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The structure of the surfaces of infinite red-shift that are formed about an accelerating Kerr-type particle
is studied. It is shown that for nonzero acceleration and rotation there exist three relevant surfaces of
infinite red-shift. One of these surfaces is analogous to the Schwarzschild surface and is mainly a
consequence of the mass. The acceleration causes this surface to expand in the forward direction and
contract in the backward direction. In addition, the rotation causes the Schwarzschild surface to contract
both in the forward and backward directions. The second surface is mainly due to the acceleration and is
called the Rindler surface. It has a shape similar to a parabola of revolution. As the acceleration increases,
the Rindler surface moves inward, approaching the Schwarzschild surface. Rotation causes the Rindler
surface to contract slightly in the equatorial plane, As the acceleration increases to a critical value the
Rindler and the Schwarzschild surfaces coincide on the equatorial plane. As the acceleration is increased
further, the points of coincidence spread towards the poles. The third surface is produced mainly by the
rotation and is a shape similar to the ivterior Kerr surface. This surface is called the Kerr surface. By
increasing the rotation this surface expands in the polar regions, approaching the Schwarzschild surface,
Acceleration causes this surface to distort and become elongated in the forward direction and contracted in

the backward direction.

I. INTRODUCTION

The stationary c metric is a vacuum type-D
solution of the Einstein field equations. This solu-
tion represents the gravitational field of a uniform-
ly accelerating Kerr-type particle. It represents
the generalization of the static c-metric solution
to include rotation of the particle. Although the
static c metric was discovered in 1918, the physi-
cal interpretation was unknown until 1970. The
physical interpretation of the static vacuum c
metric was recognized by Kinnersley and Walker'
and studied further by Farhoosh and Zimmerman. "
The generalization of the static c metric to include
rotation was done by Kinnersley' and by Plebanski
and Demianski. '

. It is the purpose of this paper to explore the
physical properties of the stationary vacuum c
metric. In particular, we will investigate the
shape of the surface of infinite red-shift that are
formed about a rotating and accelerating particle.

The Schwarzschild surface is a mell-known ex-
ample of a surface of infinite red-shift. Since the
metric is static, it has a hypersurface orthogonal
timelike Killing vector $«). Relative to this vector
there exists a class of static observers whose
four -velocity vectors are def ined by

&' = &(~)~(+&(~)&(~)~"'
~

It follows that the red-shift between a static ob-
server and source is given by

(1.2)

The surfaces of infinite red-shift are defined to

be those surfaces where the norm of the timelike
Killing vector vanishes.

Farhoosh and Zimmerman' have studied the
shapes of the surfaces of infinite red-shift for a
Schwarzschild-type particle undergoing uniform
acceleration. That is, they studied the properties
of those surfaces in the static c metric that were
defined by the vanishing of the norm of the timelike
Killing vector. In both the case of the Schwarzs-
child and static c-metric solutions the surfaces of
initinite red-shift are also null surfaces. These
surfaces are Killing horizons.

For the static vacuum c metric there exist two
Killing horizons or surfaces of infinite red-shift
as opposed to the one for the Schwarzschild metric.
One is analogous to the familiar Schwarzschild
surface which is deformed by the acceleration.
The acceleration causes this Killing horizon to
elongate in the forward direction and contract in
the backward direction. The second Killing hori-
zon is due to the acceleration of the particle. It is
a parabola of revolution with its opening in the
forward direction and surrounding the Schwarzs-
child-type surface. This surface is called the
Bindler surface. The reason for the existence of
this surface is obvious. Photons that have been
sent from the Rindler surface towards the accel-
erating particle will never reach the particle.
During the flight time of the photon, the particle's
velocity will have reached the velocity of light.
The surface is open in the forward direction be-,
cause the particle is moving in that direction and
wi11. receive all the photons.

By increasing the acceleration, the Schwarz-
schild-type surface becomes more deformed, ex-
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panding in the forward direction and contracting
in the backward direction, in agreement with
what would have been expected from the principle
of equivalence. However, when the acceleration
increases to the value A =1/v'54m (m is the mass
and A is the acceleration of the particle), the
Schvrarzschild surface reaches its maximum con-
traction in the backward direction and as the ac-
celeration increases beyond this value, the sur-
face in the backward direction expands outward
again. The expansion of this surface appears to be
a violation of the principle of equivalence. On the
other hand, as the acceleration increases, the
Bindler surface moves inward and at some critical
value given by A = 1/v'27m, the Bindler and the
Schwarzschild-type surfaces coincide at all points
on their surfaces simultaneously and produce a
naked singularity at the position of the particle.

The properties of the surfaces of infinite red-
shift change considerably when rotation is inclu-
ded. The timelike Killing vector gf, &

is no longer
hypersurface orthogonal. Relative to this time-
like Killing vector, we define a class of stationary
observers whose four-velocity vectors are defined
by

vP= ("„&/(+((,&](,&)'". (l.3)
The surfaces of infinite red-shift are again those
surfaces where the norm of the timelike Killing
vector vanishes.

For the Kerr metric, the region between the
surface of infinite red-shift and the null surface
is called the ergosphere. The ergosphere is a
region in which special trajectories may pierce
the surface of infinite red-shift, entering the
ergosphere, and then escape back through the
surface of infinite red-shift carrying more energy
to infinity than they started out with. This energy
is gained at the expense of the loss of rotational
energy in the Kerr line element.

