finds

(3.15)

+ r&+„+I'&+, ,+ T'-4„

The corresponding Lagrangian density is

z(x)= Jd'x{n"ir.(a, +A;a,)e-iinp e

(3.16)

(3.17)

where s~=d~ if p=b and e,=d, if a=t. In the ap-
proach taken here one now searches for an x de-
pendence for 4(x, x) such that

becomes the ordinary minimal-coupling term and

41'-4„+4 I'-4, ,+ 4 I'-4„
can be absorbed into the mass term.

I do not know of any systematical way of solving
this problem. In the Abelian case [the gauge group
for the Yang-Mills field being U(1)"] a simple
Fourier expansion will work. "" The reason is
that in this case the gauge group not only acts
transitively on T„but can be identified also with
T~ as a manifold (modulo multiple coverings).

For the present ease, however, I have found a
special ansatz which gives the desired result. I
put

"(x,x) = [exp(igT'x, )+exp(ii(. T'x, )

+ exp(i p T'x, ) ]r/r (x) . (3.18)

As will become more apparent later, p, must have
the dimension of a mass. Accordingly x' will have
the dimension of a length. Formally this may be
taken care of by writing

Using (3.12), (3.13), and (3.15) the Dirac equation
(3.9) becomes

im04'= I' (5'd, +A'd, ))li
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so that

POMO p x =xo/Mo

(no sum over v) .

X JtL =Xpgp

and Mp sets the mass scale. Referring to p as an
integer, as will be done below, strictly refers to
p p provided xp takes values out of the interval
[0,2v]. Consider now the relation

2'
i pT„exp(i p, T„x")= exp(i pT„2v). -1 (3.19)

spinors are looked upon as a doublet of ordinary
Dirac spinors, then this means that this internal
degree of freedom of the eight-dimensional spinors
is being identified with the gauge degree of free-
dom. This seems to be the most economical way
of making use of this internal degree of freedom.

In this case, i.e. , if,T„=t„,
r

0
r't, = I't, = r'g, = (3.24)

Y5

Furthermore, using the explicit form for the
(4+ iV)-beins, numerically

For integer p (even integer p) the right-hand side
of (3.19) vanishes provided P carries integer iso-
spin (half-integer isospin), since then exp(i pT„2v)
describes a rotation around the v axis by an angle
2m', which in turn is described by the unit matrix.
Thus for integer (even integer) p,

p5, 6, 7 p5, 6, 7
~

Thus, eventually from (3.23),

Z(~) =(2n) [q 8$(r 8 + —'ipfA't, )g

imo-g + i g gr't, p

(3.25)

t d' 4'r A'8, +=(2 )'p, t/r(r A' T,)$, (s.20)

which is just the form required for minimal coup-
ling and

d'& +[r'-s, + r'-e, + r'-s, ]e

=(2&) igp[r-T, +I'-T, +I'T,]g. (3-.21)

For nonsingular T„one has

+,—', f4F"„r„[r',r~]4),
where the constants f=Wic and e (the latter within
the definition of the field-strength tensor) have
been introduced again. In order to have gauge
invariance the identification

(3.26)

2y,f/3=e, p, =se/(2Wic) (3.27)

has to be made. Here the extra factor 2 in (2p f/3)
= e stems from the normalization of g„,

J dx" exp(ipT„x") =0 (no sum over v),
0

(3.22)
vg -10 "GeV ', (3.28)

which I have chosen in consistency with later parts
of this paper. Since

and (3.17) reduces to

Z(~) =(2v)'iq ~fr (38&+ipA&T, )p-sim pp

+i pg[r5T, + I' T, ,+ r7T,]g-
+ —,

' rgF" „r,[r8r"]g). (3.23)

Here y = 3 if all T and I commute. If T„=t„, where
the t„are defined in equation (Bs), then r = 1. Note
that the condition that T„are nonsingular is suffi-
cient to ensure (3.22) but not necessary. In fact,
if T„ in the adjoint representation of SU(2), (T„)"-c„„,then det(T„) = 0 but still (3.22) holds true as
may be checked by explicit calculation. For the
fundamental two-dimensional representation of
SU(2) the T„are the Pauli matrices and nonsingu-
lar. As a side remark I note that (3.22) holds
true as well for the fundamental three-dimensional
representation of the SU(3) algebra given by the
Qell- Mann matrices.

For the remaining discussion of (3.23) I will re-
strict myself to the case T„=t„. The motivation
for this is the following: If the eight-dimensional

p. is a mass parameter of the order 10" to 1020

GeV (Planck's mass). It is by this way of identify-
ing coupling constants that Planck's mass enters
into a KK theory, thus setting a scale for the
tightness of the internal coordinates.

