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The structure of the surfaces of infinite red-shift that are formed about an accelerating Kerr-type particle
is studied. It is shown that for nonzero acceleration and rotation there exist three relevant surfaces of
infinite red-shift. One of these surfaces is analogous to the Schwarzschild surface and is mainly a
consequence of the mass. The acceleration causes this surface to expand in the forward direction and
contract in the backward direction. In addition, the rotation causes the Schwarzschild surface to contract
both in the forward and backward directions. The second surface is mainly due to the acceleration and is
called the Rindler surface. It has a shape similar to a parabola of revolution. As the acceleration increases,
the Rindler surface moves inward, approaching the Schwarzschild surface. Rotation causes the Rindler
surface to contract slightly in the equatorial plane. As the acceleration increases to a critical value the
Rindler and the Schwarzschild surfaces coincide on the equatorial plane. As the acceleration is increased
further, the points of coincidence spread towards the poles. The third surface is produced mainly by the
rotation and is a shape similar to the interior Kerr surface. This surface is called the Kerr surface. By
increasing the rotation this surface expands in the polar regions, approaching the Schwarzschild surface.
Acceleration causes this surface to distort and become elongated in the forward direction and contracted in
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the backward direction.

I. INTRODUCTION

The stationary ¢ metric is a vacuum type-D
solution of the Einstein field equations. This solu-
tion represents the gravitational field of a uniform-
ly accelerating Kerr-type particle. It represents
the generalization of the static c-metric solution
to include rotation of the particle. Although the
static ¢ metric was discovered in 1918, the physi-
cal interpretation was unknown until 1970. The
physical interpretation of the static vacuum ¢
metric was recognized by Kinnersley and Walker?
and studied further by Farhooshand Zimmerman.?-3
The generalization of the static ¢ metric to include
rotation was done by Kinnersley* and by Plebanski
and Demianski.®
. It is the purpose of this paper to explore the
physical properties of the stationary vacuum c¢
metric. In particular, we will investigate the
shape of the surface of infinite red-shift that are
formed about a rotating and accelerating particle.

The Schwarzschild surface is a well-known ex-
ample of a surface of infinite red-shift. Since the
metric is static, it has a hypersurface orthogonal
timelike Killing vector £{;). Relative to this vector
there exists a class of static observers whose
four -velocity vectors are defined by

vi= g, /(HEEERYE . (1.1)

It follows that the red-shift between a static ob-
server and source is given by :

vo_ [FEEnEL) I
vy [+HEEHEE)IE T (1.2)

The surfaces of infinite red-shift are defined to

be those surfaces where the norm of the timelike
Killing vector vanishes.

Farhoosh and Zimmerman® have studied the
shapes of the surfaces of infinite red-shift for a
Schwarzschild-type particle undergoing uniform
acceleration. That is, they studied the properties
of those surfaces in the static ¢ metric that were
defined by the vanishing of the norm of the timelike
Killing vector. In both the case of the Schwarzs-
child and static c-metric solutions the surfaces of
initinite red-shift are also null surfaces. These
surfaces are Killing horizons.

For the static vacuum ¢ metric there exist two
Killing horizons or surfaces of infinite red-shift
as opposed to the one for the Schwarzschild metric.
One is analogous to the familiar Schwarzschild
surface which is deformed by the acceleration.
The acceleration causes this Killing horizon to
elongate in the forward direction and contract in
the backward direction. The second Killing hori-
zon is due to the acceleration of the particle. It is
a parabola of revolution with its opening in the
forward direction and surrounding the Schwarzs-
child-type surface. This surface is called the
Rindler surface. The reason for the existence of
this surface is obvious. Photons that have been
sent from the Rindler surface towards the accel-
erating particle will never reach the particle.
During the flight time of the photon, the particle’s
velocity will have reached the velocity of light.
The surface is open in the forward direction be-
cause the particle is moving in that direction and
will receive all the photons.

By increasing the acceleration, the Schwarz-~
schild-type surface becomes more deformed, ex-
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panding in the forward direction and contracting
in the backward direction, in agreement with
what would have been expected from the principle
of equivalence. However, when the acceleration
increases to the value A=1/v564dm (m is the mass
and A is the acceleration of the particle), the
Schwarzschild surface reaches its maximum con-
traction in the backward direction and as the ac-
celeration increases beyond this value, the sur-
face in the backward direction expands outward
again. The expansion of this surface appears to be
a violation of the principle of equivalence. On the
other hand, as the acceleration increases, the
Rindler surface moves inward and at some critical
value given by A =1/V27m, the Rindler and the
Schwarzschild-type surfaces coincide at all points
on their surfaces simultaneously and produce a
naked singularity at the position of the particle.
The properties of the surfaces of infinite red-
shift change considerably when rotation is inclu-
ded. The timelike Killing vector £}y is no longer
hypersurface orthogonal. Relative to this time-
like Killing vector, we define a class of stationary
observers whose four-velocity vectors are defined

Y VE=Ely/(FEnEln) ‘ (1.3)
The surfaces of infinite red-shift are again those
surfaces where the norm of the timelike Killing
vector vanishes.

For the Kerr metric, the region between the
surface of infinite red-shift and the null surface
is called the ergosphere. The ergosphere is a
region in which special trajectories may pierce
the surface of infinite red-shift, entering the
ergosphere, and then escape back through the
surface of infinite red-shift carrying more energy
to infinity than they started out with. This energy
is gained at the expense of the loss of rotational
energy in the Kerr line element.