A similar generalization occurs in going from
the static c metric to the stationary c metric as in

going from the Schwarzschild metric to the Kerr
metric. That is, the surface of infinity red-shift
are no longer null surfaces. Again, an ergosphere
is formed beneath the surface of infinite red-

shift. Now trajectories that plunge through the
surface of infinite red-shift can extract energy not

only due to the rotation but also the acceleration.
The class of stationary observers are stationary
relative to the particle. Since the particle is un-
dergoing uniform rectilinear acceleration, these
stationary observers are actually uniformly 'accel-
erating observers relative to the inertial space.

The purpose of this article is to study the effects
of acceleration on the surfaces of infinite red-
shift that exist about a Kerr-type particle. In
Sec. II we will discuss the line element for the
stationary c metric and give a physical meaning
to the coordinates. In Sec. III the shapes of the
surfaces of infinite red-shift are investigated. It
is shown in this section that with rotation and ac-
celeration there exist three relevant surfaces of
infinite red-shift. One is the familiar Schwarz-
schild surface which is due to the mass of the
particle. Acceleration causes this surface to dis-
tort and become elongated in the forward direction
and contracted in the backward direction. Rota-
tion, on the other hand, causes this surface to con-
tract along the poles.

The second surface is the-Rindler surface which
has a similar structure to the nonrotating case
and is mainly due to the acceleration and is dis-
torted by the mass and the rotation of the particle.
Rotation causes this surface to slightly contract
in the equatorial region.

. The third surface is due to rotation and it is
analogous to the interior Kerr surface which is
distorted by the acceleration. Acceleration causes
this surface to slightly expand in the forward di-
rection and shrink in the backward direction. The
effects produced by the increase of the accelera-
tion and the rotation are also discussed in this
section.

As was the case for the static c metric, we also
observe an apparent violation of the principle of
equivalence for the Schwarzschild-type surface.
For sufficiently large accelerations, the Schwarz-
schild-type surface expands in the backward direc-
tion, which appears to be contrary to the principle
of equivalence.

II. METRIC

The stationary vacuum c metric which represents the gravitational field of a uniformly accelerating and
rotating particle can be expressed as'

ds' =
( ), 1 ( ), (dr —L'da)' — d&1' —

1 ( ), (do»'d7. )' — dg'

where

P =P(g) =yo —eg +2mog —yor

(2.1)

(2.2a)
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and

Q =Q(n) = y-a+eon'+ 2mo7P +yoq' ~ (2.2b)

1
yo ++f2 t

a -b'
ab cP+b' (2.3)

The coordinates in Eq. (2.1) are mathematically convenient; however, their physical interpretation is ob-
scure. We would like to express Eq. (2. 1) in a coordinate system where the physical meaning of the coor-
dinates becomes more apparent as are the Boyer-Lindquist coordinates for the Kerr metric. It is shown
in the Appendix that the line element (2.1) can be transformed to

where

, (A'W-'(F —ZA'q'G)dP 2aA-'W '[F(1 —P') —Gq'(1 + 8A'q')1 d td ~ WE-'dq'1
A'(P +q)'

—WG 'dP' —W '[G(1+cPA'q')' —a'A'F(1 —P')']du/], (2.4)

and

G =G(P) =y —eP' —2Am@' —a'A'yP

F =F(q) = —y+ eq —2Amq'+a'A'yq4,

W = 1 + A2P2q2

1
1+PA' '

(2.5a)

(2.5b)

(2.6)

(2.7)

1 —aA
1+a'A' (2.8)

In these equations m is the mass, A is the acceleration, a is the rotation of the particle, t is the time
coordinate, and ~, p, and q are the spatial coordinates. ln the absence of rotation, the line element (2.4)
reduces to the nonrotating line element as expressed by the static c metric. Comparing (2.5) with Eq.
(2.2) in Ref. 3 one can see that rotation introduces a fourth-order term in the polynomials G(P) and F(q)
raising them to quartic functions. Figure 1 shows the behavior of the quartic function G(P) under the
change of rotation and acceleration. fn analogy to the nonrotating case, the roots of the function G(p) deter-
mine the range of the P coordinate and are denoted by P, and P, in Fig. 1.

The line element (2.4) can be transformed to a uniformly accelerating spherical-like coordinate system
by letting

r =1/A(P+q),

G(P) =y sin'8,

The line element (2.4) in this case transforms to

ds' =A'r'W '(F —8A'y sin'8q')dP —2aA'r'W '[F (1 —P2) —y sin'8q'(1+&PA'q')]dfdP

(2.9a)

(2.9b)

(2.9c)

dr' — drdp —r'W —+ . , dP' —W 'r'[y sin'8(1+a'A'q')' —a A'F(1 —P')']dP',
A +F AIi F y sin'8 (2.10)

where P and q are related to the spherical coor-
dinates r and 8 by Eqs. (2.9).