In order to get the final form for k(x) the term

ipse

I' t, g in (3.26) has to be absorbed into the
mass term. This can be done by means of the
substitution

tj(x) —e~" '5y(x) . (3.29)

m = [exp(2yr't, )](m, —qr't, ) . (s.sl)

The phase P is determined by the requirement
that the mass term be a multiple of the unit ma-
trix. The Dirac equation following from (3.26)
changes under the substitution (3.29) into

-imog+ e ~ 'SI' (8 + &iiJ.fA "t„)g
+igr't~g+ —,', fF"~yr„[r~, r"]/=0. (3.30)

Multiplying the whole equation by e x(p2$ rt,s) the
mass matrix M of the spinor field tj is given by
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Inserting this into (3.29} and multiplying again by

(, the final form for the Lagrangian is
[9= -', (s s)]

('(e) = I-eilM(ee ((I' (e +(eel2)e(;t, ]g

The analog of the simple sensate given for the spi-
nor field does not work. For the fundamental
representation of SU(2} I have found, however,
that the following Ansatg allows to reproduce the
minimal-coupling Lagrangian for the scalar field:

4(x, x) = [n [c'"+c'"+ c,'"]
+i p [t~s5 '+ t6s6 '+ t7s 7 '] t (f((x) .

In this section t. ..are the Pauli matrices
t

(4.4)

M =~mo'+ p, '=COMM~ (3.33) [t„t„]=+2ie,„ t, [t„t/=25, „.
for a suitable phase (t( and (2pf/3) =e [cf. (3.27)].
In fact, using the Hermitian matrix I' = I' t, /i,
M =8"'r (m, -it(, f')

= (m, cos2$ —t(, sin2(t()+ iI'(ma sin2$+ g cos2(((() .
(3.34)

In order for M to be diagonal,

The notations in (4.4) are the following:

c„")= cosy, x"t„, i =1,2

(no sum over v) (4.5)S„e=SHlp. x t„) i=1~2

and n and P are real constants. fd'x is now to be
understood as

dx dx dg
t(, /m, = -tan2$,

(I + tan 2(f&)~&2 —(m 2 y t( )~t2

(3.36)

(3.36)

and ap, =m,. are odd integers. Therefore

r aff /2
(sint(, ,x)dx = 0.

-ar/2
(4.7)

Accordingly the mass of the spinor field in (3.32)
is of the order of Planck's mass. One might ask
whether the result that the mass of the spinor
field is shifted by Planck's mass is dependent on
the Ansatz being used for (t(x, x). I therefore dis-
cuss a few modifications of this Ansatz in Appen-
dix C, but none of them changes the result in
question.

l
(&,+it(fA,"t„)Pl' (4.8)

if certain algebraic constraints are fulfilled. In
fact, the first, third, and fifth term on the right-
hand side of (4.3) have the respective coefficients

The terms in (4.3) containing derivatives with re-
spect to the internal coordinates will combine into
the minimal-coupling term

IV. SCALARS AND A MODIFICATION OF THE DIRAC
EQUATION

P, = (av)'[2 n'+ -', p'+ (24n')/(m, 's'}],
P, = 8napw/ ,t(, (4 8)

Principally in the same manner as for spinors it
is possible to include scalars into the theory. Un-
like for spinors, the Lagrangian for the scalars
will be just a minimal-coupling Lagrangian.

The free Lagrangian for a scalar field (coupled
to seven-dimensional "gravity") is given by

aI', = —v'(n'm, '+ p'm, '),

which have to be the coefficients A', AB, and
B' of a complete square in order to combine to
(4.8). Therefore one has to fulfill the constraint

&{x)= Jl d'x(G C'.C „-m,'C'C),

where

(4.1) (a,)'/I, =I, ,

which reads explicitly

(4.10)

C =C(x, x)

and G " is the inverse of the seven-dimensional
metric tensor G „. Its explicit form is given in
Appendix A. Correspondingly [see (A2) ]

G "4 C =C 4 g' +4 C g""+4 4 g'"A"
, m, n, a , tt, v , u , a b

am 7( 3—+3 —+ —=64/(n m + p m ).G p 12 Cl 2 2 2

P a m, m P
1 2

(4.11)

Furthermore, in order to compensate for the
smallness of f, P,/J', has to be of the order of
Planck's mass, i.e.,

+4 4 g'A" +4 4 A" A" g'b, u, tt b a

(4.3)

30. 3 p 24
m, ma ——+ ——+2P 2n m~s P&'

.(4.12)
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has to be of the order 10 "GeV '. P,/P, has to be
of the order of Planck's mass squared. Both are
achieved by choosing a 10-x8 and z and ~ roughly
of the same order of magnitude and m, not too
large. The constraint (4.11) then puts n and p at
the value of the square root of Planck's mass.
Again, from the second term on the right-hand
side of (4.3) one gets a contribution to the mass
term of the order of Planck's mass. "

For the given representation the Ansatz (4.4) is
quite closely related to the Ansatz (3.18) for the
spinors. In fact for n= P= 1, and p, = p, ,=p the
&nsBtse agree apart from the change in the inte-
gration range.

The Ansatz (4.3) for the scalar field may be used
for the spinor field as well. One gets the same
Lagrangian as in Sec. III, with

p, -p=P, /P,

and for the Fierz-Pauli term,

(4.13)

3 24@' P' lf -f =( a)'zf —e'+ ——
~ P .

2 m '~' 2 i
Note that

~
f

~

-
~
f ~. It is interesting to note that as

a function of n and P, f has a zero, i.e. , the
Fierz-Pauli term can be eliminated.

(4.14)

V. A REMARK ON HIGHER GROUPS

An ansatz for the spinor field like that of Sec.
III is easily generalized to the case of more than
seven dimensions. An interesting restriction oc-
curs, however, if groups of rank 2 or higher are
being used.

