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Propagation equations for test bodies with spin and rotation in theories of gravity with torsion
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We generalize the Papapetrou equations by deriving propagation equations for the energy-momentum and
angular momentum of a test body which has both elementary-particle spin and macroscopic rotation and
which is moving in background metric and torsion fields; Our results show that the torsion couples to spin
but not to rotation. Thus a rotating test body with no net spin will ignore the torsion and move according
to the usual Papapetrou equations. Hence the standard tests of gravity are insensitive to a torsion field. We
propose experiments (although still infeasible) to compare the motion of a spin-polarized body with the
motion of a rotating body. If the spin and rotation precess differently, the theory of gravity cannot be a
metric theory but may be a torsion theory.

I. INTRODUCTION

In two well-known investigations, Mathisson and
Papapetrou' found the energy-momentum and angu-
lar momentum propagation equations for a rotating
test body ("pole-dipole particle" ) according to Ein-
stein's general relativity. Tulczyjew, Beiglbock,
and Madore' developed these into laws of motion'

by adding a definition of a center-of-mass world
line. Later Dixon generalized these treatments
and made them more rigorous. The results in
these papers are actually appropriate to any metric
theory of gravity since they depend only on the con-
servation law, V~X ~=0, which is valid in any
Riemannian spacetime.

Not long ago Trautman and Hehl' obtained equa-
tions very similar to those of Papapetrou for a
particle with intrinsic spin in the Einstein-tartan
theory of gravity. Their results are actually valid
in any metric and Cartan-connection theory of
gravity (a Cartan connection is metric-compatible
but may have torsion), since they depend only on
the conservation laws (reviewed in Sec. II) appro-
priate to a Riemann-tartan spacetime.

From a physical point of view, however, the two
sets of propagation equations describe very differ-
ent situations. Papapetrou's equations were de-
veloped to describe the behavior of a test body with
internal Orbital angular momentum about its cen-
ter of mass (rotation or macroscoPic sPin).
Trautman's equations describe the behavior of a
particle with microscopic intrinsic elementary-
particle spin. ' These are two different physical
situations involving a test body with angular mo-
mentum. They tend to be lumped together in the
literature, principally because their laws of mo-
tion are the same in any metric theory (as demon-
strated in Sec. VA). However, as soon as the
torsion is turned on, microscopically and macro-

scopically spinning test bodies no longer behave
in the same way. The torsion couples to the.
microscopic spin but not to the rotation. '

In this paper we further investigate and discuss
this difference and its consequences for a broad
range of Lagrangian-based, metric and Cartan-
connection theories of gravity. The principal focus
of our work (the theorem in Sec. IV) is the deriva-
tion of the energy-momentum and angular momen-
tum propagation equations in these theories for a
test' body possessing both spin and rotation. Our
treatment is analogous to Papapetrou's. We make
no attempt to define a center of mass nor to reach
Dixon's level of rigor' nor to include higher mo-
ments.

In our previous paper, ' we discussed only the
conservation laws obeyed by such a test body. Qn

the basis of those, we were able to conclude that

if the spin density S ~" vanishes, then the conser-
vation laws reduce to the standard general-rela-
tivistic form (V~T ~= 0), and so a rotating test
body will not be affected by the torsion and will
move according to the standard Papapetrou equa-
tions. However, although a real macroscopic test
body usually has no net intrinsic spin, its spin
density S ~" is always nonzero since it is composed
of elementary particles. The more sophisticated
treatment of this paper establishes the same result
under the weaker assumption that only the inte-
grated spin vanishes.

Our results are of more than theoretical inter-
est. They have a direct bearing on observational
questions —specifying which types of experiments
might be used to detect a torsion field, and indi-
cating which types have no hope of doing so. For
example, our results show that for a broad range
of Lagrangian-based classical field theories, a
torsion field is detectable only by a test body
which possesses a net elementary-par'ticle spin.
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Therefore, the Stanford Schiff gyroscope' will not
feel torsion (since its angular momentum is pre-
dominantly rotational) even though it is suscep-
tible to the magnetic, go~, components of the met-
ric." Furthermore, at the observational level our
propagation equations raise some interesting is-
sues about the relationship between the measured
energy, momentum, spin, and rotation and the
corresponding mathematically defined quantities.
(See Sec. VD. )

Since the primary motivation for our theoretical
work is observational, it is appropriate to set the
experimental context more explicitly. Any pro-
posed theory of gravity must be tested against the
classical experiments: gravitational red-sbif t,
perihelion precession of Mercury, and light-ray
deflection. These are now supplemented by a num-
ber of more recently devised standard tests, such
as laser ranging to the moon and the planets, ra-
dar echo delay, and gravimeter and tidal measure-
ments. Hopefully, in the near future, these ob-
servational tests wilJ. be reinforced by the detec-
tion and analysis of gravitational waves, by a gy-
roscope precession experiment, and by increased
amounts of data from the binary pulsar. Except
for gravity waves and the binary pulsar, the study
of the agreement between these experiments and
the standard metric theories has been organized
into a single framework —the parametrized post-
Newtonian (PPN} formalism. "

However, outside the realm of metric theories
are a large class of metric and Cartan-connec-
tion (or metric and torsion) theories of grav-
ity,""whose torsion. is generally immune to the
scrutiny of the well-understood and tightly formu-
lated PPN system. As of now these theories are
not susceptible to confirmation or falsification
with regard to the very characteristic which dis-
tinguishes them: their nonzero torsion. How may
their viability be tested —or rigorously ruled
out —in reasonable experiments? Are there any
theoretical problems or ambiguities in such ex-
periments'? What we have begun here asks these
questions and hazards some preliminary answers.

An example of a particular observational criteria
which emerges from our work (Sec. VA) is that, if
spin and rotation precess differently, then the the-
ory of gravity cannot be a metric theory; in which
case it may be a torsion theory. We propose ex-
periments (although still impractical} to compare
the precession and propagation of two bodies, one
with microscopic spin, the other with rotation
(see Sec. VC). If the angular momenta are equal,
then the torsion theories predict that the ratio of
the spin precession to the rotation precession is
essentially the ratio of the Cartan connection
I'

~„ to the Christoffel connection, (~~„) (the unique

metric-compatible torsion-free connection).
There exist theories" which predict that the solar
system has a 1" ~„which is approximately zero
while its f ~„) is approximately the Christoffel con-
nection of the Schwarzschild metric. Thus these
theories predict that the rotation should precess
much more than the spin.

