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As a first step in constructing initial data for dynamic black holes and general black-hole collisions, we
study nonsingular vacuum Cauchy hypersurfaces with two isometric asymptotically flat ends connected by
an Einstein-Rosen-type bridge. These hypersurfaces are assumed to be conformally flat and maximally
embedded in spacetime but are neither spherically symmetric nor time symmetric. Three of the four
constraints are solved explicitly for suitable extrinsic curvature tensors that possess linear momentum
and/or intrinsic angular momentum. The complete initial data are shown to transform invariantly, modulo
the sign of the extrinsic curvature tensor, under inversion through a minimal two-surface that represents the
“throat” of the geometry. These and other properties show that the data represent a particular epoch in the
history of a dynamic black hole. We describe the relation of our data to that of the Schwarzschild and Kerr
black holes. Finally, we discuss the generalization to encounters of two or more black holes.

1. INTRODUCTION

In the past two decades, remarkable progress
has been made in understanding the physical con-
sequences of general relativity. Nevertheless, it
remains true that the two-body problem has not
been fully solved. With one exception, which it-
self is a special case, all previous treatments of
this problem have employed perturbation theory
or other approximations restricting either the
strength of the gravitational field, the speeds of
the interacting bodies, or both. Given the growing
observational and theoretical importance of high-
energy astrophysics, such a situation cannot be
considered as entirely satisfactory.

The description of sufficiently general high-
speed, strong-field two-body encounters will re-
quire the full machinery of the Einstein equations.
We shall view the necessary analysis in terms of
the associated Cauchy problem. Recent develop-
ment of theoretical and computational methods!-*
shows that the problems of initial data, kinematics
evolution, and calculation of gravitational radiation
and apparent horizons are solvable by coherent,
workable methods. In this paper, we begin a
study of initial data for many-body encounters. We
shall concentrate on black holes because such
problems involve only the gravitational field and
not the complex behavior of matter in noncollapsed
objects. For the greater part of this paper, we
shall be dealing with only one black hole which,
however, does not possess time-symmetric initial
data. This makes the generalization to two or
more holes possible in a relatively straightforward
manner.

A key idea that we shall generalize originated
in the work of Misner, Wheeler, Brill, and Lind-
quist.>® These authors represented momentarily
resting masses without employing a stress-energy
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tensor by using multiply connected topologies.
The initial data they found were originally de-
scribed as geometric models of “particles” or
“wormholes” and later as black holes. The time
evolution of such initial data would represent
black-hole collisions. In all of this work, the in-
itial data were time symmetric (momentarily
static black holes). For the case of two identical
black holes colliding head-on from rest, the ev-
olution has been computed numerically in the
ground-breaking work of Smarr and Eppley.® They
found that the two holes merge to form a larger
one and that a relatively small amount of energy
is emitted in the form of gravitational waves (0.1%
of the initial rest-mass energy in order of mag-
nitude). A non-head-on collision would presum-
ably be a more interesting and certainly a more
difficult problem. It is expected that significantly
more gravitational radiation would be emitted,

up to perhaps 10% of the 1mt1al rest-mass energy
according to some estimates.?

In order to study non-head-on collisions or
spinning holes, one must drop the condition of
time symmetry, thatis, the extrinsic curvature
tensor K, ; must be nonzero initially. The holes
must “pbegin” with some, if only a little, mo-
mentum if they are to collide with a nonzero im-
pact parameter. Our purpose here is to take a
first step in problems of this kind. We construct
data for single moving holes in such a way that
the generalization to two or more holes with
arbitrary initial motion is not difficult.

We solve explicitly three of the four initial-
value equations for a symmetric tensor }?,, such
that y?K;,;=K,, is the physical extrinsic curvature.
The fourth constramt produces ¥ >0 such that
Y=1+0(r™") as »—=, It is convenient that one
can compute the linear momentum P and intrinsic
angular momentum J*¢ without knowing an explicit
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solution for . The ¥ constraint is nonlinear and
we have not obtained an exact solution using an-
alytic methods. However, we present the question
of finding ¢ in terms of a well-posed boundary-
value problem that possesses a unique positive
solution, This problem can readily be solved nu-
merically.'’ Furthermore, we show that our
boundary-value problem together with the pro-
perties of Ki ; ensure that the resulting initial-data
surface has two asymptotically flat regions
(“ends”) that are isometric and are connected by
an Einstein-Rosen-type “bridge” containing a
closed two-surface of minimal area (“throat”).
This throat, although not spherically symmetric,
is nevertheless fixed under an inversion that de-
fines the isometry of the two ends. These pro-
perties lead us to interpret the data as repre-
senting a certain slice through a black-hole space-
time. Because K;;+#0, the apparent horizon will
not coincide with the minimal surface in general.
We show in this case that there are two apparent
horizons, one on each end, related to each other
by the inversion mentioned above. These surfaces
can be found numerically by a technique such as
that used by Eppley.'2