Equation (2.9b) is a mapping from the p variable
to the 8 variable and in general it has four solu-
tions. Because of the mathematical complexities
involved in the solutions of quartic equations, a
better grasp of the problem can be obtained by the
method of numerical analysis. In order to make
the mapping between the P and the 6 variables

unique, one has to make a proper identification
between the two variables. A similar situation
arises in the nonrotating case. In analogy of the
nonrotating case we pick that solution of Eq.
(2.9b) which, at 8 =0, becomes P(8 =0) =p, and at
8 =v it becomes P(8=v) =P, (cf. Fig. 1). This
mapping between the P and the 8 variables is
numerically tabulated in Table I for different
values of g and A.
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The meaning of the coordinates (t, r, 8, P) and
parameters A, a, and m becomes apparent by
considering various limiting cases. In the limit
that a- 0 the line element in (2.10) reduces to the
line element (2.23) of Ref. 3. In this limit, the

(t, r, 8, P} coordinates represent a uniformly ac-
celerating coordinate system "rigidly" attached
to a Schwarzschild-type particle. The further
reduction of A-0 causes the line element to re-
duce to the nonaccelerating Schwartzschild solu-
tion with the usual spherical coordinates. We
see that m is the mass of the particle and g is

the acceleration. If we only let A-0 in (2.10), the
line element reduces to the Kerr metric in the
Boyer-Lindquist coordinates. Consequently, we
interpret (2.10) to be a Kerr-type particle with
rotation a, acceleration A, and mass m des-
cribed by a uniformly accelerating coordinate
system rigidly attached to the particle.

To gain further insight into the meaning of
(],r, 8, p) described by (2.10), let us consider the
limit that m-0. In this limit, space-time be-
comes Euclidean and the metric in (2.4) reduces
to

dz =
2 2 A2y q —1 +PA q 1 —P dP +2+A z 1 — 1+PA q2

1
A'(P+q)'

W

( 2 —1)(1+ g A q )
q (1 P )(1, + g A P )

(2.11)

This is a special form of the flat-space line ele-
ment written in a uniformly accelerating and ro-
tating frame. Performing the coordinate trans-
formation

[(1—p')(1+ cPA'q')]"
A(P+q)

— [(q' —l)(I + +A'P'))"'
t=, , sinhAyt,

A(p+q)

[(q' —l)(1 + s'A'P'))'"
A A(P+q)

P =~+ aA'yt,

the line element (2. 11) reduces to

ds =dt'-dp' —dX' —p'dP.

(2.12a)

(2.12b)

(2. 12d)

(2.13}

q = const. gg
G(p)

Equation (2.13) is the familiar flat-space line
element written in the nonaccelerating cylindrical
coordinates.

We conclude this section with the observation
that the line element in Eq. (2.10) represents a
uniformly accelerating Kerr-type particle which
is accelerating along the positive z axis. The co-
ordinate system (t, r, 8, p) defined by Eq. (2.10) is
a coordinate system rigidly fixed on the accelerat-
ing particle. Coordinate transformations (2.12)
are the transformation equations to the (f, p, Z, P)
coordinates which constitute the nonaccelerating
frame relative to the Euclidean background space.

III. SURFACES OF INFINITE RED-SHIFT

In this section we will discuss the surfaces of
infinite red-shift that surrounded a uniformly ac-
celerating Kerr-type object. In order to gain a
clear insight of the problem, we first review the
surfaces of infinite red-shift for the Kerr metric.

For a stationary metric we define a stationary
observer to the one whose four-velocity vector
satisfies Eq. (1.3). The timelike Killing vector of
the Kerr metric in the Boyer-Lindquist coordinate
system is

((,) =(1,0, 0, 0)

and its norm is

$&,&g~, &
=goo = -(r' —2mr + a' cos28) .

o = cons

(o) 3
'G'p) The Killing vector becomes null on the two sur-

faces

r, = m+ (m' —cP cos'8)'I',

r, = m —(m' —cP cos'8)'" .
(6)

FIG. 1. The behavior of the quartic function G(P) un-
der the change of the rotation for a fixed value of ac-
celeration (a), and its behavior under the change of the
acceleration for a fixed value of rotation (b), is shown.

Outside the outer surface r„we can have station-
ary sources and observers with four-'velocities
following the Killing-vector trajectories. As an
observer approaches this outer surface, the
dragging of the inertial frame due to the rota-
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TABLE I. This table shows the mapping between the p and the 8 variables for different values of
rotation and acceleration. Those values of p(e) that are distinguished by a dagger are the double
roots of the equation G(p) =y sin29.

a2 = p.2m2
+2m2 1/4)( 54 +2m2 1 ~2m2 3/2 x 54 +2m2 ~2m2 p p35 74 +2m2 Q Q38 2Q27

p(0) p(0) J. (0) J. (0) P (0) P (~)

pO

100
45'
90'

135'
180'

-1.083
-1.065
-0.746

0
+0.677
+0.941

-1.224
-1.200
-0.801

0
+0.652
+0.897

-1.343
-1.310
-0.834

0
+0.642
+0.879

-1.597
-1.516
-0.870

0
+0.634
+0.865

-1.531
-1.471
-0.864

0
+0.636
+0.868

-1.760~
-1.575
-0.875

0
+0.634
+0.864

a2 = Q.4m2

00

10'
450
90'

135'
180'

-1.083
-1.065
-0.746

0
+0.677
+0.941

1+223
-1.199
-0.802

0
+0.652
+0.896

-1.339
-1.308
-0.836

0
+0.643
+0.879

-1.555
-1.493
-0.873

0
+0.635
+0.866

A'm' = 0.034 56

-1.473
-1.426
-0.863

0
+Q.637
+0.869

A'm' = 0.03950

-l.790~
-1.601
-0.884

0
+0.633
+0.862

a = p.8m2

QO

10'
45'
90'