Finally, it is important to recognize that our re-
sults are of practical observational significance
only for theories in which the torsion field is dy-
namic (propagating or existing in the vacuum).
The Einstein-Cartan theory" and its close rela-
tives" have nondynamic torsion, in that the tor-
sion is an algebraic function. of the spin density
which vanishes in the vacuum. In this paper we
study the motion of test bodies in background met-
ric and torsion fields. To have a background tor-
sion field in tbe Einstein-Cartan theory, there
must also be a background spin density. In that
case, the conservation laws for the test body are
more complicated than those considered here, be-
cause they must allow for interactions between the
spin of the test body and the spin of the background
fields. Further, any experiment to detect torsion
would also require a spin-polarized background
field. Fortunately, however, there are an ever-
growing number of dynamic torsion theories" to
which our conclusions are directly relevant.

We begin, in Sec. II, by giving some formalism
and relationships important in discussing metric
and Cartan-connection theories of gravity, and
then outline the derivation of their conservation
laws. Section III introduces the generalized mo-
ment description of test bodies. The derivation of
the energy-momen. turn and angular momentum
propagation equations for a test body follows in
Sec. IV. Included in Sec. V is a treatment of spe-
cial cases, a discussion of the nondeterministic
character of the propagation equations, and an in-
vestigation into questions concerning the ambiguity
of measurement.

II. TORSION THEORIES AND THEIR CONSERVATION
LAWS

Here we give some fundamental relationships
important in discussing torsion theories, outline
the derivation of the conservation laws, and brief-
ly mention some of their consequences. In any
metric and connection theory, there are two con-
nections: the Christoffel connection ( ~,f and the
full connection. I' ~„. Hence, there are also two
curvatures: the Christoffel curvature 8 ~„„de-
noted with a tilde, and the full curvature R z,„de-
noted with a caret. It is also necessary to distin-
guish between the two types of covariant deriva-
tives. We find it convenient to use "mixed" co-
variant derivatives, such as
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If I'
~„ is metric compatible (which we assume

here), it is called a Cartan connection. In that
case the defect is related to the torsion. by

The derivation of the conservation laws requires
the language of orthonormal frames. In what fol-
lows, g'"' will denote the components of an ortho-
normal one-form frame field, g'" = g'"' dg, and

e, , the components of its dual vector frame
field, e, , = e(,) 8 . Here frame indices are en-
closed in parentheses; coordinate indices are not.
Lower-case Greek indices are four-dimensional
(&»=0, 1, 2, 3); lower-case Latin indices are three-
dimensional (a= 1, 2, 3). Upper-case Latin indices
denote any general collection of indices.

In any theory of gravity, the conservation laws
constitute the basis frozen which the propagation
equations are derived. In turn the conservation
laws are derived via Noether's theorem from the
fact that the matter Lagrangian L„ is a scalar
under coordinate transformations and, when ap-
propriate, also under changes of frame. We here
outline the derivation of the conservation laws us-
ing two different formalisms (orthonormal frames
and coordinate-based tensors) and discuss some
of their important consequences.

First using orthonormal frames, the matter
Lagrangian, "

&& (i( &&)( )tttt/tr t(tt/) tt t 0 t etta (6)

may be regarded as a function of the Minkowski
metric

&i& „&&„&
——diag(-l, 1, 1, 1), the orthonormal-

frame components g'~', the Cartan-connection
coefficients 1'"(„),the orthonormal components
of the source fields, collectively denoted p&»&, and

where some indices (those with a caret) are cor-
rected with the full connection while the others
(those with a tilde) are corrected with the Chris-
toff el connection.

In a coordinate basis, the Christoffel connection
may be expressed in terms of the metric by the
usual formula,

(s~&6 + s & ~ se gs ).
The full connection differs from this by the defect
tensor,

(3)

In a coordinate basis, the torsion Q ~„ is defined
as the antisymmetric part of 1" ~„or equivalently
of A. ~„.

their partial derivatives s g'»'. We are here neg-
lecting any gauge fields (the photon, weak bosons,
and gluons) which must be treated separately (see
Sec. VD) from the source fields, since the stan-
dard Lagrangian does not have the form (6). The
Lagrangian density is then „= gL„where g is the
determinant of g(~) .

The (asymmetric) canonical energy-momentum
tensor t, and its density t„, are defined by

gt g g( ) (I)rgg(I )

while the canonical spin tensor $", and its density
are defined by

1 1gs" = sy =g(g) e y
6 ~ 5 () (v) t))Z (g)'(v)@

Applying Noether's theorem to the invariance of
the Lagrangian under Lorentz transformations of
the orthonormal frames, one obtains the conser-
vation law for angular momentum

V S"N=P' —t"
N

and also identifies S', with the canonical spin
tensor as defined by particle physicists,

/

~+4 (X) (Y)
S~5 = ss, ),(x) f«(o.6) &r)&

a&
(10)

g
e

y&x) (12)

On the other hand, from a more conventional ap-
proach using coordinate bases, the matter La-
grangian"

L&&=L&t(8tt8t st, /hatt&&tk &&„t p, 'etta ) (13)

may be regarded as a function of the coordinate
components of the metric g z, their partial deriva-
tives b„g ~, the coordinate components of the de-
fect tensor A.oz„, the coordinate components of the
source fields g», and their partial derivatives
s &i&». The Lagrangian density is now Z„=)&-g L„,
where g is the determinant of g ~.

The (symmetric) metric energy-momentum ten-
sor 7 ~, and its density V' ~, are defined by

where A~ is the representation of the Lorentz Lie
algebra appropriate to g(»&. Thus S", includes the
spin of the quarks and leptons but not that of the
gauge fields. Similarly, using the fact that the
Lagrangian is a scalar under coordinate transfor-
mations, one obtains the conservation law for en-

ergyy-momentum

V t-= —'S~ R +t'Q (11)
/

and identifies t„as the canonical energy-momen-
tum tensor as defined by particle physicists,
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$5 6+egg»
58 (19)

This equation may also be derived by differentiat-
ing (18) and using (9) and (11). On the other hand

since the Lagrangian in the form (13) has no de-
pendence on the frames there is no apparent way

to derive a conservation law of angular momen-
tum. Conse[iuently, it appears that E[ls. (9) and

(11) together contain more information than just
(19). However, in deriving propagation laws for
energy-momentum and angular momentum, we

found that equivalent equations could be derived
either using (19) alone or using both (9) and (11).
In the foQowing sections me concentrate on Eqs.
(9) and (11) rather than (19) since the former clar-
ifies the distinction between spin and rotation.

