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The thermal effects of acceleration found by Davies and Unruh within quantum field theory are shown to
exist within random classical radiation. The two-field correlation functions for random classical radiation

are used as the basis for investigating the spectrum of radiation observed at an accelerating point detector.
An observer with proper acceleration a relative to the Lorentz-invariant spectrum of random classical scalar
zero-point radiation finds a spectrum identical with that given by Planck s law for scalar thermal radiation

where the temperature is related to the acceleration by T = gaia/2mck. An observer with proper acceleration
a relative to the Lorentz-invariant spectrum of random classical electromagnetic radiation finds a stationary
radiation spectrum which is not Planck's spectrum. Rather, the observed spectrum in the electromagnetic
case contains a term agreeing with Planck's electromagnetic spectrum plus an additional term. This
spectrum for the electromagnetic case appears in the work of Candelas and Deutsch for an accelerating
mirror and corresponds to thermal radiation in the non-Minkowskian space-time of the accelerating
observer. The calculations reported here involve an entirely classical point of view, but are shown to have

immediate connections with quantum field theory.

I. INTRODUCTION

Recent work'~ in astrophysics has suggested
thermal effects due to acceleration. Specifically,
an observer in uniform acceleration relative to
the. quantum vacuum is reported to observe radia-
tion effects as though he were located in a thermal
bath at absolute temperature T = la/2ttck, where
a is the proper acceleration of the observer while
A and k refer to Planck's and Boltzmann's con-
stants, respectively. Sciama" fascinated a num-
ber of physicists by emphasizing this idea quite
recently in an Einstein Centennial lecture for the
New York Academy of Sciences.

At present it seems difficult for a physicist of
ordinary training to get beyond the initial fascina-
tion with this idea to an understanding of the
physics involved; the published literature on the
thermal effects of acceleration tends to be mathe-
matically sophisticated without providing any easy
physical insight as to what is involved. The
present article addresses this situation. It pre-
sents a physical picture as to why an accelerated
observer should find an alteration in the vacuum
of the universe. However, it does not suggest a
physical reason as to why this alteration should
take the form of a thermal bath. Indeed, the
question of just what spectrum is thermal in an
accelerating frame of reference requires sophis-
tication beyond the level of this article, including
the consideration of non-Minkowskian space-time.

The basis offered here for a physical insight
into the effects of acceleration is that provided by
a vacuum consisting of random classical radiation
with a Lorentz-invariant spectrum. Such a model
for the vacuum, although purely classical, can be

shown" "to describe quantitiatively a number of
phenomena which are usually thought to require
quantum descriptions. For the present problem,
the model provides random fluctuations in the
vacuum which are the same for every inertial
observer, "" yet which take on an altered
appearance for an accelerating observer. More-
over, the classical model provides not only a
physical picture but also detailed quantitative
calculations applicable to the full quantum descrip-
tion. The classical correlation functions calcu-
lated within this classical model have values iden-
tical with the expectation values of corresponding
products of quantum fields. '4 Thus the results
can be taken over directly onto the quantum theory.

The organization of the article is as follows.
First there is a qualitative discussion of random
classical radiation with a Lorentz-invariant
spectrum as a model for the vacuum. Next the
change in this spectrum for an accelerating ob-
server is considered. Then coordinates for an
observer in hyperbolic motion are introduced.
The remainder of the article is split into two
separate cases involving first a massless scalar
field and second a massless vector (electromag-
netic) field. For the scalar field we obtain the
Lorentz-invariant valcuum spectrum, calculate
the correlation function for the field at the posi-
tion of an accelerating detector, and then compare
this correlation function with that for a detector
at rest in planck's spectrum of scalar thermal
radiation. The correlation functions agree, pro-
vided the temperature is given by T =ha/2ttck.
This indeed bears out the notion of thermal effects
of acceleration. Finally, for the scalar case we
show the agreement between the classical corre-
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lation functions and the expectation values of
corresponding products of quantum field opera-
tors. The same considerations are then carried
through for the electromagnetic field. However,
in this case the correlation functions for the fields
at the position of a detector accelerating through
the zero-point radiation turn out to be different
from the correlation functions of the fields at a
point at rest in the Planck spectrum of radiation.
The spectrum seen by the accelerating observer
is obtained from the correlation functions, and
it is found that an additional contribution is
present beyond the Planck thermal spectrum.
This altered spectrum in the eleetromagneti. c ease
is seen to be the same as that found earlier in
work on an accelerating mirror, with the altera-
tion related to unfamiliar space-time properties
of an accelerating reference frame.

II. A CLASSICAL MODEL FOR THE VACUUM

A. Random classical radiation

Why should an accelerating observer regard
himself as in a thermal bath'P Surely this idea is
foreign to Newtonian classical mechanics and re-
mains puzzling from the perspective of naive quan-
tum theory. Of course the analyses of this ques-
tion in the literature start with the vacuum of
quantum field theory, and the quantum vacuum
seems hard to visualize. It involves fluctuations
and virtual quanta but no real quanta. The physics
literature tells us that acceleration somehow
turns virtual quanta into real quanta.