135'
180'

—1.083
-1.065
-0.747

0
+0.677
+0..941

-1.222
—1.198
-0.804

0
+0.653
+0.896

1e333
-1.303
-0.841

0
+0.644
+0.879

-1.50 7
-1.460
-0.881

0
+0.636
+0.865

A.'m' = 0.032 51

-1.408
-1.372
-0.861

0
+0.640
+0.872

&'m' = 0.042 72

-1.8801
-1.675
-0.909

0
+0.632
+0.858

a = m

pO

10'
45
90'

135'
180'

-1.083
-1.065
-0.747

0
+0.677
+0.941

10221
-1.198
-0.806

0
+0.653
+0.896

-1.329
-1.300
—0.843

0
+0.644
+0.879

-1.490
-1.448
-0.884

0
+0.637
+0.865

A2m2 = Q.p31 61

-1.386
-1.353
-0.860

0
+0.641
+0.873

A.2m = 0.04482

-1.950 ~

-1.730
-0.925

0
+0.632
+0.855

a' = 1.04309m'

A'm' = 0.01 +2m2 0 p31 42 +2m2 p p45 33

pO

]00
45K

90'
135'
180

-1.083
-1.065
-0.747

0
+0.677
+0.941

10137
10117

-0.772
0

+0.665
+0.919

-1.329
-1.300
-0.844

0
+0.644
+0.879

-1.487
-1.445
-0..885

0
+0.637
+0.865

-1.382
-1.349
-0.860

0
+0.641
+0.873

-1.990
-1.745
-0.929

0
+0.632
+0.855

tion becomes more extreme. At ro the dragging
becomes so extreme that no observer can remain
at rest there relative to the distant stars. Inside
this surface all observers with fixed r and 8 must
orbit the black hole in the same direction in which

the hole rotates. The Killing vector changes from
timelike to spacelike inside the r, surface.

U we let the rotating particle also possess ac-
celeration, the inertial frame will not only be
dragged by the rotation but also by the accelera-
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$(",) =(1,0, 0, 0),

~(e) =(0, 0, 0, 1

whose norms are

$(,)g(,) =A'r W '(F —a A'y sin'Hq4)

(3.1a)

(s.lb)

tion. The surfaces of infinite red-shift that oc-
curred in the Kerr solution become distorted by
the acceleration in addition to the appearance of
a third surface due to the introduction of accelera-
tion.

To study the effect of acceleration on the sur-
faces of infinite red-shift that occur about a uni-
formly accelerating Kerr-type particle, we consi-
der the line element in Eq. (2.10). This line ele-
ment has two Killing vectors given by

2l~2 &2tn2

pO

0

90'
180'

00

10'
90'

180'

1.0165
1.0485

1.0165

1.0431
1.0766

OQ

1.0431

0.004
0.004
0.004
0.004

0.01
0.01
0.01
0.01

TABLE II. This table demonstrates the numerical
values of the rotation and the acceleration parameters
for which the discriminant of the quartic equation
E-a A. y sin eq = 0 vanishes. An asterisk in this table
expresses the fact that no real value of the rotation
exists in that situation to satisfy the condition 6= 0.

=A'r'W '(-y +eq' —2Amq'+ ZA'y cos'Hq~),

(3.2a)

g&&)$fe) =-r'W '[y sin'8(1++A'q')'

—2A'Z(1 —P')']. (s.2b)

p, runs from 0 to 3 denoting (f, r, P, p), respec-
tively. $f,) is the timelike Killing vector repre
senting the time symmetry and the stationary
structure of the metric $f&) is. the spacelike
Killing vector and represents the axial symmetry
of the solution. The surfaces of infinite red-
shift are defined by setting the norm of the time-
like Killing vector $ «) given in Eq. (3.2a) equal to
zero. One possible solution is x =0. This solution
is not meaningful because of intrinsic singularity
at the origin and mill not be considered any
longer. The other surfaces follow from the solu-
tion of the quartic equation

Z —pA'y sin'8q4 = —y + eq' —2Am q'

+ a'A'y cos'Hq' =0. (3.3)

The quartic Eq. (3.3), in general, has four roots
which can either be real or nonreal depending on
the value of the discriminant of the equation. ' The
discriminant of the quartic Eq. (3.3) is given by

pO

10'
90'

180'

pO

10'

9p0

180'

00

10'
90'

180'

0'
10'
90'

180'

00

10'
90'

180'

pO

1po
90'

180'

1.0939
s 1.1305

OO

1.0939

1.2100

1.2545

0 ~ 12100

0.2 ~ 1.2201
0.2150 & 1.2654

0.2, 1.2201

0.8 ~ 1.2870
0.8515 1.3127

0.8 & 1.2870

1.2874
1.3300

00

1.2874

1.0165 p 1.2897
1.0781 ~ 1.340 7

00

1.0165 s 1.2987

0.02
0.02
0.02
0.02

1
27
1
27

27

27

0.0382
0.0382
0.03.82
0.0382

0.0427
0.0427
0.0427
0.0427

0.0448
0.0442
0.0316
0.0448

0.0450
0.0450
0.0450
0.0450

A,'m'
b. =16A'm'ye' 1 —2'I, +36a'A' —,cos'8

I

——,ye cos 8~ i+4&PA —,cos 8
tPl

(3.4)

For 6 & 0 there are four real and distinct roots.
For b, =0 two of the roots are equal and for ~ &0
there are two real and two nonreal roots. Table
II demonstrates different combinations of A'm'
and cP/m' at different angles for which the dis-
crim inant vanishes.