One fact is immediately obvious from the con-
servation laws: If a body has no spin density
(S", = 0), then it will not feel the torsion and will
propagate its energy-momentum and angular mo-
mentum according to the Mathisson-Papapetrou
equations of the metric theories. Qn the one hand

setting S", =0 in (19) yields VzT s=0. On the
other hand setting S",n= 0 in (9) and (11) says that
t ~ is symmetric and satisfies V~te~=0. There is
no torsion in these equations. Either equation is
the conservation law in a metric theory which is
known to. lead to the Mathisson-Papapetrou equa-
tions. This observation was the subject of our
previous paper. ' However, it is not really suffi-
ciently strong to conclude that a macroscopic gy-

—~+Tn[[- c—f aB—~~A (14)

while the canonica1. spin tensor 9"5 is nom defined
by

~~8
5

=

Using the chain rule and the relations

geS ~( tt )(v) e (16}
5 5 (v) (g)
ye (v) y (v)e

(a) +ax [[[ a) 86n [S r]
(I'I)

one finds that S", defined in (15) coincides with
S", defined in (8) and also finds that T s may be
expressed in terms of t„and 8"5 by a generaliza-
tion of the Belinfante-Hosenfeld symmetrization
rule, "

Ta8 t aa ig {SwBn+ yns) Lg Sn[[i (18)y 2 y

Again using the scalar nature of I.„under coordi-
nate transformations, one obtains an alternate
version of the energy-momentum conservation
lam

y

g TaS g (ala psiy6 [ yr nS6 |[)
8 8 y5 2 5

roscope will not feel a torsion field. A1though a
real macroscopic gyroscope usually has no net
spin, its spin density P', is always nonzero since
the gyroscope is composed of elementary parti-
cles. In the subsequent sections me show that if
the elementary-particle spin merely integrates to
zero, then the body mill not feel the torsion and
mill propagate according to the Mathisson-Papa-
petrou equations.

III. GENERAL TEST BODY FORMALISM

eAA A &
(21)

where the 9„are generalized forces. Next, we
define the world tube of the test body as the sup-
port of the currents,

supp' = el/ p cI:y„(p)x 0), (22)

(we abbreviate topological closure and interior by
"cl" and "int") and make our third assumption.

(iii) There exists a closed set W and a coordi
nate system x for which the following apply.

(a) The world tube of the test body is contained
in the interior of S", i.e.,

supp g c:intlV.

(b) The interior of W is dense in W, i.e'. ,

W= c»nt ~.

(23)

(24)

(c) W [s the union of timelike curves.
(d) The coordinate system x is defined on all

of g.
(e} The coordinate basis s is both oriented and

time oriented.

Our procedure is essentially that of Papapetrou'.
integrating the conservation laws and the moment
equations based on them over the test body's
three-volume to obtain a series of equations which
can be marshalled into propagation equations for
the energy-momentum and angular momentum.

In describing the test body, we make several
reasonable assumptions.

(i) The body is described by a collection of cur-
rent tensoxs 4„.In our investigation. , specifical. —

ly, these are the body's spin density S", and

either its canonical energy-momentum tensor t„e,
or its metric energy-momentum tensor 7" . In
more general systems, they would also include
quantities such as the body's electric current.
From the current tensors me define the current
tensor densities,

(20)

and make our second assumption.
(ii) The currents satisfy differential conserva-

tions lan s zvhiek may be mri tten as
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x (t) = x (x(t)) = t &;,
and so its velocity vector is

(25)

v(t) So ~x(() v
cg

where

v =BEo o '

(26)

(27)

(f ) The x' axis is entirely contained within intW.

(g) The x coordinate is an affine parameter
along the xo axis.

(h) Each level surface of x' within W is compact.

In what follows we take S'and x to be fixed but
arbitrary and satisfying assumption (iii).

Assumptions (iii e, t, g) say that the x axis is a
future-directed, timelike curve, X(t), which has
affine parameter, t=x'c R and X(t) c intW. The
coordinates of X(t) are

Such integrals will be regarded as functions of t
defined along X(t).

In particular, we introduce the nth integrated
moments of the current, which are defined as

~ 81'"8„o g&81. . . g&8
A A

g&8g

jul
(35)

for n ~ 0. These are symmetric in the indices
P, P„, and zero if any of these indices are zero.
Furthermore, they are to be regarded as tensors
defined only along the curve X(t}, and specified
in the coordinate basis 8 . However, it is im-
portant to notice that a different set of tensors is
defined for each choice of the coordinates ~ .

Certain moments have additional names. The
integrated charges are

Since t is an affine parameter, the velocity z is a
unit timelike vector, i.e. Q„=K& =0 (36)

V Vo= (28) and the nth integrated moments of the charge are

where the signature of the metric is (-1,1,1, 1).
Similarly assumptions (iii e, h) say that each x-

level surface,

Z(t) = J,pc W:x'(p) = t), (29)

is spacelike and compact, while assumption (iii a)
specifies that

g„=o on sz(t). (3o)

Further, from definitions (25) and (29), we have
that for each t

x(t) c z(t). (31)

In our derivation of the propagation equations,
we will want to expand various quantities within
Z(t) about X(t). So we introduce a new coordinate
system on each surface, Z(t), centered at X(t).
At pc Z(t), we define

bx (p)=x (p)-X (t) (32)

or

5x'(p)=0, 5x'(p)=x'(p). (33}

Jtf= J f(x)d'x. (34)

Our last assumption, then, follows.
(iv) On each surface Z(t) the coordinate compon

ents of the metric g z and the defect A. ~„may be
expanded about X(t) as ponder series in 5x".
Hence, the coordinate components of the connec-
tions ( ~„)and I' ~„, the curvatures R s„, and R ~„„
and the torsion Q s„may also be expanded.

Finally, we shall often integrate various quanti-
ties over Z(t). So we abbreviate,

(37)

+ 6g8~ e yA~,

which holds for any integer n ~ 0. It is proved by
integrating by parts in the last integral on the
right, dropping a spatial divergence [using Eq.
(30)], and using the relation

n n n
' g&8~; g&8J

i~1
A4

(39)

Here, p is a spatial coordinate projection op-
erator defined by any of the formulas

p' = s 5 xa(.( xX')= 5'. - 5'v

o 0 e a o &
(40)

where we have used E(l. (27) twice.
Using definitions (35) and (37) and the c'onserva-

tion laws (21), the identity (38) becomes

In deriving the propagation equations, we are
essentially finding out how the integrated moments
change along X(t). To do this, we integrate over
Z(t) all possible moments of the conservation laws
(21) and then attempt to solve the resulting e(lua-
tions for (d/dt)Q„~( "~~, eliminating or solving for
the other (spatial) components of K„s~'"('~~. The
crucial equation follows from the identity,

—f(,Il/~) g„'=Z p'r, J (....Ifx's
I
gz'
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n—Q i1 in= nI i g t 1 ''~i'''I3na
i=1

+ ~x~& F~. (41)

Ms1. "ony5 5&81. . . 5go

and the pgth integrated moments of gy'

(44)

The slash through the index P,. indicates that it is
deleted from the list.