A similar generalization occurs in going from
the static ¢ metric to the stationary ¢ metric as in
going from the Schwarzschild metric to the Kerr
metric. That is, the surface of infinite red-shift
are no longer null surfaces. Again, an ergosphere
is formed beneath the surface of infinite red-

shift. Now trajectories that plunge through the
surface of infinite red-shift can extract energy not
only due to the rotation but also the acceleration.
The class of stationary observers are stationary
relative to the particle. Since the particle is un-
dergoing uniform rectilinear acceleration, these
stationary observers are actually uniformly accel-
erating observers relative to the inertial space.
The purpose of this article is to study the effects
of acceleration on the surfaces of infinite red-
shift that exist about a Kerr-type particle. In

" Sec. II we will discuss the line element for the

stationary ¢ metric and give a physical meaning
to the coordinates. In Sec. III the shapes of the
surfaces of infinite red-shift are investigated. It
is shown in this section that with rotation and ac-
celeration there exist three relevant surfaces of
infinite red-shift. One is the familiar Schwarz-
schild surface which is due to the mass of the
particle. Acceleration causes this surface to dis-
tort and become elongated in the forward direction
and contracted in the backward direction. Rota-
tion, on the other hand, causes this surface to con-
tract along the poles.

The second surface is the Rindler surface which
has a similar structure to the nonrotating case
and is mainly due to the acceleration and is dis-
torted by the mass and the rotation of the particle.
Rotation causes this surface to slightly contract
in the equatorial region.

‘The third surface is due to rotation and it is
analogous to the interior Kerr surface which is
distorted by the acceleration. Acceleration causes
this surface to slightly expand in the forward di-
rection and shrink in the backward direction. The
effects produced by the increase of the accelera-
tion and the rotation are also discussed in this
section.

As was the case for the static ¢ metric, we also
observe an apparent violation of the principle of
equivalence for the Schwarzschild-type surface.
For sufficiently large accelerations, the Schwarz-
schild-type surface expands in the backward direc-
tion, which appears to be contrary to the principle
of equivalence.

II. METRIC

The stationary vacuum c metric whlch represents the gravitational field of a uniformly accelerating and

rotating particle can be expressed as®

de? =t

an® -

1+(n)
2 (d‘r gdo)? - )

(€ +n)? [1 +(Zn
where

P =P(§) =Yo— €o§2 +2mo§3 —70§4 ’

1+(¢n

)2(d0+n2d‘r)2 1’“(5’7)(15], @.1)

(2.2a)
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Q =QM) =—v, +en® + 2mgn® +van*,
and

1 _ 1 ea-¥
VomZ R T T Zan

(2.2b)

(2.3)

The coordinates in Eq. (2.1) are mathematically convenient; however, their physical interpretation is ob-
scure. We would like to express Eq. (2.1) in a coordinate system where the physical meaning of the coor-
dinates becomes more apparent as are the Boyer-Lindquist coordinates for the Kerr metric. It is shown
in the Appendix that the line element (2.1) can be transformed to

d¢=mvar ; a7 {A*WN(F - @ A’q*G)at*~ 2aA°W T [F(1 - p*) - Gg*(1 + @A) |dtdw—- WF 'dg®
~WGTdp? -WH G + 2 A% - FARF(1 - p*Pldw?}, (2.4)
where
G =G(p) =y - ep® —2Amp*® - #A%yp*, (2.5a)
F=F(q)=—y +€q® - 2Amqg® + 2 A%yq*, (2.5b)
and
W=1+2APq, (2.6)
_1
7=1+02A27 (2'7)
1-24
CE{TAAE (2.8)

In these equations m is the mass, A is the acceleration, a is the rotation of the particle, t is the time
coordinate, and w, p, and g are the spatial coordinates. In the absence of rotation, the line element (2.4)
reduces to the nonrotating line element as expressed by the static ¢ metric.® Comparing (2.5) with Eq.
(2.2) in Ref. 3 one can see that rotation introduces a fourth-order term in the polynomials G(p) and F(q)
raising them to quartic functions. Figure 1 shows the behavior of the quartic function G(p) under the
change of rotation and acceleration. In analogy to the nonrotating case, the roots of the function G(p) deter-
mine the range of the p coordinate and are denoted by p, and p, in Fig. 1.

The line element (2.4) can be transformed to a uniformly accelerating spherical-like coordinate system

by letting
y=1/A(p+q), (2.92)
G(p) =y sin’f, (2.9D)
w=¢. (2.9¢)
The line element (2.4) in this case transforms to
ds® = AW N(F - @ A% sin®0¢*)df - 2aA%r*W [ F (1 - p?) — v sin®8g%(1 + 2 A%q?)]dtd ¢
——le—— ar? —z—vzdydp —1*"’W(i + ;Z) ap® — W%y sin?6(1 + 2A2¢?)* —~ 2A*F(1 - p*)2}d ¢, (2.10)
A*PF AF F  ysin®f

where p and g are related to the spherical coor-
dinates » and 6 by Egs. (2.9). )