To see the effect of acceleration on the surfaces

of infinite red-shift about a rotating object let us
consider the case where both a and A, are small.
In this case the discriminant is positive and there
are four real roots. In analogy to the static c-
metric solution, one of these roots occurs for
negative values of x and lies outside the physical
range of the radial coordinate. This case will not
be considered any further. The other three roots
denoted by q„, q~, and qx are numerically tabula-
ted in Table III for different values of the rotation
a, acceleration A, and angle 8.

It was to be expected from the analogy with the
Kerr metric and static c metric that there should
exist three surfaces of infinite red-shift. From
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TABLE III. In this table the three relevant values of q, for which the norm of the timelike Killing vector vanishes,
are evaluated for different values of rotation and different values of acceleration. Sections of this table that are marked
by a dagger correspond to the case where there exists a double root at 9 = 90' angle or the equatorial plane.

a2 p 2m2

A~m2= 1/54x4=0. 00463
&s &z

a2= p 4m2

A'm'= 1/54x4= 0.00463

a' = 0.8m2

A. m =-x-=0.027782 2 3 1
2 54

&a &s &x

A2m2 = -x-= Q.p27 783

54

Crc

0'
10'
45'
90'

135'
180'

1.083
1.083
1.083
1.084
1.083
1.083

7.6
7.587
7.386
7.193
7.386
7.6

139.363
143.951
286.684

286.684
139.363

1.083
1.083
1.084
1.087
1.084
1.083

8.101
8.065
7.584
7.179
7.584
8.1{)1

65.378
67.703

139.515

139.515
65.378

0 1.333 3.325
10' 1.335 3.273
45' 1.372 2.709
90' 1.426 2.328

135' 1.372 2.709
180' 1.333 3.325

11.554
12.081
27.467

27.467
11.554

1.329
1.332
1.378
1.450
1.378
1.329

3.824
3.704
2.767
2.273
2.767
3.824

8.059
8.560

21.404

21.404
8.059

0'
10'
450
90'

135'
180'

A2m2

1.224
1.224
1.227
1.231
1.227
1.224

3.52
3.513
3.411
3.314
3.411
3.52

69.910
72.210

143.772

143.772
69.910

1.223
1.224
1.230
1+237
1.230
1.223

3.736
3.719
3.484
3.281
3.484
3.736

32.952
34.119
70.213

70.213
32.952

1/54=0.01852 A m = 1/54= 0.01852 A2m2
2~ p Q37 p2 2 1

10.195
10.649
22.262

22.262
10.195

0' 1.507 2.539
1Q' 1.514 2.493
43' 1.806 1.806
90o

137' 1.806 1.806
180' 1.507 2.539

A2m2 = -= P P37P4
27

1.490 2.880 7.272
1.498 2.794 7.685
1.798 1.861 17.358

1.798 1.861 17.358
1.490 2.880 7.2 72

A2m2 = 3/2x1/54= 0.027 78 A m2 = 3/2x1/54= 0.027 78 A2m2= p p3251~ A2m2 = Q.p31 61.~

pO

10'
45'
90'

135'
180'

1.343
1.344
1.353
1.365
1.353
1.343

2.664
2.658
2.570
2.483
2.570
2.664

57.205
59.086

117.623

117.623
57.205

A2m2 = 1/27= 0.03704

1.339
1.341
1.360
1.383
1.360
1.339

2.825
2.811
2.611
2.433
2.611
2.825

27.046
28.003
57.574

57;574
27.046

&2m2 = ]/27 = p,p37 p4

0' 1.408
10' 1.411
45' 1.486
90' 1.755

135' 1.486
180' 1.408

2.906
2.859
2.319
1.755
2. 319
2.906

10.784 1.386 3.401
11.270 1.390 3.299
25.522 1.468 2.436

1.760 1 ' 760
25.522 1.468. 2.436
10.784 1.386 3.401

a2 = 1.043 09m2
= 1/54x4 = 0 00463

7.6.91
8.150

20.181

20.181
7.691

po

10'
42'
90'

138'
180'

1.597 1.968 49.649
1.6 1.967 51.281
1.75 1.75 92.152

1.75 1.75 92.152
1.597 1.968 49.649

A2m2= p 03574f

1.555 2.130 23.547
1.561 2.113 24.378
1.739 1.798 4-5.071

Oo

1.739 1.798 45.0 71
1.555 2.130 23.547

A2m2= p 03456~

po

10'
45'
90'

135'
180'

1.083
1.083
1.085
1.087
1.085
1.083

13.248
8.429
7.134
8.429

A2m2 p 01

15.812
48.059

15.812

00
10'
45'
90'

135'
180'

po

10'
45'
90'

135'
180'

Qo

10'
450
90'

135'
180'