The paper is organized as follows. First we
review the vacuum constraints and outline a
method for solving the momentum constraints.
Two of many such solutions are presented expli-
citly, one corresponding to a prescribed linear
momentum P?, the other to a prescribed intrinsic
angular momentum J¢. Then we review the tech-
nique of inversion through a sphere using the Kel-
vin transformation and describe the invariance,
possibly up to a sign, of our extrinsic curvature
tensors with respect to this mapping. The be-
havior of Yunder inversion and its geometrical
meaning are described in terms of minimal two-
surfaces. Next, the constraint equation for 7 is
presented as a boundary-value problem. The en-
ergy of these solutions is shown to be positive.
The equation defining the apparent horizon is pre-
sented in detail, Sufficient conditions that the
throat has minimal (not maximal) area are de-
rived. The relation of our data to that of the
Schwarzschild and Kerr black holes is discussed.
In the final section we outline the treatment of
general two black-hole encounters.

II. INITIAL-VALUE EQUATIONS AND EXTRINSIC
CURVATURE

The initial-value equations are!?

VK, ;- g;trK) =8mj, , (1)

R=-gimgi"K, K.+ (trK)* =167p, )

if we use units such that G =c¢ =1 and employ the
Misner-Thorne-Wheeler!* (MTW) spacelike con-
ventions. Here p is the energy density of sources
on the spacelike slice, j, is the three-momentum
one-form of sources, K, is the extrinsic cur-
vature, trK=g*K,;, and R is the scalar curvature
of the spacelike three-metric g,;. We shall study
these equations using conformal techniques.!®*®
Our basic simplifying assumptions are that (1)
the Cauchy slice is conformally flat, g,;=9%,,
and (2) the Cauchy slice is embedded in space-
time as a maximal hypersurface, trK=0, The
assumption of conformal flatness is not necessary
but it makes the analysis simpler. We discuss
this point further in treating the moving Schwarz-
schild black hole (Sec. VI). The sources and trace-
free extrinsic curvature are subjected to the con-
formal transformations p=py-, j, =7,9~°, and
K,;=R,;y"*. Then we have identically for all posi-
tive ¥ that

S - 3)
VjK“ =87Ui s (

Vi = 3K, K9 - 2mpYS, @)
where V2 is the flat-space Laplacian, V2=¥i¥,,
ﬁifjﬁ 0, and indices on objects with carets are
raised and lowered with the flat metric.

Restricting ourselves to the vacuum case, we
set p=j,=0. The momentum constraints (3) are
most easily solved by setting?®

Ry=(w),=%w+¥,w, - 37,9"'w, . ®)
Then ¥/K,;=0 becomes
VW, +59, %W, =0. (6)

If we set W, =V, - iV, then we can solve (6) by
solving successively the flat-space equations

V2V, =0, )
vA=Viv,, (8)

Equation (7) can easily be solved as three separate
ordinary Laplace equations if we use Cartesian
coordinates.

We look for solutions of the abc  equations
that vanish as - and that are smooth and regu-
lar on the space M= R®*- {0}, i.e., Euclidean space
with the origin »=0 deleted. We choose from the
available solutions for K| ; the following:

3

Rff'z—;z_ [P+ Py = (= nn ) Pony)
Sa* p 5, n,)P* ©)
*E,T[Pi"j"' iny+ (Fi;=5mm))P ng],
s _ 3 - ok
K;; =7 (€r " ny+ €y d ' ny), (10)

where P? and J* are constant vectors, #' is the
unit normal of a sphere » =constant in flat space



[n*=7r"(x,y,2) = (8/87)'], €, 5 is the unit alternating
tensor, and a=constant, Note that (9) comprises
two solutions: Kj,(P) and K;,(P), according to
whether the sign of the second term is negative

or positive. The fundamental differences between
these two cases are described in Sec. III.

These solutions were selected firstly because
they transform in the proper way under inversion
through a sphere (Sec. III), and secondly because
(9) corresponds to a “source” with linear momen-
tum P? and no intrinsic angular momentum, while
(10) corresponds to a source with intrinsic angular
momentum J* and no linear momentum. Actually,
each of the two terms of (9) satisfies /R, =trK,,
=0 and only the first one possesses linear momen-
tum. However, the second term (“multipole mo-
ment”) is needed for the desired behavior under
inversions.'’*® The statements about P? and J*
can be checked from the two-surface integrals
over the “sphere at infinity” that give the linear
and angular momenta,

1
P, =-§;f K%, , (11)

1 i im
J; “T6n €ijk_£ (/K™ — 5K )d®S,,. 12)

Here we have written the integrals in terms of
Cartesian components. Note that because we are
interested in asymptotically flat spaces, we will
have »~1+0(r?) as -, Therefore, I?” may
be used in place of K, in (11) and (12). In other
words, we know the linear and angular momenta
corresponding to our initial data without having
to solve the nonlinear constraint (4) for . How-
ever, the total energy E of the solutions does re-
quire knowledge of ) because!®+2°

E =-%7£6"zpdzsi . (13)
We show in Sec. V that the energy can be written
in positive form in these problems.