Equation (2.9b) is a mapping from the p variable
to the 6 variable and in general it has four solu-
tions. Because of the mathematical complexities
involved in the solutions of quartic equations, a
better grasp of the problem can be obtained by the
method of numerical analysis. In order to make
the mapping between the p and the 6 variables

unique, one has to make a proper identification
between the two variables. A similar situation
arises in the nonrotating case. In analogy of the
nonrotating case we pick that solution of Eq.
(2.9p) which, at =0, becomes p(d =0)=p, and at
6 =7 it becomes p(6 =7)=p, (cf. Fig. 1). This
mapping between the p and the 6 variables is
numerically tabulated in Table I for different
values of a and A.
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The meaning of the coordinates (¢,7, 0, ¢) and
parameters A, a, and m becomes apparent by
considering various limiting cases. In the limit
that a— 0 the line element in (2.10) reduces to the
line element (2.23) of Ref. 3. In this limit, the
(t,7, 6, ¢) coordinates represent a uniformly ac-
celerating coordinate system “rigidly” attached
to a Schwarzschild-type particle. The further
reduction of A~ 0 causes the line element to re-
duce to the nonaccelerating Schwartzschild solu-
tion with the usual spherical coordinates. We
see that m is the mass of the particle and A4 is

a1
as —Az(b+q)2{

w

the acceleration. If we only let A- 0 in (2.10), the
line element reduces to the Kerr metric in the
Boyer-Lindquist coordinates. Consequently, we
interpret (2.10) to be a Kerr-type particle with
rotation a, acceleration A, and mass m des-
cribed by a uniformly accelerating coordinate
system rigidly attached to the particle.

To gain further insight into the meaning of
(¢,7,0, ¢) described by (2.10), let us consider the
limit that m — 0. In this limit, space-time be-
comes Euclidean and the metric in (2.4) reduces
to

AY(¢? - 1) + @A (1 - p)]de? +2a8% (1 - p*)(1 + @ A¢*)dtdw

@ DA EP Y A=A AP

This is a special form of the flat-space line ele-
ment written in a uniformly accelerating and ro-
tating frame. Performing the coordinate trans-
formation

A - A+ @atg)Pr

P s 2.12
P A(p+) (2.122)
- g -+

= 2.12
t Ap+q) sinhAyt, (¢ b)
-1 [(g* -1 +@2Ap*)]"
Z=>- I EY) coshAyt, (?.12c)
b=w+akiyt, (2.12d)

the line element (2.11) reduces to

ds® =dt® -dp* —dz* -p’d¢$®. (2.13)

Equation (2.13) is the familiar flat-space line
element written in the nonaccelerating cylindrical
coordinates.

4=const. 20

(@)

a=const. #0 ’X>O

(b)
FIG. 1. The behavior of the quartic function G(p) un-
der the change of the rotation for a fixed value of ac-
celeration (a), and its behavior under the change of the
acceleration for a fixed value of rotation (b), is shown.

ap*-(1-p°)( +a2A2qz)dw2} ) (2.11)

I
We conclude this section with the observation

that the line element in Eq. (2.10) represents a
uniformly accelerating Kerr-type particle which
is accelerating along the positive Z axis. The co-
ordinate system (¢,7,6, ¢) defined by Eq. (2.10) is
a coordinate system rigidly fixed on the accelerat-
ing particle. Coordinate transformations (2.12)
are the transformation equations to the (f,7,z, ¢)
coordinates which constitute the nonaccelerating
frame relative to the Euclidean background space.

III. SURFACES OF INFINITE RED-SHIFT

In this section we will discuss the surfaces of
infinite red-shift that surrounded a uniformly ac-
celerating Kerr-type object. In order to gain a
clear insight of the problem, we first review the
surfaces of infinite red-shift for the Kerr metric.

For a stationary metric we define a stationary
observer to the one whose four-velocity vector
satisfies Eq. (1.3). The timelike Killing vector of
the Kerr metric in the Boyer-Lindquist coordinate
system is

£(n=(1,0,0,0)
and its norm is
ECnEls =800 = —(#? = 2my + & c0s6) .

The Killing vector becomes null on the two sur-
faces

ro=m +(m? — & cos?9)*? |

vy =m — (m? — & cos?9)*/?.
Outside the outer surface 7,, we can have station-
ary sources and observers with four-velocities
following the Killing-vector trajectories. As an

observer approaches this outer surface, the
dragging of the inertial frame due to the rota-
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This table shows the mapping between the p and the 6 variables for different values of

rotation and acceleration. Those values of p(6) that are distinguished by a dagger are the double

roots of the equation G(p)=vy sin%g.