Now a number of phenomena associated with the
vacuum of quantum electromagnetic field theory
can be understood in purely classical terms within
classical electron theory, provided we change the
homogeneous boundary conditions on Maxwell's
equations to include random classical radiation
with a Lorentz invariant spectrum. "" In this
new classical theory there is always present this
random classical electromagnetic radiation irre-
spective of what physical situation is considered.
This random radiation forms the "vacuum" state.

It should be noted that this classical model can
be applied" to simulate some aspects of any
quantum field theory, for example, a scalar field
theory, not merely quantum electrodynamics.
The random radiation introduced is not connected
with temperature radiation but exists in the vacu-
um at the absolute zero of temperature; hence it
is termed classical zero-point radiation. The
zero-point radiation is treated just as any random
classical radiation would be, and the Quctuations
of the classical zero-point radiation are just as
real as the fluctuations of classical thermal
radiation. The only special aspect of zero-point

radiation is its spectrum. It is Lorentz invari-
ant, ' ' and this aspect is crucial. Because the
spectrum is Lorentz invariant, every inertial
observer, no matter what his velocity, finds the
same spectrum of random classical radiation.
Every inertial frame is equivalent; there is no
preferred frame. It turns out that the Lorentz-
invariant spectrum of random classical radiation
is unique up to a multiplieative constant. ""
Every other spectrum of random radiation has
some preferred inertial frame. Now thermal
radiation involves radiation above the zero-point
spectrum; it involves a finite amount of energy
and singles out a preferred frame of reference.

Planck's constant appears in the new classical
theory as the scale factor in the Lorentz-invariant
spectrum of random classical radiation. This is
the one place where 8 is put into the classical the-
ory. Every further appearance of Planck's con-
stant is derived from its role as the scale factor
of the zero-point radiation.

B. Acceleration relative to classical zero-point radiation

The idea of classical zero-point radiation is
well suited for an understanding of a number of
phenomena which are usually regarded as quantum
mechanjeal, includjng djamagnetjsmxx, x6 an
Van der Waals forces."" In the present case it
is ideally suited to giving one a sense of the
change in fluctuation pattern when a detector
undergoes accelerated motion —in other words,
to giving one a sense of the thermal effects of
acceleration.

Let us reconsider the basis for the Lorentz-
invariant behavior of the vacuum fluctuations.
In some given frame, which we will term the
laboratory frame, a spectrum of completely ran-
dom classical radiation can be written" as a sum
over plane waves of various frequencies ~ and
wave vectors k with random phases. Another
observer, moving with constant velocity with
respect to the laboratory, sees the radiation
pattern as composed of plane waves but now with
frequencies u' and wave vectors k' connected by a
Lorentz transformation to the co and k of the labo-
ratory description. In general, the spectrum
seen by the moving observer will be quite differ-
ent from that seen by the laboratory observer.
However, for a Lorentz-invariant spectrum the
plane waves are shifted in precisely such a way
as to reproduce the spectrum found by the labora-
tory observer. Every plane wave is Doppler
shifted indeed, but for every wave Doppler shifted
to a new frequency, some other wave is shifted
down to take the place of the first wave. This
balance which provides the Lorentz invariance
is delicate and holds fear a spectrum unique up to
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a multiplicative constant.
Now suppose we consider an accelerating

observer. In this case a single plane wave in
the laboratory frame seems, when observed by
an accelerating detector, to be shifting its fre-
quency continuously in time. A plane wave of
frequency u in the laboratory frame will thus
involve a wide spectrum for an accelerating detec-
tor. The delicate balance for the invariant spec-
trum which was found by all inertial observers
need not hold for an accelerating observer. It is
precisely this change in spectrum away from the
Lorentz-invariant radiation spectrum associated
with the vacuum which is involved in the thermal
effect of aqceleration.

C. Hyperbolic motion

The simplest form of accelerated motion for a
point is hyperbolic motion, also termed uniformly
accelerated motion, in which the point has a con-
stant acceleration relative to the inertial frame
in which the point is instantaneously at rest. In
this case there is no preferred inertial frame
associated with the accelerating point.

For simplicity of notation we will choose an
inertial frame referred to as the laboratory frame
such that the accelerating point is at rest in this
frame at proper time 7 =0 whenthe frame time t
is also t=0. The accelerating point moves along
the x axis of the laboratory frame with proper
acceleration a, and reaches the point x(0) = c'/a
at time t =0. Now the acceleration a of the point
relative to its instantaneous inertial rest frame
can be related" using standard Lorentz transfor-
mations to the acceleration dv/dt =a(1- v'/c')' '
of the particle seen in the laboratory frame.
Since the acceleration a is a constant, this ex-
pression can be integrated to give the velocity
v(t) =act(c'+ a' t') 'f' and position x(t) =(c/a)
(c'+ a t')'f' seen in the laboratory frame as a
function of the laboratory time t. Since the inter-.
val dt in the laboratory frame is related to the
proper time interval dr by dt= dr(1 —v'/c') 'f',
we can use v(t) above to solve for the laboratory
time t as a function of the proper time 7, finding

t(7) =(c/a) sinh(av/c) .
This can then be used to obtain the position x and
velocity v in the laboratory frame as functions of
the proper time v:

III. MASSLESS SCALAR FIELD

A. Lorentz-invariant vacuum radiation

In the case of a massless scalar field, Q(r, t),
associated with the Lagrangian density" g
= —,

' [c '(Bg('Bt)' —&P ~ &Q], the classical vacuum
consists of random classical scalar radiation.
The spatially homogeneous and isotropic distribu-
tion in empty space can be written as an expan-
sion in plane waves with random phases:

k(r, t) ftt'kf(ta)c=cs[)t r-tct —e(k)],

where the 8(k) are random phases distributed
uniformly on the interval (0, 2m} and independently
for each wave vector k.

The Lorentz-invariant spectrum can be found
by requiring that the average value of the square
of the field ((t)(r, t)(t)(r, t)) take the same spectral
form in every inertial frame. Now the average
value can be written from (5) as

(tt(r, t)k(rt)) f tt'k, f tt,'k f(ta, )f(ta, )

x(cos[kk ' r —(kt, t —8(k, )]
&& cos[k, r - (d, t —8(k2)])

=-', J t'kf'( ),tta
where the average over the random phases can be
written as

(cos8(k) cos8(k')) =(sin8(k) sin8(k'))

=—'5~(k —k'),

(cos8(k) sin8(k')) =0,
(7)

(8)

and one integrates over the 6 function. The sca-
lar field observed from another inertial frame is
unchanged in value so that

It should be emphasized that an observer under-
going uniform acceleration through the classical
zero-point radiation finds a stationary spectrum
of fluctuations, if not the vacuum spectrum. This
occurs because of the assumed Lorentz invariance
of the vacuum spectrum. In any inertial frame
instanteously at rest with respect to the accelerat-
ing point, the spectrum of random classical radia-
tion is always the same. There is no preferred
inertial frame and no preferred time for the
accelerating observer.

x = (c'/a) cosh(a~/c),

v = c tanh(a T/c),

with

y = (1 —v'/c') ' ' = cosh(a7/c}.

(2)

(3)

flf'(r', t') = (t)(r, t)

d'A & cos k'-r' —~~t~-e k

where the last expression follows from the
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(o =y((o'+ vk„'),

k„=y(k„'+ v(0'/c '),

(10)

k„=k„', k, =k',

with the Jacobian of the transformation giving

d'k =d'k'y(1+ vk„'/(o') .

Lorentz invariance of the phase of a plane wave.
The wave vectors (&o, k), (&o', k') seen in the two
different inertial frames with relative velocity v

along the x axis are connected by the usual Lor-
entz transf ormation

(('(»', »')0'(»', »')) =J&'&/'( )t»

d3k'y 1+vk„' jg'

&& f'(y(o'+yvk„') .
The last expression is exactly J d k)f'(o))), pro
vided the function f' is linear in the inverse of
its argument

(14)

f'((o) =const/(o. (15)

Thus we have obtained the unique Lorentz-invari-
ant spectrum foi the scalar field. In order to
make the connection with quantum field theory
we will choose the constant in (15) so that the
Lorentz-invariant spectral function fo((o) is

Thus from (9) we have "f0 ((o) =
2 Ic'/(o . (16)

B. Correlation function at an accelerating detector

The characteristics of a random classical field at a point r in space can be described by evaluating the
correlations in the fluctuations. Thus for the scalar field Q(r, t) of random classical radiation as seen in
the laboratory frame, we would like to evaluate the average value ((t)(r, s —t/2)$(r, s+t/2)) involving the
product of fields at the point r in space at times s —t/2 and s+ t/2

On the other hand, the fluctuating field y at a point detector in hyperbolic motion should be evaluated as
(9)(0, o —r/2) (((0), o+ v/2)), where we have chosen the detector at the origin of the accelerating frame and
where (()(0, o + r/2) is the field at the accelerating detector point in the inertial frame instantaneously at
rest with respect to the detector at proper time o +r/2. From the knowledge of the Lorentz-transforma-
tion properties (9) of scalar fields, we find

(0 + /2) — —co h~(
o+~/2) 0 0 csi h(a(o+r/2)

where P is the field in the laboratory frame evaluated at the laboratory position (2) and the laboratory
time (1) for the accelerating detector point.