For definiteness consider the case of SU(3). Be-
ing of rank 2 the group has a two-dimensional
center with generators Y and T,. Consider the
case that for 2= Z(g, tt), g is a vector |j = g such
that

T3$ =0= Yg, . (5.1)

Then the relative factors of the different terms in
the Lagrangian density (3.26) will change as com-
pared to those for P's which have Yg4 0 and/or
T,gc0. This means that universality is lost and
for such representations the concept of univer-
sality becomes obsolete.

One would therefore exclude representations
from consideration which contain a vector g,
satisfying (5.1). In the case of SU(3) this ex-
cludes the representations

8=D(1,1), 10=D(3,0), 2'I =D(2, 2), 28=D(6, 0), . . .
(5.2)

(and complex conjugated ones). It leaves, how-
ever,

VI. GAUGE TRANSFORMATIONS VERSUS COORDINATE
TRANSFORMS

It has been remarked by Hayski" for the five-
dimensional case that global gauge transforma-
tions and coordinate transformations of the inter-
nal coordinates may be related in the following
way: The scalar field in five dimensions 4(x, x')
is given by 4 (x, x') = exp(ipx')P(x). Under a gauge
transformation, P (x) - exp(ia)P(x). This gauge
transformation may be interpreted as a coordinate
transformation x, -x, +a/p, =x,'. Thus under a
gauge transformation

@(x, x,) -C (x, x,') = 4 (x, x, + a/p) . (6.1)

'The purpose of this section is to demonstrate a
similar phenomenon for the present seven-dimen-
sional case. In fact, consider the ansatz (3.18)
with T„-I;„, the latter being defined in Appendix
8:

e(x, x) = [exp(i p.x't, ) + exp(ip, x't, )

+ exp(i px't, ) ]:g(x).. (6.2)

I will consider a specific gauge transformation

tt (x) - e px(iX't, )g(x) -=exp(iXt, )g(x) . (6.3)

A more general gauge transformation may be ob-
tained by successively repeating (6.3) for other
directions. I now proceed to demonstrate that the
equality

[exp(ipx't, )+ . ] exp(iXt, )g(x)

= e x(ipse't, )[exp(ipx"t, ) + ]g(x)

= exp(iX't, )e (x, x') (6.4)

holds. Namely, one concludes from (6.4) by com-
paring coefficients of t,P(x) and ((x)

(cosa')Z' —(sinz')s,' = z, ,

(sink. ')Z'+ (cosA. ')s,' = z„
(cosA. ')s,'+ (sink')s, ' = z, ,

(-sink')s6+ (cosX')s7 = z, ,

where

(6.5)

(6.6)

/

3=D(1,0); 6=D(2, 0); 15=D(4, 0); 21=D(5,0);.. .

(5.3)

(and complex conjugated).
The sets (5.2) and (5.3) are discriminated by the

triality of their elements. For a representation
D(p, q) the triality n is defined as p-q=3n. The
elements of (5.2) therefore have integer triality
whereas the elements of (5.3) do not. The quark
representation 3 = D(1, 0) is among the allowed
representations.
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s„=sing x", s„'= sing. x'",

z, = (cosA)Z —(sinA)s„

z, = (sinA)Z+ (eosA. }s,,

Z = cos p.x'+ cosp, x'+ cos j,h',

Z = cosph + cosph + cosph
(s.v)

(6.8)

(6.S}

'This was true from the very beginning in the pre-
vious approach. For a curved space such as S3
this can be done only if one chooses a noncoordi-
nate basis. This is a basis whose elements do not
necessarily commute. Using as a parametrization
of $3 the Eulerian angles x" such a basis is con-
structed as follows:

(
z, = (cosA.)s, —(sinA. }s„

/

z, = (cosA)s, + (sinA)s, .
The subsystems (6.5) and (6.6), respectively, are
solvable for arbitrary X'. For given real X one
finds A' to be real. For consistency of (6.5) and

(6.6) A' has to be adjusted for given A.

Motivated by numerical analysis I furthermore
give the following conjecture: 'The subsystems
(6.5) and (6.6) are compatible for A.

' = 0.
An exact proof of this statement would be diffi-

cult since in either case (A' = 0 or not), (x„,A. ) and

(x'„, A') are related in a nonlinear way. A con-
sistent solution of (6.5) and (6.6) gives a re pre
sentation of a gauge transformation as a coordi-
nate transformation. 'The case A. '=0 would give
the exact analog of (6.1). An important difference,
however, is that the gauge transformations are
now related to nonlinear coordinate transforma-
tions (which are not translations) of the internal
coordinates.