1.473
1.476
1.538
1.744
1.538
1.473

2.322 24.342
2.307 25.201
2.087 51.781

2.087 51.781
2.322 24.342

a =m
1/54x 4= Q.pp463A2m2 =

1.083
1.083
1.085
1.087
1 685
1.083

12.680 16.709
11.806 18.501
8.359 50.558
7.137
8.359 50.558

12.680 1V.709

= —= 0.018 52

5.254 9.390
5.055 10.054
3.756 25.843
3.185
3.756 25.843
5.254 9.390

-= 0.018 52

4.442 13.876
4.372 14.525
3.654 33.296
3+217
3.654 33.296
4.442 13.826

A, 2m2A.2m2 =

1.221
1.222
1.238
1.257
1.238
1.221

1.222
1.223
1.235
1.250
1.235
1.222

1..531 2.084 50.526
1.534 2.077 52.187
1.584 . 1.960 103.874
1.736 1.736
1.584 1.960 103.874
1.531 2.084 50.526

a'= Q.Sm'
A2m2 =1/54 x4= 0.004 63

1.083 9.849 26.888
1.083 9.960 28.203
1.084 8.063 65.552
1.086 7.151
1.084 8.063 65.552
1.083 9.849 26.888

QO

]Qo

45'
Sp'

135
180'

0'
10'
45'
90'

135'
180

0'
10'
43'
90'

137'
180

1.137
1.137
1.142
1.148
1.142
1.137

1.329
1.331
1.380
1.456
1.380
1.329

1.487
1.495
1.795

1.795
1.487

9.580
8.188
5.553
4.697
5.553
9.580

9.580
11.670
33.165

33.165
9.580

2.985
2.883
1.875

1.875
2.985

6.741
7.158

16.545

16.545
6.741

A m = -x-= Q.Q27782=3
2 54

4.002 7.386
3.845 7.908
2.780 20.397
2.260 OO

2.780 20.397
4.002 7.386

A2m 2 = -= 0.03704
27
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TABLE III. (Continued ).
a = 1 04309m
~2yg2 = p 03142~

Qg

po

10'
45'
90'

135'
180

1.382
1.385
1.465
1.761
1.465
1.382

3.563
3.433
2.463
1.761
2.463
3.563

7.100
7.573

19.292

19.292
7.100

the Kerr solution there exist two surfaces r& and

ro. The r, surface reduces to the Schwarzschild
surface as the rotation. is set equal to zero. The
r, surface is similar to the surface produced by
q~. The q~ surface will be referred to as the
Sehwarzschild surface. The r, surface is mainly
a consequence of the rotation a. This surface is
analogous to the surface produced by q~. The q~
surface will be referred to as the Kerr surface.
From the consideration of the static c-metric
solution we saw that acceleration also produces
two surfaces of infinite red-shift which are
labeled r~ and r„. The r~ surface is similar to
the Schwarzschild surface q~. The r„surface was
called the Rindler surface because it is mainly a
consequence of the acceleration A and is similar
to the q„surface in the stationary c metric. The
qR surface will be called the Rindler surface. As
to be expected from the Schwarzschild and c-
metrie solutions, we have three surfaces of in-
finite red-shift for the stationary c metric: the
Rindler surface qR, the Schwarzschild surface q~,
and the Kerr surface q~.

In order to obtain the shapes of the surfaces of
infinite red-shift in terms of the radial coordinate
r and angular coordinate 8, notice that the radial
coordinate r is related to the P and q coordinates
by Eq. (2.9a). Substituting the values of P and q
from Tables I and III into Eq. (2.9a), we obtain a
relation between r and 8 which gives the shapes of
these surfaces expressed in the accelerating
Boyer-Lindquist coordinate system. Table IV
demonstrates this relation for different values of
a and A. Surfaces denoted by r„, r~, and r~ in
this table are the Rindler surface, the Schwarz-
sehild surface, and the Kerr surface, respec-
tively, and are respectively related to qR, q~,
and q~ in Table III.

To investigate the dependence of these surfaces
on the acceleration A and rotation a, let us first
consider the special case of no rotation, i.e.,
a=0. It was shown that in the case of static c
metric' the acceleration causes the Schwarzschild
surface rR to expand in the forward direction and

contract in the backward direction. It was also
shown in this case that by increasing the accelera-
tion the Schwarzschild surface in the forward di-
rection continues to expand further outward,
while in the backward direction it first moves
inward and then reverses its direction of motion
and expands outward until, at the critical value
A=i/v'27m, the Schwarzschild surface and Rind-
ler surface coincide in all points on their sur-
faces. In the presence of rotation the same qual-
itative type of behavior can be observed. Rota-
tion acts to further distort these surfaces. Fig-
ure 2 shows the combined effect of the rotation,
and the acceleration on. the Schwarzschild surface
re Fi.gure 2(a) shows the behavior of this surface
under the change of the acceleration for a fixed
value of rotation. The same kind of behavior as
the nonrotating case can be observed in this figure.
The Schwarzschild surface expands in the forward
direction and shrinks in the backward direction.
For larger accelerations this deformation is more
significant. In the backward direction the surface
moves back outward again for relatively large ac-
celerations. As the acceleration is increased,
the Rindler surface moves inward. Rotation
causes the Rindler surface to contract slightly in
the equatorial region.