The expressions (17) and (5) are now introduced into the correlation function, the average over the ran-
dom phases performed, and the Lorentz-invariant spectral function fo((0) in (16) inserted so that

((() (0, o —v/2)((), (0, o+ v/2)) = d'k —, — —,cos k„—cosh
1 ko', c' a(o —r/2)i a(o+ r/2)

m 2m a c ) C

. »»(» —»/2)'l), „(»(»»»/2))
I

(18)

C. Stationary character of the correlation function k,'= k, k,'= k,y& z z& (21)

The stationary character of the correlation
function is not exhibited here since the right-hand
side of E(1. (18) seems to depend upon the choice
of the proper time o. However, the physical
argument that there is no preferred time for hy-
perbolic motion indicates that actually the ex-
pression (18) must be independent of o. The in-
dependence can be exhibited explicitly by changing
the variables of integration k over to k' where

which corresponds exactly to a Lorentz transfor-
mation from the unprimed laboratory frame over
to the primed inertial frame in which the acceler-
ating particle is instantaneously at rest at proper
time o. Under this transformation we find d'k/&o
= d'k'/(0' as from (10) and (13); and, after expan-
sion of cosh[a(o + r/2)/c] and sinh[a(a+7/2)/cj,
we see that the argument of the cosine in E(l. (18)
is just -2((L)'c/a) sinh(ar/2c). Thus we have

(o' = &o cosh(ao/c) —ck„sinh(ao/c),

k„'=k„cosh(ao/c) —((o/c) sinh(ao/c),

(19)

(20)

(((),(0, o —7/2)((), (0, o+ ~/2))

2 —,— cosh' 2(0' —sinh~ —,(22)
d'k'kc', c . (av'i$
4))' &o' . a i,2c~ ~'
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which clearly depends only on the proper time in-
terval w and is independent of the central proper
time r.

D. Evaluation of the correlation function

2 (23)

In this fashion we find the correlation function
measured at a point in uniform acceleration
through random classical scalar radiation as

e(g '
(V.(0, c -~/2)e. (0, c+7/2)&=- „1&2,

&&esch' —., (ar.
(2c

(24)

E. Correlation function at a detector at rest in Planck's spectrum

The result (24) will now be compared with the
correlation function (Qr(0, s —i/2)gr(0, s+ t/2)}
for a particle at the origin of an inertial frame
where there is present Planck's spectrum of
random thermal radiation along with the zero-
point radiation:

k( 1
is(* exp(ttistttT) —t)

Ac S(d
coth (25)

Employing the expression (5) for the scalar fields
together with the thermal spectrum (25), and then
averaging over the random phases as in (7}and
(8) and integrating over the 6 function and over
angles, we obtain

(P (0, s —t/2) P (0, s + t/2)}

fh ( SQ)d~ &o cothi cosset . (26)
'FC 0

The integral can be broken up into the form

f & e(o
d(t) (t) cothi cos(t)f

0

~t(p

2&v coact
(I /kT) —1

1 1 @AT pkTt+t' t' A
csch' (27)

The correlation function can be evaluated by
first integrating over angles to give a factor of
4m and then carrying out the infinite integration in
frequency by the use of a temporary cutoff. The
integral is of the form

l OCl

dkr co cosh&@ =He lim d&o ar exp[(ib —X)e]
0 0

where we have used (23) for the singular part of
the integral and a standard integral table ' for the
remaining term. Thus

-8 kT ~

(ti„(0, s —t/ 2) p( 0 s e tt' p)) = (
,&muTt

F. .Agreement of the correlation functions

If we compare the correlation function
(yo(0, c' —7/2)yo(0, o+ r/2)} in (24), found by the
observer accelerating through the random classi-
cal scalar zero-paint radiation, with the corre-
lation function {@r(0,s —f/2)&f&r(0, s+ t/2)} in (28),
for an inertial observer in random classical
scalar zero-point radiation with that for Planck's
spectrum including zero-point radiation, we find
they are identical in functional form provided the
acceleration and the temperature are related by

T =ha/(2mck) . (29}

It is precisely in this sense that one speaks of an
observer accelerating through the inertial vacuum
as finding himself in a thermal radiation bath.
We notice that the relationship (29}between the
temperature and the acceleration involves
Planck's constant 5 which provides the scale of
the zero-point radiation. The relationship in (29)
seems most curious, and has been connected by
various researchers to astrophysical phenomena
involving black holes.

G. Connections with earlier quantum results

The calculations which we have presented hold
for classical radiation. Earlier calculations are
entirely in terms of quantum systems, often
phrased in terms of quantum propagators. For
free fields and harmonic- oscillator systems,
there is an immediate connection'4 between the
quantum field theory and random classical field
theory. Specifically we can write the random
classical field P(r, f) in (5) in the form

p(s, t)=f d'tt ', f(is) [e(k)exp(-iZ s—)

+ad'(k) exp(iX x)], (30)

where the four-vector product K ~ x is just E ~ x
= &gt -k. r and the symbols a(k) and its complex
conjugate ad'(k) involve the random phases 8(k);

a(k) = exp[-i8(k)], a*(k) = exp[i8(k)] . (31)

The spectral function f'(~) takes on the values in
(16) and (25) depending upon whether or not the
temperature is above zero. The averages over
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the random phases e(k) give

(a(k)a(k')) =(a*(k)a*(k')) =0,
(a(k)a*(k')) =(a*(k')a(k)) = 5'(k —k') .

(32)

(33)

where

&p(r, t)e(r', t')) = 0(r, t)4(r' t')

and

[a(k},a(k')] = [a~(k), a~(k')] =0,
[a(k), a~(k')] = -[a~(k'), a(k)] = 6'(k —k'),

a(k) IO) =0.