For a given theory with a specific set of con-
servation laws, the procedure for deriving the
propagation equations is (a) to assume that only a
finite number of the integrated moments are non-
negligjble, (b) to expand the generalized forces
6'„ in power series about Ã(t), (c) to substitute
these expansi. ons into Eq. (41), and (d) to solve the
resulting equations for (dldt)Q„~). '"~n and

p „X„~i"'~»r in terms of Q„)'&"'i'n and the back-
ground geometry.

1"' ~ny6e g&~1 ~ ~ ~ Qg~n Sy6e (45)

Notice that N '"~n"', like 8"', is antisymmetric
in y and 6. Certain moments have specific names.
The integrated canonical energy-momentum is

py = M"= t". (46)

Ly' = My" —M5yo 2 5~ay t5]0

and the integrated spin angular momentum is

The integrated orbital (rotational) angular momen-
tum is

IV. PROPAGATION EQUATIONS

(48)

The generalized forces corresponding to P„ in (21)
are the force on the right-hand side of (42) and the
torque on the right-hand side of (48}.

We next defi.ne the nth integrated moments of t",

. Using the conservation laws (9) and (11) pre-
sented in Sec. II, and the general formalism of

. Sec. III, we now derive the propagation equations
for energy-momentum and angular momentum.
Afterwards we recognize that these are equivalent
to the corresponding propagation equations de-
rived from the single conservation law (19).

In order to apply Eq. (41}to the conservation
laws (9) and (11},we first rewrite the conserva-
tion laws in terms of the densities t'5 and gy'e,
defined in (7) and (8):

s tr'=(~ r -fr ))t"+-'i r 8"' (42)

gy5e 2) t.y5]+ 2ply g538a
ga

g y6 ~y50 gy50

P'= t = g t6 6 5y (5O)

which could be used as the definition of the inte-
grated energy-momentum instead of (46). Madore
pointed out, as we shall emphasize below, that
this ambiguity in the definition of energy-momen-
tum leads to ambiguities in the interpretation of
the propagation equations themselves.

Now applying Eq. (41) to the conservation laws
(42) and (48), we obtain

The indices on these tensors are lowered using
the coordinate components of the metric at X(t),
e.g. ,

+6=&nr lr«)+". (49)

Since g,„ is not constant on Z(t), this yields a dif-
ferent result than computing

—M~1'' ~nr — (M&)."'i i"'))n»i g&ii)rf i))."'{ti"'i)nr ) + l 5~{)~ . ~ 5@i)n[(i{. r jv )) t™6~g r 8))n{)]
dt a6 a6 2 a)3 5

i=1
(51)

n

lsS '''8 —Q{»8-'ll -'8„ l 88'»8-'8 '-8 )8 j888 ~ ~" 888 {2)I 188rl 8 ll
)

We use these to find the propagation equations pre-
sented in the following theorem, which is our prin-
cipal result.

Theo~em. In a metric and Cartan-connection
theory of gravity, if the i,ntegrated moments,
M~1'"~n"5 with pg~ 2 and N~1" ~n"5 with ~~ 1, are
negligible compared to M" 6, M~y, and &" a, then

V 5'y= —'L~aR "V5+—'S~eR y g6
v 2 eg 6 2 ed|5

+-x yv s '+-'p' ~' "v'x--a0 v 2 v ' eg6y

SVPr6+ g Sra 2&[rS)63

(53)

+Z '"p" &ni'"+ 2Z'r iV "i'"pn (54)ag v Se v y
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3P5= v5P" +—( L—'"+ v"L"' —p" N""")
dt v

+ —y 'Yp5 Ara8v fr jp5 (&nL8u pn ~8uv)

(55)
(56)

(57)

M 8'Y6 p8 ( AI'»6u ~ 6)(»L5) u p('Y AY5 ) uV)2 v

pf r5e geSy6+ pe ~y6v

where
I

(Pr - Pr+ (1 j(~aL80 pn A»80v)
eB (58)

(59}

Proof. First notice that Eq. (57) follows im-
mediately from the definitions (48} and (40) of
S"5 and p „. Next expand (X. 5» -(r 5j), R 8"„and
I'»8 about X(t) as power series in 5x":
x"=X"+ nx~

MB[y6] &

p 8 ~y6v

Second, using (5V) and (26), Eqs. (66) may be
written as

2M y =—Sy +v j."" SB +v I"' SyB
d
dt Be Be

~638v ~eBe v

2Z fy ~6]Bvpe
e Be v ~

Third, cyclically permute Py5 in (65) twice:

0=M"8+M85y -~BMr6 -~yM86o

O=M68y+Mr85- yM68o- 'MyBo

Add (65) and (70) and subtract (Vl):
MB(r6) M5[By3 M y [861 BM(y5)o

(68)

(69)

(7o)

(71)

(~.,"-&".,j) I„=(~.,"-(".,j) I

+ 5x"s„(x.,'-('.,j) I
+ ~ ~ ~

R 8 5 I» Ra8 61X+ + uRn8 5 IX+

(60)

(61)

(62)

6M[By]o ZrM[85]o

Notice that in solving for MB'"", all terms are
known except M"'". To find an expression for
M(r", use the identity

%hen these expansions are substituted into Eqs.
(51) and (52), the coefficients may be factored out
of the integrals leaving the integrals in the form-
of integrated moments. Since they are negligible,
all integrated moments except My, MB", and

may be dropped. Also, the evaluations at
X(t) may be dropped as implicit. The only non-
trivial equations are (51) with Y)=0, 1, 2 and (52)
with n= 0, 1. These are

e6 e5—M»0=()( r -{r j}M 5+ —R " N8 6
eB 5

+ (s.x.,» s,(r.,j)M"",
d—M'"'=M" -dM"'+() "-(" j)M"'
dt e6 e6

(63)

(64}

0=M "'+M" -g'M"— (65)

2Mfy63+ 2I fr ~638e (66)
dt Be

0= Ny68 vs~y5'+ 2M (67)
The remainder of the proof consists of analyzing

these equations in reverse order. Briefly:

(i) Solve (6V) for M8'"" in terms of p8„AY»5".

(ii) Solve (66) for M'"" in terms of S"5 and

p N"'".
(iii) Solve (65) for M8'"" in terms of L"' and

~B ~y6v

(iv) Solve (64) for M"' in terms of Pr, L»5, and

p B„~y5", and equate the antisymmetric part to
M'"" found in (ii) to obtain the propagation equa-
tion for Lr6+ S".