Another interpretation of the results obtained in
this section is that the gauge transformations can
always be compensated by a coordinate transforma-
tion so that as a net effect 4(x, x, ) [4'(x, x)] does
not change at all (A' = 0 assumed).

e;=-i -sinx cotx &, +cosh ~, +
Sinh
sinx'

e& —-ie, ,

(7.2)

h„" =i —Slnh Cosh 0 . (7.3)

.cosh' sinx' sinx' sinx' cosx'.
I have chosen the following conventions: e-„e;,e7
coincide with I „,I „,I, of Edmonds, "respectively,
thus

7

e„e„]= z e,„,e„~-„,= 1.
«5

'The E„are related to e„e„e,of Misner, Vhorne,
and Wheeler by

el = ze8~ e2= zes~ e3= zest

and the Eulerian angles are ez=x', P=x', y=x'.
'The Iz, respectively, have the following properties:

8e" = h„"dx", e„=h"„ (7.1)

Explicitly (barred indices are frame indices),
5

e&=-z -cosx coth & —sinx & +6 ~ 5 OSh
5 6 ~ 6 7

VII. THE KALUZA-KLEIN ANSA TZ FOR THE
METRIC: CURVED INTERNAL SPACE Furthermore,

(v.4)

Again our starting point is the Kaluza-Klein
Azzsatz for the metric (2.1):

g~~+g
Niff

-g„,w,'

What will be different as compared with the situa-
tion discussed so far (Secs. II-VI) is that the in-
ternal part of the space will from now on be identi-
fied with the gauge group as a manifold; g„ is
therefore now the metric of the sphere S, [the
gauge group being SO(3)]. In order to derive the
usual formulation of a Yang-Mills theory one has
to require

go~ —ey e~ ——y~ ~

gC'~ eftz . et' Qtfz}

(7.5)

The frame of the seven-dimensional space is now

given by

0 =8
O'=Iz' d '-A'dh'.

(v.s)
(7 7).

From (7.7} and (7.4) in particular,

dx'=Iz' (P+4;dx'). (7.8)

Following the same line of argument as in Sec. II
one first determines the connection one-forms
from de':

t

CP = h'„Ck~a dh". -A, ~Ch~n, Ch'-A Ch~nCh'

= ~f' Iz~iz,"(g~~ gA+g"~A g -g" g n g~+g"A, 'g~e gs]. -g' g&~ g~ —g' Iz~(g~+g~gz) ngc', (7.9)
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where

(V.10)

matrices. Indeed the 8„* have the commutation
relations of the angular momentum operators I „:

The Christoffel symbols of the sphere S, are de-
fined by

s,* = ,'(L,-+L ), s,* =—(L.—L ), &,* = I,„ (7.21)

r,.=-,'f'„.(I:l;-I",I".) .
If one imposes the requirement

8+A& —@toA'f rT Ac
(p Qy% fpfy 0 &

(7.11)

(7.12)

the second and third terms in curly brackets and
the first term in parentheses in (7.9) vanish and
one obtains from (7.9) using (7.11)

where L,=L„+iL„L,are the angular momentum
operators in the notation of Edmonds" (see above).

Iterating (7.12) one realizes that the A ' are the
components of a spherical tensor of rank 1 and
thus one finds the following explicit solution for
the spherical components, A' of the gauge fields
in terms of VA'gner's rotation functions:

(7.22)

where

F:,=( A:,+A; .+ r', .A:A;).

(V.13)

(V.14)

Here the spherical components, A' of a vector
A' are defined as

(7.23}
As one can see the commutator term in E'z ap-
pears now because A' depends on the internal
coordinates. Since the world components A' and
the frame components A' are related viaA'
=O', A' for a curved internal space the gauge fields
have to depend on the internal coordinates. The
explicit fogm of this dependence is determined
below.

The quantities r'„, which are the Christoffel
symbols of S, are at the same time the structure
constants of SO(3). This statement depends of
course on the choice of the basis e, . Explicitly

(V.15}

The difference in the respective definitions of L,
and, A' will be of some importance below. In
(7.23) I have dropped the bar for framed indices
again: All tensor components will be understood
as frame components.

In (7.22), ,8' does not depend on the internal
coordinates but is otherwise arbitrary. The " on

,B indicates that the differential equation (7.12),
being homogeneous, determines-its solution only
up to an overall factor. From (V.22) one finds for
the Cartesian components A'.

A'. =~ .& (u'., — '„,),
Therefore (7.14) is the usual field-strength tensor
for the Yang-Mills fields. Comparing (7.13) with
Cartan's first identity [cf. (2.7)]

A'. =,8 u', .

(7.22')

CO v

and using the expansion formula

Q7 = (dv vX

one finds

(d ~y = 0 = Q)

(V.16)

(V.17)

From (V.12) and (V.14}one finds that E'~ satisfies
the same differential equation as A':

(7.24)

Furthermore,

=I r'„.A:, (V.19)

and verifying the integrability condition

(V.20)

This is not too surprising since the 8„* have just
the same commutation relations as the r as

(7.18)

I now proceed to determine the dependence of the
gauge fields on the internal coordinates. This
dependence is given as a solution of (7.12) which
is looked upon as a system of partial differential
equations. It is solvable as one may check by re-
writing (V.12}as

x- px, (V.27)

where in order to retain the periodicity of the

a fact which is important for the calculation of the
Lagrangian density: It expresses the invariance
under rotations for the square of the Yang-Mills
curvature tensor.