a’=0.2m?
Alm?=1/4x54 Alm?= 5{; Alm?=3/2x54 AMml=5 A’m?=0.035T4 A’m®=0.03820
6 b (0) b (6) b(®) b(6) b(9) bp(9)
0° ~1.083 -1.224 —1.343 -1.597 -1.531 -1.760"
10° -1.065 —-1.200 -1.310 -1.516 -1.471 -1.575
45° —0.746 ~0.801 -0.834 —0.870 —-0.864 —-0.875
90° 0 0 0 0 0 0
135° +0.677 +0.652 +0.642 +0.634 +0.636 +0.634
180° +0.941 +0.897 +0.879 +0.865 +0.868 +0.864
a’=0.4m?
A’m?=0.03456  A2m’=0.03950
0° -1.083 ~1.223 —-1.339 ~1.555 -1.473 =1.7907
10° —-1.065 ~1.199 ~1.308 —1.493 —~1.426 —1.601
45° ~0.746 -0.802 —0.836 —0.873 —-0.863 —-0.884
90° 0 0 0 0 0 0
135° +0.677 +0.652 +0.643 +0.635 +0.637 +0.633
180° +0.941 +0.896 +0.879 +0.866 +0.869 +0.862
a?=0.8m?
A?m?=0.03251  A2m?=0.042 72
0° ~1.083 —1.222 -1.333 -1.507 —-1.408 -1.8807
10° ~1.065 -1.198 -1.303 —1.460 -1.372 -1.675
45° —0.747 —0.804 —-0.841 —0.881 —0.861 -0.909
90° 0 0 0 0 0 0
135° +0.677 +0.653 +0.644 +0.636 +0.640 +0.632
180° +0.941 +0.896 +0.879 +0.865 +0.872 +0.858
a2 - m2
A’m?=0.03161  A?m?=0.04482
0° —-1.083 -1.221 ~1.329 ~1.490 —~1.386 —-1.950T
10° -1.065 ~1.198 ~1.300 —1.448 ~1.353 ~1.730
45° —0.747 —0.806 ~0.843 —0.884 —0.860 -0.925
90° 0 0 0 0 0 0
135° +0.677 +0.653 +0.644 +0.637 +0.641 +0.632
180° +0.941 +0.896 +0.879 +0.865 +0.873 +0.855
a’=1.04309m?
A?m?=0.01 Alm?=0.03142 A?m?=0.04533
0° -1.083 ~1.137 -1.329  —1.487 -1.382 -1.990"
10° -1.065 -1.117 -1.300 —1.445 -1.349 —~1.745
45° —0.747 —0.772 -0.844 —0.885 —-0.860 ~0.929
90° 0 0 0 0 0 0
135° +0.677 +0.665 +0.644  +0.637 +0.641 +0.632
180° +0.941 +0.919 +0.879  +0.865 +0.873 +0.855

tion becomes more extreme. At 7, the dragging
becomes so extreme that no observer can remain
at rest there relative to the distant stars. Inside
this surface all observers with fixed » and 6 must
orbit the black hole in the same direction in which

the hole rotates. The Killing vector changes from
timelike to spacelike inside the 7, surface.

If we let the rotating particle also possess ac-
celeration, the inertial frame will not only be
dragged by the rotation but also by the accelera-



21 SURFACES OF INFINITE
tion. The surfaces of infinite red-shift that oc-
curred in the Kerr solution become distorted by

the acceleration in addition to the appearance of

a third surface due to the introduction of accelera-
tion. :

To study the effect of acceleration on the sur-
faces of infinite red-shift that occur about a uni-
formly accelerating Kerr-type particle, we consi-
der the line element in Eq. (2.10). This line ele-
ment has two Killing vectors given by

gl(lt) =(1) 0, 0’ 0) ’
£€¢) =(0’ 01 0, 1) ’

(3.1a)

(3.1b)

whose norms are

£l = A22W H(F — @ A% y sin?g®)

= A2PPW Y~y +eq® — 2Amq® + @ A%y cos®8q?),

(3.2a)

Elpyklg) =7 W My sin?8(1 + 2 A%¢*)?

~ @A F(1 - p?)?).

u runs from 0 to 3 denoting (¢,7, p, ¢), respec-
tively. E{‘,) is the timelike Killing vector repre-
senting the time symmetry and the stationary
structure of the metric. g&) is the spacelike
Killing vector and represents the axial symmetry
of the solution. The surfaces of infinite red-
shift are defined by setting the norm of the time-
like Killing vector ¢/, given in Eq. (3.2a) equal to
zero. One possible solution is » =0. This solution
is not meaningful because of intrinsic singularity
at the origin and will not be considered any
longer. The other surfaces follow from the solu-
tion of the quartic equation

(3.2p)

F — A%y sin®6q* = -y +eq® - 2Amq®

+d? A%y cos?0q* =0, (3.3)

The quartic Eq. (3.3), in general, has four roots
which can either be real or nonreal depending on
the value of the discriminant of the equation.” The
discriminant of the quartic Eq. (3.3) is given by

2,.,2 2
A =16A2m2'y€3[1 —27A€’:l Y +36a2A2:—2c0526

. 2 2
- ;f;zye cosze<l +4a2AZZ—2 cos29> ]

(3.4)

For A >0 there are four real and distinct roots.
For A =0 two of the roots are equal and for A <0
there are two real and two nonreal roots. Table
II demonstrates different combinations of A%m?
and &2/m? at different angles for which the dis-
criminant vanishes.

To see the effect of acceleration on the surfaces
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TABLE II. This table demonstrates the numerical
values of the rotation and the acceleration parameters
for which the discriminant of the quartic equation
F-a’A% sin6g = 0 vanishes. An asterisk in this table
expresses the fact that no real value of the rotation
exists in that situation to satisfy the condition A= 0.