(v) Solve (63) for the propagation equation for P".
We now proceed to analyze Eqs. (63) through (67)

in more detail. First, using (57), Eq. (67) may
be written as

2M(")o = 2M""3+2M""'+M "'+M5oy (V3)

which follows by writing out the symmetrizations.
Combine this with the equation obtained from (Vl}
by setting P=0:

2M(y6)o 2M y[5o1+ 2M6[yo1

+g"M +g My

Then using

2M r =My -Moy =My

and (68), Eq. (V4) becomes

M(y6)o M r[6o1+ M6[yo]+ &yM[5o]o+ &6M [yo]o

&(yl 6)o (y ~6)ov

Hence, Eq. (72) may be written as

MB(y5) M y[85]+M5[8y3+ &rM[85] + 6M[By]

(74)

(75)

(76)

+6) (M" +M " +6) M +6) M"" )

p8 (Mrlu6)+M5):ur) + &»M(u5)0+ &5M(ur)0)

—p8 ( &(YL6)u+ p(r @5)uv)
v

The sum of (68) and (77) is Eq. (56}.
Fourth, solve Eq. (64) for M"' using (76), (6S),

and (77):

(77)

My5 +5M ro+ d M5yo g yM5[e83+ fy QM5(eB)
eB i. eBj

=&6P + —(-'L"+~(5L""-p" X"' )
dt v

'Yp6 ~ n8v + (Y jp5 ( 5)nL8u + pn ~8uv)

(V 8)
This is Eq. (55). To find the equation of motion
for L"'+ S"5, equate Eq. (69) to twice the antisym-
metric part of (V8):
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V S"8-2I' " N lS"p = 2v SP" +—L r+X ~"pol N 8"-2v~ ("l I( v-™LS+ p NS~)v, ge V cN a8 & aP

(V9)

+(r I( VaL86+ pn NSSv) (6 l}( VeLBr+ pn NByv)

2vr6 Prl+ g Lor+ g [rpol NnBv 2([r l NolSvpn
I

where 8r is defined by Eq. (58}. Upon rearrangement, Eq. (V9) becomes (54).
Finally, the equation of motion for Pr may be found by substituting (69), (V8), (5V), (68), and (VV) into

(63}:

—Zr=~ r(-'V S"-r NS»p" )a6 2 v ul8 g

(y ) VaP6+ (VeL60 pa N6ov)+ g np6 N lk vB+(6 )pn ( VvLvs+ ply N 6v8)

&, " ( 'S' + O' N' "}+(» ")(--' p", N '") —(s,(",))p', (-v L"+ p, N"') (80)

This equation may be manipulated into (53) using
the definition of R ~"„ the identity

ilr pr+ (r )Vag86+Lyo NrnS

Xy N"8+-'Ss X y
2 ag 2 (8'l )

Ra~ 6
—V"Xa~~ —V

n ag (81)

and Eqs. (58) and (26), completing the proof of
the theorem.

Notice that the theorem was stated in terms of
the moments of t' and g"' and proved using both
of the conservation laws (9) and (11). Recall that
the alternate conservation law (19) could be de-
rived from these, and so apparently contains less
information. However, in spite of this, we have
shown that one can still derive both propagation
equations using only the single conservation law
(19). That demonstration is outlined here.

We first define the ~th integrated moments of
the density 'fr6, defined in (14),

To see that Eqs. (85} and (86) are equivalent to
Eqs. (53) and (54), it is necessary to express pr
and J" in terms of P", I."', S"6, and p „N"'".
This is done using the Belinfante-Rosenfeld sym-
metrization rule (18) or its density form,

V r6 tro 4 S (386r+ 88ro+ 3r68)

)886n ~ yL'r 36leS
ag ag (88)

J»=1. 6+s 6
t

and hence
(90)

Keeping only first moments of t"' Bnd zeroth mo-
ments of g"e, one finds

pr ~r (r JNBon+Lyr NoaB Lgo NraB (89)

ypg~x" &g&6 — gg~y ~ ~ g~~n~~

the integrated metric energy-momentum,

(82) ~r pr+ (r l (vaLBo pe N Bov) + ~ SSng

el=e"+—'s~ x (91)

(83)

and the integrated total angular momentum,

J» ~eo 6v'o 2 Q&ty q.63o (84)

The ~th integrated moments of S", namely
N~j"'~~", and the integrated spin angular mo-
mentum S"6 are still defined as in (45) and (48).
Applying the procedure of Sec. III to the single
conservation law (19), we obtained the propaga-
tion equations,

Vp = —J R v+ —N V"A.--™2 eP 5 a55 & (85)

V 4"'= -2v'" p" + 2d" N" + N "& "' (86)0 Be eB

where

[Equation (90) justifies the name "total angular
momentum" for Jro. ] Substituting Eqs. (90) and
(91) into (85) and (86) one obtains Eqs. (53) and
(54) written with all Christoffel covariant deriva-
tives and Christoffel curvatures. Hence the propa-
gation equations are equivalent. In the following
section we restrict our attention to the form of
the propagation equations appearing in the theorem
because it clarifies the distinction between spin
S"' and rotation L,"'.

V. DISCUSSION AND SPECIAL CASES

Careful examination of our principal result, as
expressed in the theorem of Sec. IV, yields a
number of interesting conclusions pertinent to
gravitational experiments and their sensitivity to
torsion fields. Our discussion of these focuses on
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A. Metric theories

The energy, -momentum and angular momentum
propagation equations for metric theories are ob-
tained simply by setting the defect X z„ to zero in
Eqs. (53) through (58). They read

g g»= ( (L()~+ S()~)ft» vn2 ep 6

g (L»5+ S»6) 2&(»F63
0

(92)

(93)

M "6= v5P»+ d (' I o»v+(»I 6)0 —p» N )o")
dt ' V

M()»6 p() (L~»6m+ &(»f 6)y p(» ~6)P»)2 V,

(94)

(95)

special cases of the propagation equations' (53) and
(54). First in Sec. VA, we look at the metric the-
ory case, for which the torsion is zero. After
digressing briefly, in Sec. VB, on the nondeter-
ministic character of the propagation equations,
we proceed, in Sec. VC, to investigate two im-
portant special situations involving nonzero tor-
sion: the cases in which the test body possesses
only rotational angular momentum or only intrin-
sic spin angular momentum. These two cases
lead us to suggest experiments to detect a torsion
field. In Sec. VD, we discuss certain problems
and possible ambiguities in interpreting and mea-
suring the variables in the propagation equations.
Finally in Sec. V E, we indicate several directions
in which the results presented here might be pro-

fitablyy

generalized.

of how J"' is divided between L"' and 9"6. This
result provides us with an experimental criteria
of some value: If there is any measured discrep-
ancy between the behavior of a spin-polarized test
body and of a rotating test body, then the theory of
gravity cannot be a metric theory. As discussed
below, a metric and Cartan-connection theory may
predict such a discrepancy.