The remaining arguments are as given before.
The constants e, f are introduced in essentially
the same manner. That is, one first replaces
(7.8) by

ch'= h' (e'+fA'ch'} (V.26)

Further one substitutes
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pf-e, f=v».
The Lagrangian density is given by

(7.28)

)l(x)= f 4 I@i R,.x
2't T 2T

dx' sinx'dx'dx7 I@I R„»,
0 0 0

rotation functions, p, has to be an integer (integer
I ). As before one identifies

The factor "i*' in the terms containing 8,* in (8.1)
appears in the following way: For convenience,
8„* in the previous section had been defined to be
Hermitian, contrary to the definition of ~ . The fac-
tor i is now written down to get matching Herm-
iticity properties. Formally this can be done by
a change in the definition of k„, but keeping the
definition of 8„*.

Again we are facing the problem to find an
Ansats for the x dependence of 4(x,x) such that

whence, after substituting (7.2V),

R(x) = ,' nv' I—gI (R, —,' f'F'+—12p, '}, (7.29}
" [q"er.(s, qfx', s*,)e]
S3

(8.2)

the integral over the internal volume being the
invariant integral over S,. (7.29) is the Lagrangian
density for gravity coupled to Yang-Mills fields
with a cosmological term present. This term
originates in the extra term in (7.13) (or, equiva-
lently, the fact that the ur', „do not vanish). The
cosmological term is very large, X(x,x)= f D'„„(x)(„x(x).

M, N=-L
(8.3)

gives the minimal-coupling term and the next
three terms in (8.1) combine into a mass term
This will be achieved by means of the following

sensate:

12','-10"GeV.

The appearance of such a large cosmological
term has been noted before. "

(7.30)
(8.3) may be looked upon as a Fourier expansion
over S,. The normalized (invariant) integral is

VIII. DIRAC EQUATION —CURVED INTERNAL SPACE

The general arguments in deriving the Dirac
Lagrangian are the same as in Sec. III. That is,
instead of (3.17}one gets

):( )=f (q"er. (x, + xgw;x:»i-;,ex
Sg

+ i p4I"s,*@+~ i p4 r„„,r'[r", r']4
+ hfeF;„r, [rs, r~]e] . (8.1)

Now

d sd 6d 7sl~68' pp (8.4)

(8.5)

where the subscript s has been introduced again
to indicate the spherical components of a tensor.
Then, by using (8.3) and (V.22)

4(x, x)(zA"'s ss,*.)(-1f'4(x, x) =
S3

M -M' p' K -N'

f

&', N', @,N, e, v' Ss
r

- ( 1)»' »'( 1)+ T() p (+((i) ( Vx (L))»»

(8.6)

where from now on proper summations will be understood. The matrix sT&„' is defined in Appendix D and
the preceeding factors in (8.6) are Wigner's Bj-symbols in the convention of Edmonds. " Comparing the
definition of sT@' and the explicit expressions for the Sj-symbols'8 one finds

I 1
a)»»'

M -M' y ~ [(2L+ 1)(L+ l)L)' '

Using (8.7) one finds the expression (8.6) e(lual to

2L 2l

(21 1)(J 1)L 4'»' ~»» s 8 ('s I)i' s ())' } ( } (s I) } 21, ~»'»' [ (s s )(sV I) ) 4»

(8.V)

=
2L,P»» (s&s)(sT'-'o')" "(- )"&»»
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where in the last line the Hermiticity properties
of sT„~ have been used. Choosing now the special
tensor field

way: I choose I = 1 and write

g.(x) = t, P(x), (8.12)

4~~(x) = P~P„(x), (8 9)
where I use the nonspherical notation again,

Setting

Q~( —l)~ = Q~ (8.11)

one can now identify B~ with a standard Yang-
Mills field. The internal degree of freedom for
the eight-dimensional spinors may be identified
with the gauge degree of freedom in the following

whe~e only the factor g„(x) carries spinor in-
dices, with a normalization 2+~0*/'„= I, the last
line of (8.8) becomes

1 2]'

1 4~ (x)(g&[])(,&g'P'"( I)"l-„(x). (8 10)

(t.] =(t„f„f,]
are the matrices defined in Appendix B, and g(x)
is an eight-dimensional spinor field. Since

(8.13)

(8.10) becomes (remember the commutation rela-
tion for f„)

', P(x)B—[]t„P(x), (8.14)

which is the desired result.
The remaining terms are now comparatively

easy to evaluate, since no further constraints will
be imposed. In particular, the Fierz-Pauli term

kE"&„),[)'',I]k f'"t) 'N.=„.D„.„.(x)(-()'[IF s(B)]D'„,( g)', )[)',I]0 {x'"\t)„„
S3 S3

aK+ |})+e'
(8.15)

From the symmetry properties of the 3j-symbols,

( Z'&I')J™—( 1)2]'+~( 2' &)'"™ (8 18)

[remember (8.13)], and (8.15) becomes

I)(L I)L ~N'( 0 )b ~84'( 0' ) E I]

~ [r'r" lp . (8.17)

Defining

I

inated.
Using the relations

+5 0
r5g r6t r7t6

0 +5

and, in particular,

r,„,r"[r",r') = 8r'f, ,

(8.22)

(8.23)

(g) [I)0+(I [L))N bfyo (8.18)

this being a vector under internal rotations, one
has for the Fierz-Pauli term

the Lagrangian for the case where the gauge de-
gree of freedom and internal degree of freedom
stemming from higher dimensions for the spinors
are identified is given by

a(L) 0 (8.21)

el~~„r„r~r" +
S3

a(L)

2L 1)(I 1)LP "'+" r [r r"]P (8.19)