9 a’/m? A?m?
0° * ,  1.0165 0.004
10° * ,  1.0485 0.004
90° *x o, w0 0.004
180° * ,  1.0165 0.004
0° * »  1.0431 0.01
10° * » 1.0766 0.01
90° * R P 0.01
180° * »  1.0431 0.01
0° * »  1.0939 0.02
10° * , 1.1305 0.02
90° * , o 0.02
180° * ,  1.0939 : 0.02
0° 0 . 1.2100 =
10° 0, 1.2545 .
90° 0 , L3 227
180° 0, 1.2100 =
0° 0.2 , 1.2201 0.0382
10° 0.2150 , 1.2654 0.0382
90° 7 * , o 0.0382
180° 0.2 , 1.2201 0.0382
0° 0.8 , 1.2870 0.0427
10° 0.8515 , 1.3127 0.0427
90° * , © ‘ 0.0427
180° 0.8 , 1.2870 0.0427
0° 1 , 1.2874 0.0448
10° 1 » 1.3300 0.0442
90° 1 , o 0.0316
180° 1 , 1.2874 0.0448
0° 1.0165 , 1.2897 0.0450
10° 1.0781 , 1.3407 0.0450
90° * , © 0.0450
180° 1.0165 , 1.2987 0.0450

of infinite red-shift about a rotating object let us
consider the case where both ¢ and A are small.
In this case the discriminant is positive and there
are four real roots. In analogy to the static c-
metric solution, one of these roots occurs for
negative values of » and lies outside the physical
range of the radial coordinate. This case will not
be considered any further. The other three roots
denoted by g5, g5, and g5 are numerically tabula-
ted in Table III for different values of the rotation
a, acceleration A, and angle 6.

It was to be expected from the analogy with the
Kerr metric and static ¢ metric that there should
exist three surfaces of infinite red-shift. From
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TABLE TI. In this table the three relevant values of ¢, for which the norm of the timelike Killing vector vanishes,
are evaluated for different values of rotation and different values of acceleration. Sections of this table that are marked
by a dagger correspond to the case where there exists a double root at § =90° angle or the equatorial plane.

a? = 0.2m? a?=0.4m?  a?=0.8m? al=m?
A?m?=1/54x4=0.00463 A2m’=1/54x4=0.004 63 A= 3xE=0.02178  Adm}=3x5=0.02778
0 dr ds ax 9ar ds 9k 6 qr qs 'S’s dr gs dx
0° 1.083 7.6 139.363 1.083 8.101 65.378 0° 1.333 3.325 11.554 1.329 3.824 8.059
10° 1.083 7.587 143.951 1.083 8.065 67.703 10° 1.335 3.273  12.081 1.332 3.704  8.560
45° 1.083 7.386 286.684 1.084 7.584 139.515 45° 1.372 2.709 27.467 1.378 2.767 21.404
90° 1.084 17.193 = ® 1.087 17.179 w0 90° 1.426 2.328 w 1.450 2.273 o
135° 1.083 7.386 286.684 1.084 7.584 139.515 135° 1.372 2.709 27.467 1.378 2.767 21.404
180° 1.083 7.6  139.363 1.083 8.101 65.378 180° 1.333 3.325 11.554 1.329 3.824  8.059
A’m?=1/54=0.01852 A?m?=1/54=0.01852 _A2m2=217=o.o3704 A2m2=§17=0.03704
0° 1.224 . 3.52  69.910 1.223 3.736 32.952 0° 1.507 2.539 10.195 1.490 2.880  7.272
10° 1.224 3.513 72.210 1.224 3.719 34.119 10° 1.514 2.493 10.649 1.498 2.794  7.685
45° 1.227 3.411 143.772 1.230- 3.484  70.213 43° 1.806 1.806 22.262 1.798 1.861 17.358
90° 1.231 3.314 o 1.237 3.281 w0 90°  * * w * * o
135° 1.227 3.411 143.772 1.230 3.484 70.213 137° 1.806 1.806 22.262 1.798  1.861 17.358
180° 1.224 3.52  69.910 1.223 3.736  32.952 180° 1.507 2.539 10.195 1.490 2.880  7.272
A’m?=3/2x1/54=0.02778 A’m®=3/2x1/54=0.027178 A’m?=0.032517 A’m?=0.03161"
0° 1.343 2.664 57.205 1.339 2.825 27.046 0° 1.408 2.906 10.784 1.386 3.401  7.691
10° 1.344 2.658 59.086 1.341 2.811  28.003 10° 1.411 2.859 11.270 1.390 3.299 8.150
45° 1.353 2.570 117.623 1.360 2.611 57.574 45° 1.486 2.319 25.522 1.468  2.436 20.181
90° 1.365 2.483 o 1.383 2.433 o 90° 1.755 1.755 w 1.760  1.760 w
135° 1.353 2.570 117.623 1.360 2.611 57574 135° 1.486 2.319 25.522 1.468  2.436 20.181
180° 1.343 2.664 57.205 1.339 2.825 27.046 180° 1.408 2.906 10.784 1.386  3.401  7.691
a%=1.043 09m?
A’m?=1/27=0.03704 A2m?=1/27=0.03704 - APm?=1/54x4=0.00463
6 qr qs dx
1g: 1.597 1.968 49.649 1.555 2.130 23.547 0° 1.083 « N
Bl I Sm e momm o ow mwm o was s
R : . . . . 8 45° 1.085 8.429 48.059
90 * * o * * o
. 90° 1.087 7.134 w
138 1.75  1.75  92.152 1.739 1.798 45.071 .
180° 1.597 1.968 49.649 1.555 2.130  23.547 195 1.085 8.429 15.812
2 . " . . ; 180° 1.083 * *
m?=0.035 74 A’m?=0.03456 A’m?=0.01
0° 1.531 2.084 50.526 1.473 2.322  24.342 0° 1.137 9.580 9.580
10° 1.584 2.077 52.187 1.476 2.307 25.201 10° 1.137 8.188 11.670
45° 1.584 1.960 103.874 1.538 2.087 51.781 45° 1.142 5.553 33.165
90° 1.736 1.736 % 1.744 1.744 o 90° 1.148 " 4.697 o
135° 1.584 1.960 103.874 1.538 2.087 51.781 135° 1.142 5.553 33.165
180° 1.531 2.084 50.526 1.473 2.322  24.342 180° 1.137 9.580 9.580
a’=0.8m? at=m?
A2m?=1/54%4=0.00463 A’m®=1/54%4=0.00463 Alm?= %xj‘z =0.02778
0° 1.083 9.849 26.888 1.083 12.680 16.709 0° 1.329 4.002 7.386
10° 1.083 9.960 28.203 1.083 - 11.806 18.501 10° 1.331 3.845 7.908
45° 1.084 8.063 65.552 1.085 8.359 50.558 45° 1.380 2.780 20.397
90° 1.086 7.151 w 1.087  7.137 90° 1.456 2.260 w0
135° 1.084 8.063 65.552 1.085 8.359 50.558 135° 1.380 2.780 20.397
180° 1.083 9.849 26.888 1.083 12.680 17.709 180° 1.329 4.002 7.386
A’m?= £=0.01852 A= 5 =0.01852 A’m?= 5 =0.03704
0° 1.222 4.442 13.876 1.221 5.254 9.390 0° 1.487 2.985 6.741
10° 1.223 4.372 14.525 1.222 5.055 10.054 10° 1.495 2.883 7.158
45° 1.235 3.654 33.296 1.238 3.756 25.843 43° 1.795 1.875 16.545
90° 1.250 3.217 w 1.257 3.185 90° * * w
135° 1.235 3.654 33.296 1.238 3.756 25.843 137° 1.795 1.875 16.545