B. Nondeterminism of the propagation equations

On a theoretical level, the propagation equations
for both metric theories [Eqs. (92) to (97)] and
metric and torsion theories [Eqs. (53) to (58)] are
nondeterministic to a different degree. That is,
from a knowledge of the values of the variables at
a given time, the equations are not sufficient to
predict the values at a later time.

The nondeterministic character of the equations
stems from three different sources: (1) the lack
of knowledge about the spin currents po„&""in
the body; (2) the lack of information about how the
total angular momentum J" is divided between
spin S"' and rotation L»'; and (3) the lack of a
definite specification of a center-of-mass world
line.

The last source of nondeterminism can be elim-
inated as was done in the metric theory case by
Tulczyjew, Madore, Beiglbock, ' and Dixon. Using
Christoffel geodesics and a generalized Fermi
coordinate system defined in terms of the Chris-
toffel connection, they constructed a center-of-
mass world line along which the condition

~16@ &eg 6+ ~o ~l'6& (96)

where

5)»- P»+ {» )(&~1()0 pn A»()0») (97)

The propagation equations (92) and (93) are es-
sentially the Mathisson-Papapetrou equations. It
is important to notice, however, that when Math-
isson, Papapetrou, ' and the other authors extend-
ing their work and makingitmore rigorous, 4refer to
"spin angular momentum, " they do not mean the
intrinsic elementary-particle spin. Rather, they
mean the total angular momentum, J"6=L"'+ S"6
= 2$ 5~(»1'~)0, computed using the metric energy-
momentum tensor. They denote J"6 by $", where-
as we use S"to denote the integrated elementary-
particle spin only. Fur thermore, they talk about
J"' as though it were only the rotational angular
momentum, L"', computed about the center. of
mass.

Our version of the Papapetrou equations (92) and
(93) clearly demonstrate that in a metric theory,
L", S"', and J"' all behave identically. Or, put
another way, the propagation of energy-momen-
tum and total angular momentum is independent

L"Z =0 t (QQ)

or some other condition. Any of these construc-
tions eliminates the third source of nondetermin-
ism from the propagation equations, but it is far
from obvious which construction is theoretically
preferred and which yields a center of mass which
can be experimentally measured.

The first two sources of nondeterminism arise
from our ignorance about the internal dynamics of
the test body. To produce a determinisitic system
one would have to introduce additional equations
to describe the evolution of the internal variables
or to relate the internal variables to each other.
More specifically, for the metric theory Eqs. (92)
through (97), it is not possible to determine com-

is satisfied. The same construction also works
in the case of a metric and Cartan-connection the-
ory, but it is no longer in any sense unique. One
could, for instance, use Cartan geodesics or a
generalized Fermi coordinate system based on the
Cartan connection or both. Further, one could
replace condition (98) by the condition
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V ~y=-'L"R "v'+-'S"R y v'
v 2 e86 ~ og6

1 y
A A

+qX ~yV„S ~)

VP'6+ V S)&)= 2&r) &y6)
v

M"'= ~'S +—( 'L'&+ ~"I.-"")
dt

{) )p6 &eL&)w

M A'6 ~g v(yL6) tt

N y60t voS y6
)

where

pr pw + {)' )UnL&)o

(100)

(lol)

(lo2)

(103)

(104)

(lo5)

Although predictability has been improved, Eqs.
(100) and (101) are still nondeterministic. The
torsion couples to Sy' but not to L", and there is
no way of predicting the evolutions of Ly6 and Sy'
separately.

C. Propagation equations for L'y ~ alone and S'y ~ alone

Equations (100) through (105) can, in fact, be
made deterministic by specifying how the total
angular momentum Jy6 is split between spin Sy6

and rotation L". Two interesting special cases
are those in which the test body possesses (1) only
rotation and (2) only spin.

For the situation in which a rotating test body
possesses no net spin (S"'=0) and no net spin cur-
rents ( p „N"'"=0), Eqs. (100) through (105) re-
duce to

V gy= L~IR y v6
V o06

V ~y6 2v[yg6l

(106)

(107)

pletely M-', My6, and Ny because the quantities
and p „Ny " are neither expressed in terms of

P' and Ly'+ Sy6 nor given their own evolution equa-
tions. For the metric and torsion theory equations
(53) through (58), not only are M "6, M"', and

left undetermined, but even the propagation
equations (53) and (54) themselves are undeter-
mined, This rather surprising result stems from
the fact that the torsion does not couple to L"; it
only couples to Sy' and p „Ny'". One solution may
lie in'finding a new combination of variables for
which the propagation equations are deterministic.
We have not been able to find such variables and
do not know if such variables exist.

One way to improve the predictability of the
equations is to set p „N"6"=0. This can be justi-
fied on the grounds that one normally expects the
spin currents in a macroscopic body to be negli-
gible, even when the net spin is large. With this
assumption, Eqs. (53} through (58}for metric and
torsion theories reduce to

M ) 6 &&rP&)) + (&&)L6)0) {&) )p6) &nLBw
13

(108)

M By6 8 v(yL6) @
)

where

O'" —P"+{" jtu L '

(109)

(110)

Ny60 = VISy6

(113)

(114)
In form, these propagation equations coincide
with those found by Trautman and Hehl. ' How-
ever, our equations describe a macroscopic body,
whereas theirs describe a single spinning point
particle. Also notice that the assumptions Ly'= 0
and p „Ny'"= 0 are equivalent to the assumption
M~"'= 0, (i.e., the test body has no integrated
first moments of t"') as can be seen from Eq.
(56).

Both systems of equations, (106) through (110)
and (111) through (114), are deterministic once a
background geometry (metric and torsion} and a
world line X(t) have been specified. From the
values of 6" and Ly6 at one time, their values at
all other times may be found from (106) and (10'l),
and then the values of M", M~y6, and Py may be
found from (108), (109), and (110). Similarly,
from the values of P' and Sy6 at one time, their
values at aQ other times may be found from (ill}
and (112), and then the values of M"' and N"'
may be found from (113) and (114).

We emphasize that in the presence of torsion,
the two sets of propagation equations are quite
different. Both energy-momentum propagation
equations (106) and (111)contain a force coupling
the angular momentum to a curvature. However,
in (106) the rotational angular momentum couples
to the Christoffel curvature, whereas in (111) the
spin angular momentum couples to the Caftan
curvature. Further, Eq. (111)contains an addi-
tional force coupling the energy-momentum to the
torsion. Similarly, both angular momentum
propagation equations (10"i) and (112) contain a

Notice that the torsion has completely dropped out
of these equations and that these equations coincide
with the Papapetrou equations (92} through (9'f)
with S"'= 0 arid p „N""=0. This result strength-
ens the conclusion of our earlier paper'. A test
body with no net spin is insensitive to torsion and
behaves according to the usual Papapetrou equa-
tions.