(35)

(36)

(37)

Using on the one hand the average over the ran-
dom phases in (32) and (33), and on the other
hand the properties of the annihilation and crea-
tion operators (35)-(37), it is easy to show that
the classical vacuum correlation function is iden-
tical with the vacuum expectation value of the
symmetrized product of quantum fields:

(P,(r, t)Q, (r', t')) =—',(0 I($(r, t)Q(r', t')]'I 0)

d'k hc'
4m' cos[k (r -r')- &o(t —t')],

(38)

When written. in this form the classical scalar
field appears analogous" to the quantum free
scalar field.

d'u ~C' '~2
P(r, t) = — — [a(k) exp(-iX ~ x)

+ a~(k) exp(iK ~ x)], (34)

where a(k) and a~(k) are the familiar annihilation
and creation operators with commutators

+y(r, t)y(.r, t) . (39)

Hence the values of these functions remain iden-
tical when we substitute the values (1), (2) for
r, t and r', I," appropriate for an observer in uni-
form acceleration.

At finite temperatures the agreement between
the classical correlation function and the vacuum
expectation value still holds, '4 although the basis
for the agreement is not immediate as it is for
the vacuum case. In the classical case we need
only change the spectral function from f, over to
the Planck spectrum with zero-point radiation fr
in (25). The averages over random phases are
just as in the previous case. Hence we obtain
the correlation at finite temperature as

(P (r, t)P (r', t'))=, coth
d3k A@2

&& cos[k ~ (r —r')

—&o(t- t')]. (40)

We can rewrite this in a form which will be useful
later:

kc' k(o(n+ ,')—(P,(r, t)P, (r', t')) = 4, &g exp — ' ((n+ —,') exp[ —iK ~ (x —x')]+ (n+ —,') exp[iK ~ (x —x~)]) (4 }
n 0

where we have written

Z = Q exp[-h(o(n+ —,')/kT],
n=0

and have used the expansion

(42)

%o Q„,(n+—,') exp[ ku)(n+ ,'—)/kT]—
&2kT P„",exp[-Se(n+ —,')/kT] (43)

The quantum case stands in complete contrast with the classical one. The quantum field theory at finite
temperature involves not a change in the field operator P(r, t) but rather a change in the state vector of
the system. The expectation value at temperature T involves an incoherent sum over n-quantum states
weighted by the Boltzmann factor

(I y(r, t)y(r', t ) I) = g p —exp[—e„(k,)]—exp[ —e„(g)] (n„- n- ~ ~ ~

I
Q(r, t)+(r', t') Ini n„- ' ' '), (44)

n =0 n =0 1 2
kg k2

where the state
I
n-„,n-„, ~ ~ ) contains n-„, quanta at wave vector k„n„;quanta at wave vector g, «c.

from (35}-(37)the expectation value in the last line takes the form
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a'u a'u a&' '~'ec' '~'
&{s]~~p(r, t)p(r', t')]{s])= f, &{s]~~[aces(-(K r)+steep(tX s)l

)d: [a' exp(-iK' .x') + a"exp(iX ' x'}]
~
[n}&

, —[(n„-+ 1)exp[ iX-(x —x')]+ n- exp[iX ~ (x —x')]}.dkS
O'I (0

(45)

The expression (45) is now substituted into (44), the order of integration and (luanta summation is inter-
changed, and the sums carried out for all quanta which are not of the type n„-. This cancels all but one of
the factors of Z ' leaving

&~ P(rs t)P(r's t') ~&r=,—g exp — „' ((n+ 1)exp[- iX ~ (x —x')]+nexp[iX ~ (x —xt)]}. (45)
(f'k 1 Iio' %o(n+ —,'}

n~0

If we now take the symmetrized product of the
(iuantum operators, the factors of (n+ 1) and n are
both averaged to (n+ —,'. ) so that the correlation
function at finite temperature in (40)-(42) is in
exact agreement with the quantum expectation
value at the same temperature

&er(r, t)4r(rt, f')&=-.'&~{4(r, t)y(rt, ft}}~&,. (47)

From this identity of values, we see that our
classical results for the thermal effects of ac-
celeration have a direct connection with those of
quantum field theory.

IV. ELECTROMAGNETIC FIELD

A. Fields of the classical electromagnetic vacuum

Having seen that for scalar fields, acceleration
through the classical zero-point radiation gives
rise to thermal effects, we would like to extend
the investigation to the vector field provided by
electromagnetism. The zero-point fields cor-
responding to a Lorentz-invariant spectrum of
classical electromagnetic radiation have been in-
vestigated in a series of papers. "" The fluctuat-

& cos[k r —~t —8 (k, ]].)], (48)

2

te(r, t)= g fd kttxdt(ta)
X=1

& cos[k r —et - 8(k, ]].)J, (49)

where the 8(k, ]].) are random phases distributed
uniformly on the interval (0, 2]]) and independently
for each wave vector k and polarization X. The
function ]]((o) gives the spectrum of radiation in
terms of the frequency (0 =ck and m'[]'((d)) corre-
sponds to the energy per normal mode at frequen-
cy op. It has been shown' ' that random classical
elecrtromagnet;ic radiation has the same spectrum
in every inertial frame if and only if

vi 1]oi((t)) =const x (s) . (5o)