180° 1.222 4,442 13.826 1.221  5.254  9.390 180° 1.487 2.985 6.741
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TABLE II. (Continued.)

a?= 1.043 09m?
A’m?=0.031427

0 qdr ds dx
0° 1.382 3.563 7.100
10° 1.385 3.433 7.573
45° 1.465 2.463 19.292

90° 1.761 1.761 o
135° 1.465 2.463 19.292
180° 1.382 3.563 7.100

the Kerr solution there exist two surfaces »; and
7,. The 7, surface reduces to the Schwarzschild
surface as the rotation is set equal to zero. The
7, surface is similar to the surface produced by
qgs.- The g surface will be referred to as the
Schwarzschild surface. The 7; surface is mainly
a consequence of the rotation g. This surface is
analogous to the surface produced by g,. The g
surface will be referred to as the Kerr surface.
From the consideration of the static c-metric
solution we saw that acceleration also produces
two surfaces of infinite red-shift which are
labeled ¢ and 5. The 7¢ surface is similar to
the Schwarzschild surface gg. The 7, surface was
called the Rindler surface because it is mainly a
consequence of the acceleration A and is similar
to the g5 surface in the stationary ¢ metric. The
gy surface will be called the Rindler surface. As
to be expected from the Schwarzschild and c-
metric solutions, we have three surfaces of in-
finite red-shift for the stationary ¢ metric: the
Rindler surface g, the Schwarzschild surface g,
and the Kerr surface g,.

In order to obtain the shapes of the surfaces of
infinite red-shift in terms of the radial coordinate
7 and angular coordinate 6, notice that the radial
coordinate # is related to the p and g coordinates
by Eq. (2.9a). Substituting the values of p and ¢
from Tables I and III into Eq. (2.9a), we obtain a
relation between » and 6 which gives the shapes of
these surfaces expressed in the accelerating
Boyer-Lindquist coordinate system. Table IV
demonstrates this relation for different values of
a and A. Surfaces denoted by 75, 7g, and 7 in
this table are the Rindler surface, the Schwarz-
schild surface, and the Kerr surface, respec-
tively, and are respectively related to g5, qs,
and gy in Table III

To investigate the dependence of these surfaces
on the acceleration A and rotation a, let us first
consider the special case of no rotation, i.e.,
a=0. It was shown that in the case of static ¢
metric® the acceleration causes the Schwarzschild
surface 7, to expand in the forward direction and

contract in the backward direction. It was also
shown in this case that by increasing the accelera-
tion the Schwarzschild surface in the forward di-
rection continues to expand further outward,

while in the backward direction it first moves
inward and then reverses its direction of motion
and expands outward until, at the critical value
A=1/V2Tm, the Schwarzschild surface and Rind-
ler surface coincide in all points on their sur-
faces. In the presence of rotation the same qual-
itative type of behavior can be observed. Rota-
tion acts to further distort these surfaces. Fig-
ure 2 shows the combined effect of the rotation,
and the acceleration on the Schwarzschild surface
rs. Figure 2(a) shows the behavior of this surface
under the change of the acceleration for a fixed
value of rotation. The same kind of behavior as
the nonrotating case can be observed in this figure.
The Schwarzschild surface expands in the forward
direction and shrinks in the backward direction.
For larger accelerations this deformation is more
significant. In the backward direction the surface
moves back outward again for relatively large ac-
celerations. As the acceleration is increased,

the Rindler surface moves inward. Rotation
causes the Rindler surface to contract slightly in
the equatorial region.

As the acceleration is increased to a sufficiently
large value, the Schwarzschild and Rindler sur-
faces will eventually coincide first on a ring in
the equatorial plane for an acceleration slightly
less than the nonrotating critical value A=1/Y27m.
It is in this situation that the discriminant A van-
ishes for 6 =90. As the acceleration continues to
increase, the points of coincidence of the Schwarz-
schild and the Rindler surfaces spread out of the
equatorial plane, towards the polar region. The
points of coincidence of these two surfaces finally
reach the poles for some value of the acceleration
slightly larger than the nonrotating critical values.