For the case where the gauge degree of freedom
is being identified with the internal degree of
freedom [cf. Eg. (8.12)] one gets instead of (8.19)
(L=1)

-a"'
(2L+ I)(L+1)L~' '

(8.20)

Note that by some suitable particular choice of
[{[)'„onecan achieve

Z(x) =

x g r t 8 +2gpg t

fN'
-im, T() g f„' /+i)[[erst, 3+

~I

2s().)
(~„.r„., „)."',r'[r ', r"]~„t)I,N' ]{["O' N ())8 ~ N

(8.24)

where one has to set I = l.
In a normalization t =t/2 such that [t, t]=inst,

Z(tz') = ~~, and the first line on the right-hand side
of (8.24) would read

so that again the Fierz-Pauli term can be elim- 3 q"yr. ([],+ ~ qua,'t, )y, (8.25)
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where gf is the self coupling of the gauge field.
The relative factor —, in (8.25) (which would des-

troy gauge invariance) can be gotten rid of in the
following way: Replace (8.12) by

])((x)= t„g(x), t „=t~+ n„l .

Then

but

(8.26)

(8.27)

(' (' =( (g & *)+(F]~„]')+a(Pt„)(ea„)
(8.28)

and similarly for the kinetic term. For Ben„= 0
(remember tN'= 1) one can therefore get the re
quired normalization factor. 'The mass terms
change in a similar manner whereas in the Fierz-
Pauli term one simply replaces t~-t„.

The two mass terms in (8.24) (second line) can
be diagonalized as before, i.e. , by setting

0(&)—[exp(eF'f, )]e(&) ~ (8.29)

The Dirac Lagrangian following from (8.24) is

~(.) = (,(."r.(.„-.2.ya, ~. ) —;M

fgP" I'„,~.„[m,+ ]],I't,(I+ —,', )]t&

xs".,r ']r'r "]&„)0, (8.30)

with

(8.31)

The detailed form of the Fierz-Pauli term is ap-
parently different from the previously (Sec. III)
given one. Principally, this can serve as a dis-
criminating feature of the two models.

IX. CONCLUDING REMARKS

'The purpose of this paper may be stated as to
give a supplement to the papers by Kerner" and
Cho" who demonstrated that an Einstein-Yang-
Mills Lagrangian can be derived from a high-di-
mensional "gravity" Lagrangian. [For reasons of
historical justice one should include the remark
that the generalized KK Ansatz for the metric (2.1)
has already been written down by DeWitt. 25] The
unification thus achieved would remain incomplete
could one not demonstrate —as has been done in
this paper —that matter fields can be included by
means of Lagrangians which contain the coupling
of matter fields to high-dimensional "gravity"
only. These I.agrangians contain indeed as special
cases gauge-invariant I.agrangians as one is used
to.

In comparing the two approaches given here the
second seems to be superior in the way the
gauge-covariant derivative of the gauge fields is
introduced. The crucial condition (7.12) is less
strong than it appears to be on first sight: It
states in fact only that the A are to behave like
components of rank-1 tensor operators under in-
ternal rotations. The papers by Kerner" and
Cho" are both formulated for this particular type
of geometry and consequently both contain the
constraint (7.12).

In the first case I have taken full advanta, ge of
the assumption that the internal part of the mani-
fold is not identified with the group as a manifold
by choosing the internal part of the manifold to
be flat. 'The price one has to pay for this advan-
tage is that in this case the gauge-covariant deri-
vative for the gauge fields appears more in an
ad hoc manner. One may, however, always feel
motivated by the pragmatical point of view: This
is just the way things have to be defined to give
the right answer. What is gained is mainly that
no cosmological constant appears —due to the van-
ishing of the curvature scalar for the flat internal
space. Otherwise the dimensionally reduced La-
grangians are similar enough.

One can always try to compensate the large
cosmological constant of Sec. VII by starting with
a Lagrangian in seven dimensions which already
contains a cosmological term. A less crude
method has recently been advocated, for instance,
by Kopcynski, "namely the inclusion of a (quad-
ratic) torsion term

Apparently the appearance of these very large
parameters is the biggest obstacle confronting KK
theories. This applies not only to the cosmolo-
gical constant and the masses of the matter fields
but also to the coupling constant of the Fierz-Pauli
term which due to the mass parameter being very
large is too small to give a phenomenologically
useful theory of CP violation' —the coupling con-
stant for the Fierz-Pauli term has the upper bound

f= Wic (cf. also Appendix C).
The latter statement on the other hand has to be

taken with some care insofar as nobody (as far
as I know) has tried to connect the phenomenology
of CP violation with a, Fierz-Pauli-type interac-
tion.

Another field where a KK-type approach has
proved useful recently is supergravity. ' The
technical results of this paper may be useful
here, too.