In the case in which a spin-polarized test body
has no rotation (L"= 0) and no spin currents
(p „N"6"=0), Eqs. (100) through (105) become

V P = —'S~ R "v6+P~X v6, (111)

V„ (112)
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v xP torque (accounting for the orbital angular mo-
mentum of the test body as i.t orbits the bodies
which have produced the gravitational field), but
Eq. (107) contains a Christoffel covariant deriva-
tive of the rotation, whereas (112) contains a
Caxtan covariant derivative of the spin. This can
be seen more clearly by expanding the covariant
derivative in (107) and (112):

2g'"6"'+ 2g) ('"~ )L"~

g 8 $7' = 2/~7'/~j+2g Z~~ $~».

(107')

(112')

If L" and $"are equal, then the extra torques
are in the ratio. of the Christoffel connection ("~ )
in (107'), to the Cartan connection I'z in.(112').

Unfortunately for the prospect of measuring tor-
sion, many theories with dynamic torsion predict
that the difference between ("~ J and I'"~ is neg-
ligible in the solar system. Specifically, the
Birkhoff theorem proved by Ramaswamy and
Yasskin" and the generalizations by Neville"
show that for many P+P' theoriep the unique
spherical solution is the Schwarzschild metric and
zero torsion. Hence Pz ) and I'"z coincide in the
solar system except for nonspherical perturba-
tions.

Fortunately however, there are some dynamic
torsion theories for which the difference between
("z ) and I'"~ is expected to be large. Specifical-
ly, Mdller's" teleparallel theories constrain the

A
Cartan curvature to vanish, A~z„= 0. Hence,
there is a global, everywhere-parallel, frame
field relative to which the Cartan connection van-
ishes, I' ~„=0. On the other hand, ( ~„) is the
C hr jstof fel connection for the metric computed
from his field equations. Hence, relative to the
teleparallel frame, the defect X"~„=I'o~„—( ~)
= -(»j, is as large as the Christoffel connection.
Similarly, Hehl, Ne'eman, Nitsch, and von der
Heyde" claim that the post-Newtonian limit of
their theory coincides with the teleparallelism
limit. For such theories the spin-connection
torque in (112') vanishes but the rotation-connec-
tion torque in (107') does not. Similarly, the spin-
curvature force in (111)vanishes but the rotation-
curvature force in (106) does not.

This leads us to propose an experiment to com-
pare (a) the precession of the axis of rotation of
an ordinary (unmagnetized) gyroscope such as
that being designed for the Stanford Schiff gyro-
scope experiment, with (b) the precession of the
axis of polarization of a spin-polarized body such
as an iron magnet, a polarized beam of elemen-
tary particles, or a polarized He' superfluid. It
seems reasonable to require the two systems to
have equal amounts of angular momentum. To ob-
tain an order-of-magnitude estimate we answer

the question: How large of an iron magnet is re-
quired in order for it to have a spin angular mo-
mentum equal to the orbital angular momentum of
the Stanford gyroscope'P

The Stanford gyroscope is a quartz sphere of
radius r= 1 cm, density p= 2.2 g/cm', and angular
velocity &u=4vx 10' rad/sec. Hence its mass is
m= -', ~' p= 9.2 g, and its rotational angular mo-
mentum is L =

—,
' mr'&u= 4.6 x 10' g cm'/sec. On

the other hand, the spin angular momentum of the
iron magnet is $=-, AN, where N, is the number of
polarized electrons. Assuming that one electron
per atom is polarized, we have N, =N„M/A, where
M is the mass of the iron magnet, N„= 6&& 10"
particles/mole is Avogadro's number, and g= 56
g/mole is the atomic weight of iron. Equating L
and S, we find M = 2AS/(N„h) = 8.5 x 10' g. Unfor-
tunately, it is beyond present technology to put
such a large mass of iron into orbit around the
earth; so this experiment is not feasible in orbit.
Perhaps other polarized systems or an experi-
mental setup on the earth, may turn out to be
more promising. We emphasize that only experi-
ments involving test bodies or test systems with
a net intrinsic spin are capable of directly detect-
ing torsion and measuring its effects.

D. Ambiguities in interpretation and measurement

There are several ambiguities in the interpreta-
tion of our propagation equations which we discuss
in this subsection. These include the ambiguity in
the definition of a center-of-mass world line, and
ambiguities in the definition and interpretation of
certain variables, especially the spin density and
the integrated energy-momentum. Each of these
theoretical difficulties is accompanied by the ex-
perimental problem of measuring the correspond-
ing quantity. We are not sure how to resolve these
ambiguities, but feel that it is important to point
them out in this paper.

First, as discussed in Sec. V B, a center-of-
mass world line can be defined in the context of
a metric and Cartan-connection theory by analogy
with the metric theory constructions of Tulczyjew,

- Madore, Beiglbock, and Dixon. However, the con-
struction is nonunique in that one must choose be-
tween the Christoffel and Cartan connections and
choose to impose condition (98) or (99) or some
other condition. Further, it is unclear how an ex-
perimenter determines that he is measuring the
center-of-mass world line of a particular defini-
tion. However, we emphasize that our propaga-
tion equations and their derivation are valid for
any choice of center-of-mass world line and any
choice of coordinate system centered on that
world line. .
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&p"= Qvr r (~gra+ '&r Srn g &rp6) ~N&&r
6 o ag

2g&r ~63&&&pa )eg v (115)

Second, as seen in Sec. IV, there are many
quantities which could be called the total energy-
momentum of the test body: There are the inte-
grated canonical energy-momentum, P'= f t"',
and the integrated metric energy-momentum p"
= f 70. Then there are the quantities which appear
in the propagation equations: 6'r defined in (58}
appears in (53) and (54), while pr defined in (8V)
appears in (85) and (86). The same quantity,
written as pr =6'r+ —,'S~ X ~r also appears in (53)
and (54) when they are written using all Christof-
fel covariant derivatives and Christoffel curva-
tures. Similarly the quantity, ar=s'r- ,'L~ X —~r,

appears in (53) and (54}when they are written us-
ing aQ Cartan covariant derivatives and Cartan
curvatures. Madore pointed out that one could
also define a total energy-momentum p„'= f&„',
using the eovariant coordinate components of the
metric energy-momentum. Similarly, there is
P„'= ft„' On.e could also take the free index as
orthonormal, defining P'~'= f f&» and p&»

The list goes on and on.
But why are we allowed to make so many defini-

tions of energy-momentum? Simply because all
we know about the general-relativistic definition
is that it must have the correct special-relativis-
tic and Newtonian limits. All of the definitions
mentioned above satisfy this criterion. Each is
a mathematically well-defined, and in general
distinct, quantity. The real questions are experi-
mental: When an experimenter purports to mea-
sure the energy-momentum of a test body, which
mathematicaLly defined quantity is he really mea-
suring? Is the difference between the various
methematically defined quantities signif icant com-
pared to the experimental accuracy of any forsee-
able experiment? How does one measure the en-
ergy-momentum in the first place? We have not
attempted to answer these questions, but merely
make some comments on the last one —the diffi-
culty in measuring the energy-momentum.