~ ~Let us now consider the effect of acceleration on

the Kerr surface.. In the absence of acceleration
this surface reduces to the interior Kerr surface
which is symmetric about the equatorial plane.
Acceleration distorts this symmetry and causes
this surface to become elongated in the forward
direction and contracted in the backward direction.
This behavior of the Kerr surface under the
change of the acceleration and the rotation is
shown in Fig. 3. Figure 3(a) shows the behavior or
this surface under the change of rotation for a
fixed value of the acceleration. It can be seen in
this figure that by increasing the rotation, the
Kerr surface expands outward in all directions,
except in the equatorial plane, as is the case for
no acceleration. Figure 3(b) shows the behavior
of the Kerr surface under the change of the ac-
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TABLE IV. This table gives the relation between the radial coordinate » and the polar angle 6 on the surfaces of

infinite red-shift for different values of acceleration.

Sections of this table that are marked by a dagger correspond

to the case where the Schwarzschild and the Rindler surfaces coincide on a ring on the equatorial plane and the section
marked by § corresponds to the case where the Schwarzschild and Kerr surfaces coincide on the poles.

a?=0.2m?

Alm?=1/54x4=0.00463 A?m®=1/54x4=0.00463

a%=0.4m?

a?=0.8m®

APm?= L =0.01852

a2= m2

Al = 2= 0.018 52

6 rg/m  rg/m vg/m rg/m  rg/m Ti/m 9 vr/m  vs/m vg/m rr/m  vs/m vg/m
0° © 2.255 0.106 w 2.094 0.229 0° w 2.282 0.583 w 1.822 0.900
10° 816.497 2.253 0.103  816.497 2.100 0.221 10° 293.939 2.315 0.551  306.186 1.905 0.830
45°  43.611 2.213 0.051 43.482 2.149 0.106 45°  17.050 2.578 0.226  17.010 2.491 0.294
90°  13.558 2.043 0 13.521 2.047 0 90°  5.879 2.284 0 5.846 2.307 0
135°  8.351 1.823 0.051 8.346 -1.779 0.105 135°  3.892 1.706 0.216 3.885 1.667 0.277
180° 7.260 1.721 0.105 7.260 1.625 0.222 180°  3.470 1.377 0.499 3.471 1,195 0.714
Am?=£=0.01852 Am?=L=0.01852 A2m2=-:-x$z=0.027 78 Azm2=§x;—4=0.027 78
0° w 3.201 0.107 w 2.924 0.232 0° eo 3.012 0.587 eo 2.405 0.892
10° 306.186 3.177 0.103  293.939 2.916 0.223 10° 187.500 3$.046 0.557 187.500 2.496 0.826
45°  17.250 2.816 0.051 17.169 2.740 0.106 45°  11.299 3.212 0.225  11.215 3.119 0.292
90°  5.970 2.217 0 5.941 2.240 0 90°  4.208 2.577 0 4138 2.640 0
135°  3.911 1.809 0.051 3.905 1.777 0.104 135°  2.976 1.789 0.213 2.967 1.759 0.272
180°  3.494 1.664 0.104 3.467 1.586 0.217 180°  2.712 1.427 0.483 2.717 1.276 0.671
A’m? = 3xL=0.02778 A’ = 3x 2= 0.02778 Am?= 2= 0.03704 Ami? = = 0.03704
0° o 4.542  0.107 w 4.038 0.233 0° 0 5.035 0.598 ) 3.738 0.899
10° 176.471 4.451 0.104  181.818 3.992 0.225 10°  96.225 5.030 0.565 103.923 3.860 0.833
45°  11.561 3.456 0.051 11.450 3.380 0.106 43°  5.871 5.871 0.243 5.952 5.551 0.316
90° . 4.396 2.416 0 4.338 2.466 0 90° * * 0 * * 0
135°  3.008 1.868 0.051 2.996 1.844. 0.103 137° 2.111 2.111 0.227 2.117 2.064 0.288
180° 2.7 1.693 0.103 2.705 1.620 0.215 180°  2.190 1.526 0.470 2.206 1.387 0.639
Al = 2’_7= 0.03704 Ay ?= 21_7= 0.03704 Am?=0.03251T A?m?=0.03161"
0° ©  14.006 0.108 w 9.037 0.236 0° w 3.702 0.592 w 2.791 0.892
10°  61.859 11.521 0.104 76.410 8.381 0.227 10° 142.209 3.730 0.560 152.015 2.840 0.828
42°  6.337 6.337 0.057 6.455 6.014 0.118 45°  8.874 3.804 0.225 9.251 3.569 0.291
90° * * 0 . * 0 90°  3.160 3.160 0 3.196 3.196 0
138°  2.153 2.153 0.056 2.162 2.111 0.114 135°.  2.609 1.874 0.220 2.667 1.828 0.270
180°  2.111 1.834 0.103 2.146 1.734 0.213 180°  2.433 1.468 0.476 2.490 1.316 0.657
a? = 1.043 09m?
‘ A?m?=1/54x4=0.00463
A’m?=0.035 74T A?m?=0.03456T ] rg/m rg/m r/m
0° w 9.565 0.108 o 6.336 0.235 0° w * *
10° 83.962 8.729 0.104  107.583 6.106 0.226 10° 816. 497 1.207 0.997
45° 7.347 4.826 0.051 7.969 4.395 0.106 45° 43.482 1.913 0.311
90°  3.047 3.047 0 3.084 3.08¢ 0 90° 13.521 2.060 0
135°  2.383 2.038 0.051 2.473 1.975 0.103 135° 8.341 1.614 0.891
180°  2.205 1.792 0.103 2.297 1.686 0.213 180° 7.260 * *
a? = 0.8m? a?= m?
Am?=1/54x4=0.00463 A?m?=1/54X4=0.00463
0 T/m  rs/m ry/m rR/m  vg/m vg/m Am?=0.01%
0° L 1.677 0.570 L 1.267 0.941 0° 0 1.184 1.184
10° 816.497 1.706 0.542 816.497 1.368 0.843 10° 500.000 1.414 0.948
45°  43.611 2.009 0.227  43.482 1.931 0.295 45° 27.027 2.092 0.309
90° 13.533 2.055 - 0 13.521 2.059 0 90° 8.711 2.129 0
135°  8.346 1.682 0.222 8.341 1.626 0.287 135° 5.533 1.608 0.296
180°  7.260 1.362 0.528 7.260 1.079 0.833 180° 4.864 0.952 0.952
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FIG. 2. The behavior of the Schwarzschild surface
(a) under the change of the acceleration for a fixed value
of rotation and (b) under the change of the rotation for a
fixed value of acceleration is illustrated. The dotted
surface in (2) is the Rindler surface when it coincides
with the Schwarzschild surface on a ring on the equa-
torial plane and the discrete line is the Schwarzschild
surface for the case when both a and A are equal to
zero, which is spherically symmetric. The dotted sur-
face in (b) is the Kerr surface when it coincides with
the Schwarzschild surface on the poles.