The choice of the constant as —,'I gives agreement
with quantum theory:

(]0 ((k)) = i A(s) . (51}

ing electric and magnetic fields can be written as

E(r, t) = g f d'kc(k, k)t(tc)
X~1

(52)

(53)

B. Correlation functions for the fields at the accelerating detector

The fields {I)(0, o + r/2}, (0, o + i/2) observed at proper time o + 7/2 by the detector accelerating along
the x axis are related by a Lorentz transformation" to those observed in the laboratory frame:

2

s(0 a+ r/0) —P f d k{»c+jy[e —c(k xd)r'c, ]r jry[c. +c(axe) /c]]t(o ) cos[k» tct - s(k k)], —
X-"1

2

ts(0, a e r/0) = p fd'k{»(ex c)+jr[(kxc )„+cs/c] r ,ky[(k

xsam,

—et /c]]s(tc) cos[k a —tat s(k, t )], —
41

(54)

where y, i), x, and t are related to the proper time o+i/2 as in (1)-(4).
For the vector-field analysis where several field components are present, we must deal with several

correlation functions rather than with a single one as in the scalar-field case. We will treat first
&h, (0, o —r/2)h„(0, o+ i/2}&. We use the expressions from (52) and'average over the random phases as

(cos8(k, X) cos8(k', ]].')& =(sin8(k, ]).) sin8(k', ]).')& =—,'5», 6'(k —k'),
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(cos8(k, X) sine(k', X')) =0. (55)

After summing over the 6 function in X, integrating over the 5 function in k', and inserting the Lorentz-
invariant spectral function fj0 in (51) for classical electromagnetic zero-point radiation, we find

2

(h,„(0,o — r/2)8~(0, o+ r/2)) = g d'ke„' —,—@&a —,
' cos k„—cosh i- cosh'

-~— sinh —sinh

The sum over the polarizations may now be performed using
2

Q e, (k, xQ)(k, z) =5„—k,k,/k'.

(56)

(5V)

The stationary nature of the correlation function (56) is proven in a manner analogous to that used for
the scalar case. Again, physically the expression must be independent of o because there is no preferred
proper time for a system in uniform acceleration through the Lorentz-invariant spectrum of classical
electromagnetic zero-point radiation. We introduce exactly the change of variables given by the Lorentz
transformation (19)-(21)and so find

d 'k(1 —k„'/k ')(o = d 'k'(1 —k„"/k' )(y ' (58)

(58)

where the exponential involves exactly the change found in the scalar case. Thus the correlation function
(56) becomes just the expression we would find upon inserting a=0,

d k (M —ck~) C . CT
(h,„(0,o —r/2)&, „(0,o+ r/2)) =, , k cos 2&v-sinh-

4g' a 2c

which is clearly independent of o.
The angular integrations can be performed. easily when the x axis is chosen as the polar axis,

(h,„(0,o —r/2)8, „(0,o+ r/2)) =-, d&o ar'cos &o
—sinh —

~

.2 I " , 2c . ar'11

0 ~a

(60)

The co integration involves an oscillating divergent expression which can be treated in the same manner
as that in Eq. (23); here we require

dw&'cosh'=6b 4.
0

Thus we obtain

(S,„(0,o —r/2) @,„(0,o+ 7/2)) =,(—csch' —i.gc I 2c

(61)

(62)

The correlation function (b„(0,o —r/2) b,„(0,o+ r/2)) for the y components of the electric field seen at
the accelerating detector is evaluated in similar fashion. We read off from Eq. (52) the values of 8„(0,
o +r/2} Then we. average over the random phases, sum and integrate over the 5 functions, and insert
the zero-point spectral function (51) to find

(h„(0,o —r/2)b~(0, o + r/2)) = g d'k —,—h&o e„cosh —(kxe), sinh
1 1 a(o- r/2) - „. a(o —v'/2) 1

41 ha

a(o+v/2) -, „a(v+r/2)}&cosh —k&&q, sinh c
c' „a(o-~/2) „a(o+7/2)

'

sinh sinh (63}
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Next we sum over polarizations using (57) and obtain here
2 2 2

g q„2=1 —k„'/k', g (kx~"},'=1 —k,'/k', g q„(kxq), =k„/k.
}i=1 X=1

(64)

The same change of variables (19}-(21)which was used earlier removes the o dependence and reduces the
correlation function to

d3k' & k" & &gg k'2 gg c gy ~
(b (0, o' —7/2)8 (0, o'+ r/2)) = 2 her' ~1-~2 ~cosh ~

—— 1 —~2 sinh2' —cos 2&g'-sinh-
Oy 0 Oy 4v .. i, k'2j (2c k'2 c a 2c

(65}
The angular integrations van be carried out easily and the use of the identity cosh'x —sinh x = 1 leaves

exactly the expression (60) found for (ho„(0, o —v/2)ho„(0, o'+ T/2)).
The correlation function (h„(0,o —v/2}$„(0,o+ r/2)) can be obtained from (52) and (53). After averag-

ing over random phases and inserting the Lorentz-invariant spectral function (51), this is