As the acceleration is increased to a sufficiently
large value, the Schwarzschild and Rindler sur-
faces will eventually coincide first on a ring in
the equatorial plane for an acceleration slightly
less than the nonrotating critical value A = Ij4 27m.
It is in this situation that the discriminant 6, van-
ishes for 8 =90. As the acceleration continues to
increase, the points of coincidence of the Schwarz-
schild and the Rindler surfaces spread out of the
equatorial plane, towards the polar region. The
points of coincidence of these two surfaces finally
reach the poles for some value of the acceleration
slightly larger than the nonrotating critical values.
--Let us now consider the effect of acceleration on

the Kerr surface. In the absence of acceleration
this surface reduces to the interior Kerr surface
which is symmetric about the equatorial plane.
Acceleration distorts this symmetry and causes
this surface to become elongated in the forward
direction and contracted in the backward direction.
This behavior of the Kerr surface under the
change of the acceleration and the rotation is
shown in Fig. 3. Figure 3(a) shows the behavior oz
this surface under the change of rotation for a
fixed value of the acceleration. It can be seen in
this figure that by increasing the rotation, the
Kerr surface expands outward in all directions,
except in the equatorial plane, as is the case for
no acceleration. Figure 3(b) shows the behavior
of the Kerr surface under the change of the ac-
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TABLE IV. This table gives the relation between the radial coordinate r and the polar angle 0 on the surfaces of
infinite red-shift for different values of acceleration. Sections of this table that are marked by a dagger correspond
to the case where the Schwarzschild and the Rindler surfaces coincide on a ring on the equatorial plane and the section
marked by $ corresponds to the case where the Schwarzschild and Kerr surfaces coincide on the poles.

~2 Q.2m2 g2 = Q.4m2 a2= 0.8m 2 a=m

3 rgm rq/m r~/m rgm r,/m ~r/m

A'm2 = 1/54x 4 = 0.004 63 A m = 1/54x 4 = 0.004 63 A'm' = -= 0.018 52
54

rR/m r~/m rg/m

& m'= -= 0.018522
54

r~/m r~/m r~/m

p0

100 816.497

135'
180'

8.351
7.260

45' 43.611
90' - 13.558

2.255
2.253
2.213
2.043
1.823
1.721

0.106
0.103
0.051

0
0.051
0.105

816.497
43.482
13.521
8.346
7.260

2.094
2. 100
2.149
2.047
1.V79
1.625

0.229
0.221
0.106

0
0.105
0.222

. 0 ~ 2.282 0.583
10' 298.989 2.315 0.551
45' 17.050 2.578 0.226
90' 5.879 2.284 0

135' 3.892 1.706 0.216
180' 3.470 1.377 0.499

306.186
17.010
5.846
3.885
8.471

1.822
1.905
2.491
2.307
1.667
1.195

0.900
0.830
0.294

0
Q.277
0.714

00

]p0

45'
90'

135'
180'

A2m2 = ~ = p.p18 52
54

3.201 0.107
306.186 3.177 0.103
17.250 2.816 0.051
5970 2 217 0
3.911 1.809 0.051
3.494 1.664 0.104

A2m 2 = -= Q.Q18 52
54

2.924 0.232
293.939 2.916 0.223
17.169 2.740 0.106
5.941 2.240 0
3.905 1.777- 0.104
3.467 1.586 0.217

A m = -x —= 0.027 782 2-'
54

0' ~ 3012 0 587
10' 187.500 3.046 0.557
45' 11.299 3.212 0.225
90' 4.208 2.577 0

135' 2.976 1.789 0.213
180' 2.712 1.427 0.4S3

A2m2=-
2

187.500
11.215
4.138
2.96V
2.717

& —= 0.027 78
1

54

2.405 0.892
2.496 0.826
8.119 p.292
2.640 0
1.759 0.272
1.276 0.671

p0

100
45'
90'

135'
180'

A. 'm' = -x -= p.027 VS2 2 —3

54

4.542 0.107

176.471 4.451 0.104
11.561 3.456 0.051
4.396 2.416 0
3.008 1.868 0.051
2.7 1.693 0.103

A2m2 =

181.818
11.450
4.338
2.996
2.705

3-x -= 0.027 78
2 54

4.038 0.233
3.992 0.225
3.380 0.106
2.466 0
1.844. 0.103
1.620 0.215

p0

100
43'
90'

137'
180'

96.225
5.871

2.111
2.190

5.035
5.03Q
5.871

2.111
1.526

0.598
0.565
0.243

0
0.227
0.470

A2m2= -= p 03704
27

103.923
5.952

2.117
2.206

3.738
8.860
5.551

2.064
1.887

0.899
0.833
0.316

0
0.288
0.689

A'm'= -= 0.03704
27

00

10'
42'
90'

188'
180'

A2m2 = —= 0.037042 2

27

14.006 0.108
61.859 11.521. 0.104
6.337 6.337 0.057

0
2.153 2.153 0.056
2.111 1.834 Q.103

A2m' = -= p p37p41

27

9.037 0.236
76.410 8.381 0 .227
6.455 6.014 0.118

p

2.162 2.111 0.114
2.146 1.734 0.213

A2m2 = Q.p32 51~

Q' ~ 3.702 0.592
10' 142.209 3.730 0.560
45' 8.874 3.804 0.225
90' 3.160 3.160 0

135'. 2.609 1.874 0.220
180' 2.433 1.468 0.476

'152.015
9.251
3.196
2.667
2.490

2.791
2.840
3.569
3.196
1.828
1.316

0.892
0.828
0.291

0
0.270
0.657

A, m =pp3161

A m =p p3574 A2m 2 = 0.034 56~

Q

A2m2 =

rgm

= 1.p43 09m
1/54 x 4 = 0.004 63

z/mre/m
pO

10'
450
90'