It may, however, as well turn out that a more
useful line of investigation is to take higher di-
mensions more seriously than in an approach
which would eventually use only dimensionally
reduced Lagrangians. As an example one might



21 ASPECTS OF SEVEN-DIMENSIONAL RELATIVITY 2163

Thanks are due to Professor Abdus Salam, the
International Atomic Energy Agency, and UNESCO
for the hospitality extended to me at the Interna-
tional Centre for Theoretical Physics, Trieste.
T. ¹ Sherry helped me through the papers by
Kerner, Thirring, and Cho. He furthermore
read large portions of a preliminary version of
the manuscript and made a number of useful com-
ments. I am similarly indebted to S. Downes-
Mar'tin and Professor A. Trautmann for reading
parts of the manuscript and some discussions on
topics of this paper. A. Namazie helped me to
use the computer of the Centro di Calcolo of the
University of Trieste for the numerical calcula-
tion mentioned in Sec. VI. Furthermore, I dis-
cussed parts of this paper at an early stage with
Professor H. Doebner. N. S. Baaklini helped me
by reading the entire manuscript and by a number
of encouraging discussions. Finally, I wish to
thank F. Gretsch for making it possible for me to
review certain pleasureful studies on his Roc Jet
model, without which this paper hardly could have
been written.

APPENDIX A

Remember Eq. (2.1). In short form I write the
metric tensor as

G gab+Aa Ab -Ava
mn

&~V

Its inverse G "is given by

bc GbQJ

(A1)

Gvc Gvfo
la

+~c + baAso

g @II/II gIIW + QVQWb
(A2)

consider the (more general) Lagrangian (8.1) ra-
ther than the dimensionally reduced one (8.30) as
the "true" one. I will return to this question later.

Note added in Proof. After the proofs for
these papers were returned, my attention was
drawn to the following papers: G. Domokos and S.
Kovesi-Domokos, Phys. Rev. D 16, 3060 (1977);
R. Casalbuoni, G. Domokos, and S. Kovesi-Domo-
kos, ibid. 17, 2048 (1978). In particular, much of
the contents of Sec. VIII of the present paper has
been discussed by these authors. I wish to thank
Dr. G. Domokos for drawing my attention to these
papers. Furthermore, my attention was also
drawn to the following paper: L. N. Chang, K. I.
Macrae, and F. Mansouri, Phys. Rev. D 13, 235
(1976). Again this paper overlaps partially with
the present one, in particular Sec. VII.
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The (4+N)-beins I'„,I „are defined by

8 =l dxm 7

d+m lm gW

(A3)

For the case of vanishing gravity they are given
by [remember (2.11) and (2.12)]

l" =6' -6~ Oa A'
m m &, m a

$m + gm ga AT

In matrix form one may write

(A4)

A'
gl

p gt
(A5)

~a
[Im ] a

0
(A6)

To see this one considers the action of the infin-
itesimal generators of SO(6, 1), L"„e „, and ob-
serves that due to the presence of A' in (A5),
~.n t qp

APPENDIX B

In this appendix the explicit representation of
the generalized Dirac algebra in seven dimen-
sions is shown. For a space of I dimensions,
spinors of rank 1 have the dimension 2~"~'~, where
[M/2] is the biggest integer smaller than or equal
to M/2. In our case there are seven generalized
Dirac matrices with commutation relations

fr~, r"j=2q~",

which may be written down explicitly as

y 0 I5 0 y",
0 y' 0, (B2)

.iy' 0 p y5

The numerical indices are frame indices here.
In (B2) the y are any representation of the ordi-
nary Dirac matrices [(y')'= —1]. I define the
commutators a""=[1 ",I"']. Of particular interest
are

—,0 = -it, , —,o = -it„-,a = -it„56 & 67 ' & 57—

The components l „of the vector l transform
like vector components under SO(6, 1). We shall
refer to the symmetry group of the frame metric
as the frame group. In this case it is SO(6, 1).
It is a.n important point to note that the frame group
is not the product group SO(3, 1) x SO(3) [SO(3, 1)
being the homogeneous Lorentz group], this would
be the case only if instead of (A5)



2164 MECKLENBURG

where explicitly
io x

t7 (a3)
'0 -1 '1 0t— t6=S.1 OJ 1 0 g0 1

These matrices satisfy the commutation relations
of SU(2):

Instead of (3.18) one may try (p„=n)

y(x, x) = g ]exp(i p,„x'T,)+ exp(i p,„x'T,)
n=&

+ exp (i p „x'T,)]g„(x) . (cl)
7

[t„t~] =2 Q &,~gt, , &M, =1,
T=5

and they anticommute. The following commutation
relations are also being used:

(a4)

[t„,r"]=o,

t„r'] = [t„r'1= [t„r']= o,
It r67j=(t r"]=(t r''j=o

(as)

(a6)

I am using a representation of y matrices such
that the following properties of I'" under Hermitian
conjugation (+), transposition (tr), and complex
conjugation (*) are being given:

Io +IO+ Potr I 0+

In this case 2(x) splits up into a direct sum of
Lagrangian densities of the form (3.32). If all
g„are identical, however, a slight modification
occurs. Nevertheless, N has to be of the order
of Planck's mass. Furthermore, one may try
(p,„=n)

y(x, x) = + P„(exp(ip, „x'T,) + ~ jg(x).
n=1

{c2)

t =(Z ~~Is. I*) (+ Iv. I*) (c3)

Inserting this into the Lagrangian and identifying
constants as before, one finds that instead of p
now

Pt+ —+ PltI
7

I 5 —- I 5+ - I 5tr —+ I 54

p6 p6+ + p6tr p6+

p7 — Q7+ — p 7tl —+ p 7%

(aS)
has to be of the order of Planck's mays. But

,from (C3),

(c4)

Furthermore, for the t„,

t, ,=+ t', ,=+ t,",=+t. ..
t =+t'=-t"=-t

6 6 6 6

which means that k has to be of the order of
Planck's mass.