(b 0„(0,g —7/2)$0, (0, v+ t/2)) = ~ d'k —
2

—k&g e, cosh —(k xg), sinh
1 1 a(o ~/2) - „. a(o —~/2) '

A=1 I

/~l~+ ~/» . (~(~+ ~/»)'x k xg ~ cosh] -& sinh c

~
c' „a(a—~/2)'I h/a(v+ v/2))

(o- / ) „i(a(o+v/2)
ig c ( c j

Now we sum over polarizations using (57) and obtain precisely the results in (64). Once again we can
simplify the expression by the change of variables (19)-(21)to show the independence of the expression
from the value of o. W'e obtain, after use of the double angle identities for the hyperbolic functions,

dski ( kI2 ( ki~)1, gy& k~ c . (a71(b „(0,o- r/2}$,(0, 0+7/2))= k~ -I 1-~ +l(1 ——;
~

—sinh —I+~ cos 2~-smhl —
I4v' ( k' & k"i ~' c& k' a (2ci

(67)

When the angular integrations are carried out,
the correlation function vanishes.

The three correlation functions (56), (63), and
(66) are the only ones which require extended
calculation. All the remaining functions can be
obtained from these by symmetry considerations,
or else vanish immediately froxn symmetries in
the angular integrations. Thus (8~(0, o —v/2)
x ho„(0, o'+ r/2)) involves k„k„and k„after the sum
over polarizations, and hence vanishes because
it is odd in k„. The function (8~(0, o —r/2)
x@0,(0, o'+ r/2)) involves Qe, (k xe"),=pe„(k xR)„=0
and also k„k; it vanishes because it is odd in both
k„and k, . The function (go„(0,o —v/2)$0„(0, o
+ r/2}) involves Qe„(k xe)„=0 and hence vanishes.
Finally, (8,„(0,a —r/2)$, „(0,o + r/2)) involves k,
and k„k, and vanishes because it is odd in k,.
Rotational symmetry around the x axis and the
symmetry between the electric and magnetic fields
in free space provide all the remaining correlation
functions in terms of those already considered.

I

Thus we have

(&,$(0, o —~/2} &./(0, a+ ~/2))

= ($„(0,o —~/2)$, /(0, o + 7/2))

(68)

and

(b«(0, o —~/2)$+(0, o + a/2)) =0, i j =1,2, 3.
(69}

C. Correlation functions for the fields at a detector at rest in

Planck s spectrum

Pursuing our concern with the thermal effects
of acceleration, we wish to compare the corre-
lation functions (68) and (69) with those at a de-
tector at rest in an inertial frame in planck's
spectrum of thermal radiation. The expressions
for the classical electric and magnetic fields in
thermal radiation are precisely (48) and (49),
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where now the spectral function is changed from
the Lorentz-invariant zero-point spectrum fj, in
(51) over to the Planck spectrum including zero-
point radiation given by

(Er,.(0, s —t/2)B»(0, s + t/2))

4, 0;z, ~k@o cothI cosmist . (72)

(,
~'O, '(~)

=heal&. +exp(h„/kT) I)
=—', harcoth 2kT&l. (70)

Since the spectral function is isotropic depending
on the frequency & alone, the angular integra-
tions are easily carried out and give a vanishing
value for (72}while (71) becomes

We proceed in a style analogous to that used
above. We insert the expressions (48) and (49),
average over the random phases, eliminate the 5
functions, sum over the polarizations, and insert
the spectral function (70) to obtain for i,j = 1, 2, 3

(E,.(0, s —t/2)E, (0, s+ t/2) )
= (Br,(0, s —t /2)B»(0, s + t/2))

', '
I
h0l coth ~Icos0lt,

(E,(0, s.—t/2)E ~(0, s + t/2))

= 6,~
—', , d&o uF cothI cos&ot . (73)7t'C 0 (2kT

Here just as in Eq. (27), we must break up the
integral into divergent and convergent parts,

f 00 00 0 2'
d(d (0' coth(h0l/2kT) cos(dt = d(0 (0' cos(ot + d(d cos(dt

0 0 exp hal kT —1

6 mkTil, tvkTt l 2 vkTt " 6
h (74)

The divergent integral is of the form (61) while the convergent integral ean be obtained from an integral
table. Thus we find

(Er, (0, s —t/2)Er~(0, s + t/2)) = (Br,.(0, s —t/2)Br, (0, s+ t/2)).