celeration for a fixed and relatively small value
of the rotation. As the acceleration increases,
the Kerr surface becomes more deformed, shrink-
ing in the backward direction and expanding in the
forward direction. For large values of rotation,
acceleration still causes the Kerr surface to ex-
pand in the forward direction and shrink in the
backward direction. In addition, as the accelera-
tion increases, the Kerr surface changes its di-
rection of motion and it shrinks in the forward di-
rection and expands in the backward direction,
From Table IV one can see that the change of
behavior discussed above occurs for the same
value of rotation between ¢ =0.8? and & =m?.

In the absence of acceleration, the Schwarz-
schild and the Kerr surfaces coincide at the poles
for & =m?®. In the presence of the acceleration, a
somewhat larger rotation is required to produce
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TABLE IV. (Continued.)

a%=1.043 09m?
A2 = gxg‘f 0.02778

6 rr/m rs/m v/ m
0° ®© 2.245 0.991
10° 193.548 2.358 0.908
45° 11.194 3.099 0.307 -
90° 4.096 2.655 0
135° 2.964 1.752 0.285

180° 2.717 1.229 0.726
Aml= 2‘-7= 0.03704

0° © 3.469 0.989
10° 103.923 3.613 0.910
43° 5.973 5.470 0.333
90° * * 0

137° 2.119 2.052 0.302
180° 2.209 1.350 0.683
A?m?=0.031427

0° w 2.587 0.987
10° 156.709 2.707 0.906
45° 9.325 3.519 0.306
90° 3.204 3.204 0

135° 2.679 1.818 0.283
180° 2.502 1.272 0.708
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FIG. 3. This figure illustrates the behavior of the
Kerr surface (a) under the change of the rotation for a
fixed value of the acceleration and (b) under the change
of the acceleration for a fixed and relatively small
value of rotation. For larger rotations, although the
acceleration causes the same kind of deformation, i.e.,
causing the Kerr surface to contract in the backward
direction and expand in the forward direction, but by
increasing the acceleration in this case, the deforma-
tion of the surface becomes less significant.
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this coincidence because of the effects of the ac-
celeration on these surfaces.

IV. CONCLUSIONS

The Schwarzschild metric, representing the
gravitational field of a spherically symmetric and
static particle, is known to have a sphefically
symmetric Killing horizon, which in this case
coincides with the surface of infinite red-shift.
Rotation and acceleration cause this spherically
symmetric surface to distort. Rotation causes
the Schwarzschild surface to contract along the
poles, while rectilinear acceleration causes this
surface to expand in the forward direction and
contract in the backward direction.

In addition to the distorting effect of the Schwarz-
schild surface, acceleration and rotation introduce
one more surface of infinite red-shift each. There-
fore, a uniformly accelerating and rotating par-
ticle, in general, can have three surfaces of in-
finite red-shift. One is the Schwarzschild surface
due to the mass which is being distorted by both
acceleration and rotation, one due to the accelera-
tion, and one due to the rotation of the particle.
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APPENDIX
Making the change of scale transformation

(&sm,y0,7)=1"4& 0" 0", 7)),

Al
Yo7, €—1%, ‘mo"13m,’ 41
where
I2=ab, i (A2)
followed by another change of scale
1 ] ol ¢ —W '
b"Z; T ‘Z; o ”'A_; 4 "-Apy
(a3)

7'~ -Aq, P'-AG, Q~AF, ¥ -Ay,
followed by the coordinate transformation
t'=A(t - aw) ,

the line element (2.1) transforms to the line ele-
ment (2.4).
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