Finally the following Ansatz would give the right
expression for the minimal coupling terms as
well:

APPENDIX C @(x,x)= [e xp(ig x' T, )+ ~ ~ +n, l]g(x). (cs)

In this appendix I discuss some modifications
of the Ansatz for the spinor field as given in Sec.
III, in particular, with hindsight to the questions:
(1) Must the spinor field have a mass which is at
least Planck's mass P (2) Is the upper limit for
the CP-violation constant always f=W~? N-one

of the modifications discussed changes the answers
to the questions as given in Sec. III.

t =(»)/(3+In I'), (c6)

p of the order. of Planck's mass so that p has a
lower limit, p ~

For T„=t„ the situation is slightly different.
In this case the Dirac equation reads

For the case [I', T] = 0 (r = 3) this simply results
in the modification p p with

Mq+r (&.+[ tf/ (3+In I')]'&'t.)0+ 16M 3, i" ). ( .f er't.9',r„[-r', r'ly=O, (cv)

where

M = [m '+ p '/(3+
)
n„i')']' ' = [m '+ (e/f)') ' '

(c6)

APPENDIX D

Equation (V.22) follows from the observation

and again p, has 3e/f as a lower limit. (Due to the
normalization of t, e is half the self-coupling
of the gauge field. ) = [(L +M)(LCM+ 1)]' D(g~,)g, (D1)
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where explicitly

8
0 BX5 P (D2)

. («") 6 ~L, = —se —(cotx ) SLx 6+~x Bx slnx ex

and the D~„are the Wigner rotation functions"'"

Dl. DL (xx) i' dL ( 6) &Nx7

N +1 0

+ 1 ~(1+cosx') —sinx6 ~(1-cosx')
v'2

dNN
SlKC

cosx
—Sl KC

(D4)

6-1 ~(1 —cosx')
42 ~ (1+cosx )

APPEND1X E: NOTATIONS

World indices:

a, b, c~d —l~. . .~4,

l, m, n, k=1, . . . , 7,
s~ tpQ~gg]'U= 5p 6p 7.

Frame indices:

o., P, y, 5= 1, . . . , 4,

» ~) ~) ~=» ~ ~ ~ ) 7)

cr, 7, q, &=5, 6, 7.
Numerical frame indices are sometimes written
with a bar: 1, 2, . . . .

Metric

G „:metric tensor in 7 dimensions. Defini-
tion: Eq. (2.1}. The inverse G"" is de-
fined in Eq. (A2).

g,„:physical metric tensor describing gravity,

The D» are eigenfunctions of I, with eigenvalue
M and of —is/Bx' with eigenvalue N. Further-
more, D„„is an eigenfunction of L' = ~ (I„I,
+L L,)+L,' with eigenvalue L(L+ 1). Note, how-
ever, that the step operators L, as defined in
(D2) only effect the first index of D ~„.

It is elucidating to check these statements for a
special case. This can be done for the par-
ticularly important case I = 1 where the matrix
d~N ls given by

+pvZ

&tu

g 7tl

D„
+NB

e(x, x)

.e
C (x, x)

e@

OT

:Ricci rotation coefficients (3.1), (3.7).
:covariant derivative of spinor or tensor
fields (3.1), (3.5), (3.6).

:matrix representation of frame group
(3.1), (3.2), (3.3).

:gauge field (2.1), (2.12).
:gauge-covariant derivative (2.14).
:gauge field tensor (2.38), (2.39).
:generalized Dirac spinor depending on
seven coordinates.

:generalized Dirac spinor depending on
four coordinates.

:generalized Dirac matrices (Appendix
A).

:matrix representation of gauge group
algebra on spinor (scalar} field.

:special case of T„cf.Appendix B.
:equivalent of t„, spherical notation.
:modification of t„(Sec.VIII).
:mass parameter of order of Planck's
mass. Secs. III, VII, VIII.

:self-coupling of gauge field.
:scalar field depending on seven coordi-
nates.

:scalar field depending on four coordi-
nates.

:noncoordinate base vectors on S„(7.1).
:3-bein on S„(7.3).
:Christoffel symbols on S, = structure
constants of SO(3).

:Eq. (7.12).
:spherical components of a vector (7.22).
:gauge field independent of internal co-
or dinates.

L
DNE~ +oa'

:Wigner rotation functions.

cf. Eq. (2.1).g„:metric tensor for internal part of mani-'
fold, cf. Eq. (2.1).

:diag (---, +; ---): frame components of
metric tensor.

e „:(4+N) -bein, Eqs. (A4), (A5).8":basic one-forms, Eqs. (A3), (7.6), (7.7).
:connection one-forms.
:connection one-forms with respect to g,&.

Cartan's first identity:
&8& + ~&„&0"= 0.

Cartan's second identity:
Xd(upv+(VpX~ (a) v=0@v ~

0&, .' curvature two-forms.
Curvature tensor A„„p& defined by

Q~, =@AD„p),6) P81 p X
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