4h/skT ', mkTt]» ~kTt ~ (75)

(Er, (0, s —t/2)B»(0, s +t/2}) =0, i,j = 1, 2, 3 . (76)

D. Comparison of the correlation functions

If we compare the correlation functions (68) and

(69) with (75) and (76), we conclude that a point
detector accelerating through classical electro-
magnetic zero-point radiation indeeds finds a
stationary fluctuation pattern as though it were
located in an isotropic distribution of random
electromagnetic radiation. However, it does not
find Planck's spectrum for the random radiation.
The expression (75}differs in functional form
from (68) by the additional term

(4h/wc'}(mkT/h)4 ', esch'(vkTt/K) .—

If we turn back to the correlation function (28) for
the scalar field, we see that the functional form
is very similar to this additional term. Indeed,

comparing the integrals in (27) and (74) with the
expressions (68) and (75), one finds immediately
that the spectrum seen at the detector accelerat-
ing through zero-point radiation corresponds to

p'fj'(~) =—', 5[co+ (a/c)'/e] coth(mero/a) . (77)

If we write T =ha/(20ck) as in Eq. (29), then the
accelerating detector experiences a spectrum &„.

0'3„'(~)='-,'&'[&o+ (w2kT/h)'/(o]eoth(h(o/2kT),

(78)
rather than the Planck spectrum fjr' given in (70).
The two spectra (70) and (7&} clearly agree at
high frequency where Su»kT. However, at low
frequency or high temperature (large accelera-
tion), kT»h~, we can expand cothx-1/x+ x/3
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—x'/45+ ~ ~ ~, and find the acceleration-related
spectrum

(79)

whereas Planck's thermal spectrum is

(80)

Thus the acceleration-related spectrum does not
go over to energy equipartition at low frequency.
We conclude that the perfect connection between
acceleration through the zero-point radiation and
the Planck spectrum which arose for a scalar
field does not continue to the case of the vector
ele ctromagnetic field.

properties of the reference frame. The frame
of reference associated with an accelerating
observer has strange properties which are not
found in familiar Minkowskian space-time. For
example, there is an event horizon in the sense
that in certain directions, events occurring be-
yond a certain distance from the observer can
never be reported to the observer by light sig-
nals. The observer is.running away with ever-
increasing speed from these space-time events,
and light signals never catch up. It is the long-
wavelength waves which are cut off by the event
horizon and hence account for the failure of energy
equipartition noted in Sec. IVD. A more sophisti-
cated treatment of these intriguing questions has
been given by Candelas and Dowker. "

V. SUMMARY

E. Connections with quantum electrodynamics

Now all previous work on the thermal effects of
acceleration have been in terms of quantum the-
ory, and one might expect to connect the disagree-
ment found for the electromagnetic case with the
use of a classical analysis. However, this will
not do. The close connection between quantum
free fields and random classical fields was
pointed out previously. Just as we saw above for
the scalar fields, there is precise agreement
between the correlation functions of the random
electromagnetic fields and the expectation values
of the symmetrized products of quantum electro-
magnetic fields at any finite temperature. It has
been shown" that

&Er&(r, t)Er&(r', t')) = —,'&~ {E,(r, t)E.(r', t')j~&r, (81)

&Erg(r, t)B,j(r', t')& =-,'&~ {E,(r, t)&~(r', t')j~&r, (82)

&E„(r,t)a„(r, t )) =-', &~{E,(r, t)a, (r, t')) ~&„(83)

where E, (r, t) and B&(r, t); i,j = 1, 2, 3, stand for
the electric and magnetic fields in quantum field
theory. Hence our more complex results for the
electromagnetic field carry over directly into
quantum theory.

Indeed, the spectrum (78) appears in related
though far more complicated work by Candelas
and Deutsch" involving the acceleration of an
infinite plane barrier through the quantum vacuum.
They term the spectrum (78) a "thermal" spec-
trum. Apparently what is involved is the follow-
ing: The distribution of eigenvalues for the elec-
tromagnetic case is different from that for the
scalar case, and this distribution depends upon

Astrophysics sometimes deals with conditions
which are widely different from those encountered
in laboratory physics. While exploring an astro-
physical problem involving black holes, Davies'
and Unruh' came upon the idea that a detector ac-
celerating relative to the vacuum should react as
though it were in a bath of thermal radiation.
This result has been explored by several authors.

The previous work to date on the apparent ther-
mal effects of acceleration has all been from the
quantum point of view, discussing transitions
between quantum energy levels or else discussing
Feynman particle propagators. However, what
is involved is no more than the free-field aspect
of the quantum fields, and this aspect at least
can be just as well seen in a classical free field
with stochastic initial conditions. Thus as a
way of broadening the perspective on the prob-
lem and sharpening our understanding of just what
is crucial, we have here given the analysis from
a purely classical point of view while showing
how to immediately convert our expressions to
the quantum theory.

For a scalar field we confirm the connection
that an observer accelerating through the Lorentz-
invariant zero-point radiation interprets the field
fluctuations as those of isotropic thermal radia-
tion corresponding to the Planck spectrum with
zero-point radiation. For the vector electro-
magnetic field the situation is more complicated.
The observer accelerating through classical
electromagnetic zero-point radiation finds an
isotropic stationary field of radiation which
corresponds to thermal radiation in his non-
Minkowskian apace-time. He dogs not find the
Planck spectrum.

Although all calculations reported here involve
purely classical fields, the proven close connec-



2148 TIMOTHY H. B 0 Y E g. 21

tions between the free quantum theories and
classical theories with random radiation make it
possible to apply our results directly to quantum
theory.
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