185'
18P'

83.962
7.347
3.047
2.388
2.205

9.565
8.729
4.826
3.047
2.038
1.792

0.108
0.104
0.051

0
0.051
0.103

107.583
7.969
3.084
2.473
2.297

6.336
6.106
4.395
3.084
1.975
1.686

0.235
0.226
0.106

0
0.103
0.213

pO

]pO

45'
9po

135'
180'

816.497
43.482
13.521
8.841
7.260

1.207
1.913
2.060
1.614

0.997
0.311

0
0.891

a = 0.8m2 a =m
A2m2= 1/54x4= P.P0463 A m2= 1/54x4=0. P0463

rz/m rz/m rz/m rz/m rz/m rz/m A2m2= 0.01&

0'
10'
45'
90'

135'
180'

1.677 0.570
816.497 1.706 0.542
43.611 2.009 0.227
13.533 2.055 0
8.846 1.682 0.222
7.260 1.362 0.528

816.497
43.482
13.521
8.841
7.260

1.267
1.368
1.931
2.059
1.626
1.0 79

0.941
0.843
0.295

0
0.287
0.833

QO

1po
450
90'

135'
180

500.000
27.027
8.711
5.533
4.864

1.184
1.414
2.092
2.%29

1.608
0.952

1.184
0.948
0.309

0
0.296
0.952
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A rn =//2r

o2=.pm

=/. Oy 309m

e=0
for word direc fi on

O. o =.2m2)
e = Tt/2

pO

10'
450
90'

135
180'

TABLE IV. (Continued. }
g2=1 04309m

A2m2 = -x —= 0.027 78
3 f

54

z„jm
CO 2.245

193.548 2.358
11.194 3.099
4.096 2.655
2.964 1.752
2.717 - 1.229

0.991
0.908
0.307

0
0.285
0.726

(b)
a2 8m2

e=H
bock wa' rd direction

e= 0
forward direction

&A2

A2o A/

e = Tt/2
Qua/aria/

Plane/

0'
]po

43'
90

137
180'

00

10'
45'
9po

135'
180'

103.923
5.973

2.119
2.209

156.709
9.325
3.204
2.679
2.502

A. 02 = -= 0.03704
27

3.469
3.613
5.470

2.052
1.350

A'm' = p.03142~

2.587
2.707
3.519
3.204
1.818
1.272

0.989
0.910
0.333

0
0.302
0.683

0.987
0.906
0.306

0
0.283
0.708

a2=0 Hm2 e=0

e = ~ b ock ward di rec f ion

FIG. 2. The behavior of the Schwarzschild surface
(a) under the change of the acceleration for a fixed value
of rotation and (b) under the change of the rotation for a
fixed value of acceleration is illustrated. The dotted
surface in (a) is the Hindler surface when it coincides
with the Schwarzschild surface on a ring on the equa-
torial plane and the discrete line is the Sehwarzsehild
surface for the case when both u and A are equal to
zero, which is spherically symmetric. The dotted sur-
face in (b) is the Kerr surface when it coincides with
the Schwarzsehild surface on the poles.

forward direction

—.0325/

2 2=A m =j/5y
e=0

Ifor ward' direction

e=Ti
back word direction

celeration for a fixed and relatively small value
of the rotation. As the acceleration increases,
the Kerr surface becomes more deformed, shrink-
ing in the backward direction and expanding in the
forward direction. For large values of rotation,
acceleration still causes the Kerr surface to ex-
pand in the forward direction and shrink in the
backward direction. In addition, as the accelera-
tion increases, the Kerr surface changes its di-
rection of motion and it shrinks in the forward di-
rection and expands in the backward direction.
From Table IV one can see that the change of
behavior discussed above occurs for the same
value of rotation between a' =0.8m2 and 2 =m'.

In the absence of acceleration, the Schwarz-
schild and the Kerr surfaces coincide at the poles
for a' =m'. In the presence of the acceleration, a
somewhat larger rotation is required to produce

bock wor d t direcfion

FIG. 3. This figure illustrates the behavior of the
Kerr surface (a) under the change of the rotation for a
fixed value of the acceleration and (b) under the change
of the acceleration for a fixed and relatively small
value of rotation. For larger rotations, although the
acceleration causes the same kind of deformation, i.e.,
causing the Kerr surface to contract in the backward
direction and expand in the forward direction, but by
increasing the acceleration in this case, the deforma-
tion of the surface becomes less significant.
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this coincidence because of the effects of the ac-
celeration on these surfaces.

IV. CONCLUSIONS

The Schwarzschild metric, representing the
gravitational field of a spherically symmetric and
static particle, is known to have a spherically
symmetric Killing horizon, which in this ease
coincides with the surface of infinite red-shift.
Rotation and acceleration cause this spherically
symmetric surface to distort. Rotation causes
the Schwarzschild surface to contract along the
poles, while rectilinear acceleration causes this
surface to expand in the forward direction and
contract in the backward direction.

In addition to the distorting effect of the Schwarz-
schild surface, acceleration and rotation introduce
one more surface of infinite red-shift each. There-
fore, a uniformly accelerating and rotating par-
ticle, in general, can have three surfaces of in-
finite red-shift. One is the Schwarzschild surface
due to the mass which is being distorted by both
acceleration and rotation, one due to the accelera-
tion, and one due to the rotation of the particle.
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