It is well known in special relativity that a test
body with mass m, charge q, and four-velocity
v', moving in a background electromagnetic field
with vector potential A „has energy-momentum
P„=mv, + qA, which is not necessarily parallel
to g~. Similarly, in a metric theory, the Papape-
trou equations imply that the energy-momentum
6'" of a test body with angular momentum is not
parallel to v'. In a metric and Cartan-connection
theory, there are additional spin-torsion terms.
To find these terms, we contract v, into Eq. (54)
yielding

where E = -+~v5 is the energy in a comoving frame.
Even if we could measure E, u", I."', 5"', and
pr„N &, we could not use Eq. (115) to compute
6'" because we do not know the values of the back-
ground metric and torsion fields, which are what
we really want to measure.

Finally, we di.scuss the ambiguities in the defi-
nitions of the angular momenta, L"', $", and J"'.
Presumably, if one were to keep higher-order
moments in the propagation equations, there
would be multiple definitions of the spin, rotation-
al, and total angular momenta as there are for the
energy-momentum. However, there are more
fundamerital ambiguities in the interpretation of
the variable S" that we wish to discuss.

The quantity S"'= f4-gSr'0 is that property of
a test body which couples to torsion. Is it really
the total spin of all elementary particles except
gauge fields? This is actually three questions:
Is 3" really spin, why are gauge fields excluded,
and may other fields be excluded' ?

As described in Sec. II, if there is a Lagrangian
L„, then S" is defined by either Eq. (8) or Eq.
(15)', and one proves, via Noether's theorem, that
S" satisfies the appropriate conservation laws.
Further, one proves that L„ is minimally coupled
to the Cartan connection I'

~, if and only if 5"
is the sum of the canonical spin densities of all
the fields in the Lagrangian. However, even if
L„ is nonminimally coupled (so that the nonmini-
mal contributions to 8" are not in the form of
canonical spin densities), the quantity S"' would
still contribute to the total angular momentum ap-
pearing in the angular momentum conservation
law, and so perhaps deserve the name spin. But
the usual procedure is to avoid nonminimal cou-
pling s.

However, one could still minimally couple some
fieMs to the Cartan connection, I' ~„and other
fields to the Christoffel connection ( ~„). In that
case, S"' would include the spins of only those
particles coupled to I'

&,. At the other extreme,
one could minimally couple all fields to ( ~„f, so
that S" = 0, while keeping torsion terms in the
gravitational Lagrangian. But in that case there
would be no way to measure the torsion field ex-
cept through its effects on the metric. So the
usual procedure is to minimally couple as many
fields as possible to 1 ~~„.

However, according to the standard dogma (see
Hehl, von der Heyde, Kerlick, and Nester" ),
there is no way to minimally couple a gauge field
to a Cartan connection without breaking gauge in-
variance. This dogma is not absolute. Recently
Hojman, Rosenbaum, Ryan, and Shepley" con-
structed a Lagrangian in which the electromag-
netic field was, in a certain sense, minimally
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coupled to a connection with torsion without break-
ing gauge invariance. However, Ni" showed that
their theory disagrees with solar system experi-
ments. Perhaps there is some other gauge-in-
variant way to couple the torsion to gauge fields,
but the standard procedure is to use a Lagrangian
in which the gauge fields are not coupled to the
torsion but all other fields are. Hence, S"' will
not include the spins of the gauge fields which
must therefore appear as part of the rotational
(or orbital) angular momentum.

Finally, one may not want to use a Lagrangian at
all. One could define S" and t' phenomenolog-
ically and simply require them to satisfy the con-
servation laws ad hoc. (This is analogous to the
usual treatment of a perfect fluid in general rela-
tivity. ) Then it might seem that S'6 is quite ar-
bitrary. . However, there are strong constraints
placed on S" by the fact that, at least in the
special-relativistic limit, the quantity S"' must
be added to the density of orbital angular momen-
tum to produce a conserved quantity. Thus, S"'
must be interpreted as some form of angular mo-
mentum. What is more natural than spin?

From the above considerations, it seems rea-
sonable to accept the standard interpretation that
S" is the net spin of all elementary particles
other than gauge fields. We have adopted this
interpretation throughout this paper.

E. Directions for future research

Our treatment of the energy-momentum and
angular momentum propagation equations could
be extended and made more rigorous in a number
of worthwhile directions. First, on the formal
level, a more detailed investigation into the non-
determinacy and ambiguities in the propagation
equations is needed. One could generalize the
work of Tulczyjew, Beiglbock, and Madore to spe-
cify a center of mass in the case of metric and
Cartan-connection theories. This would require
a detailed study of the choice between Christoffel
and Cartan connections at all stages of their con-
struction, or an attempt to avoid the use of either.
One could also make our computations more ri-
gorous along the lines of Dixon's work, again care-
fully distinguishing between Christoffel and Cartan
connections. It would also be useful to study the
internal balance between spin and rotational angu. -

lar momentum in a body possessing both, and to
study more carefully the definitions of spin and
energy-momentum.

Our propagation equations could be generalized
to the metric and connection theories in which the
connection is non-metric-compatible, and/or ex-
tended to include nongravitational interactions
such as electromagnetism and other gauge inter-
actions. The electromagnetic generalizati. on seems
to merit high priority since every elementary par-
ticle with spin (except the neutrinos) also has a
magnetic moment. Hence a macroscopic body
which is spin-polarized also has a magnetic field.
This magnetic field may be useful in constructing
experiments, but that would require isolating the
system from extraneous magnetic fields. Furth-
er, the assumption of vanishing spin currents
p „N""=0may be inappropriate in the presence
of magnetic fields.

This brings us to experiments and their analy-
sis. Much work is needed in the development of
practical experiments which are sensitive to tor-
sion. As shown here, such experiments must in-
volve spin-polarized systems. The analysis of
such experiments would be simplified by an ex-
tension of the PPN framework to the metric and
torsion theories. Even more important is a de-
tailed study of the ambiguities in the relationship
between the measured values of the dynamic vari-
ables and the corresponding mathematically de-
fined quantities, as discussed in Sec. VD. In all
of these extensions and improvements on our
work, we do not expect any fundamental modifica-
tion to our basic result that torsion couples to spin
but not to rotation.
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