III. INVERSION TRANSFORMATIONS

In this section we review the well-known tech-
nique of inversion through a sphere?' (“reciprocal
radius transformation”; “Kelvin transformation”)
and its action on the metric and the extrinsic
curvature tensor. We use it as a technique to aid
in the construction of nontrivial complete initial
spacelike hypersurfaces, and associated smooth
extrinsic curvature tensors, that can be inter-
preted as initial data for black holes. In effect,
the use of conformal techniques and inversion
symmetries in the vacuum initial-value problem
removes all apparent incompleteness and/or
singularities in the data. For example, the Xi ;s
in (9) and (10) diverge as » -~ 0; however, the
physical K'j =y °K! tensors that are constructed
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with the present techniques are regular every-
where and vanish as » -0,

Inversion through a sphere of radius a is a
mapping defined on 9n=R3-{0} that is given in
spherical polar coordinates by

r=—, §=6, $=9¢, (14)

<8

or in Cartesian coordinates by

2 2 2
x=%x, y=-aﬁy, z=a?z. (15)

As is well known, this transformation may be
viewed as a mapping from the region » = a to the
region 0<7< a, with infinity going to the origin
and vice versa. We shall denote the inversion
mapping by x* =J¢(x!,x2,%%), its Jacobian by J}
=8J!/0x’, and its inverse Jacobian by (J™')!. This
J should not be confused with that in (10) and (12)
as shall be clear in context.

We are interested in cases where the inversion
map defines an isometry of a metric g;;. The
isometry condition may be stated as

8,00 =TT g [T ()] =g @) , (16)

where x denotes the point obtained by inversion
from x. For conformally flat matrics, we have
&= U ; and the isometry condition becomes the
following condition on the conformal factor:

bx) =5;-</)(5c) ) ’ amn

Suppose that we have a metric on M that is con-
formally flat and obeys (17). Then we may think
of the intrinsic metric geometry of 9 as being
composed of two isometric regions (»= a and
0<7< a) joined smoothly at »=a. An important
consequence is found by differentiating (17):

By =-Lue) - L2 @), (18)

r3or
Therefore, at »=%¥=a, we have
oY 1 _
r (a)+2a W(a)=0. 19)

Later, (19) will be used as a boundary condition.

Here, let us examine its geometrical meaning.
Let @(7) denote the area of a closed two-sur-

face » =constant. In a conformally flat geometry,

a(r)=f2”[”ﬁ¢4sineded¢. (20)
0

Extremizing this area with respect to », we find
(8/87)(r%p*) =0 or

—+—=0. (21)
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Therefore, from (19) it follows that the area func-
tion on surfaces of constant » takes an extreme
value at the radius of inversion »=a. Therefore,
the trace of the extrinsic curvature of the two-
surface » =a, regarded as a surface embedded in
the conformally flat three-space, vanishes. A
simple calculation shows that (19) implies a
stronger result: The entire extrinsic curvature
tensor of »=a vanishes, This is in accord with an
observation of Gibbons?? that a surface fixed under
an isometry of the enveloping space must be a
totally geodesic surface.

We shall assume, with justification given later,
that the surface area of »=a is in fact minimal.
Moreover, if we also assume that ~1 as » -,
then we have two conformally flat, asymptotically
flat ends joined at a minimal surface or throat.

A simple example of such a throat is found in the
time-symmetric initial-data slice of the Schwarz-
schild-Kruskal black-hole geometry. There, the
minimal surface is given by »=a=M/2 in isotropic
coordinates. Note, however, that »=a in our work
will not have the standard metric of a two-sphere;
it will be somewhat deformed.

Now we turn to the action of inversion on an
extrinsic curvature tensor K;;. Since K;; enters
the Hamiltonian constraint quadratically, to ob-
tain isometric geometries on the two ends, it is
clear that we should demand that K;; be invariant
under inversions except perhaps for a change of
sign:

K;;(0) =+ J{ K (%) . (22)

A change of sign indicates that if momentum P? is
associated with one end of the three-geometry,
then momentum -P*? will be associated with the
other end.

The properties of K;; follow from those of K
and ¥ if we recall that K,;=¢2K,,. This trans-
formation was chosen so that whenever K, ; satis-
fies vanishing divergence and trace conditions
with respect to g;;=1%,,, identical conditions hold
for K, ; with respect to ;. Applying this trans-
formation, we see that (22) becomes

PR, () =+ T K @)Y R) (23)
Assuming, as will be shown independently in the
next section, that y satisfies the isometry con-
dition (17), we find the appropriate inversion
symmetry for K, ,

a 2
Ri.i(x) = i(;) Jf J}Km ®, (24)

or, in Cartesian coordinates,

Kij(x,yyz)= i(%) (5?— znkni)(ﬁ_li— Zn‘nj)l?,,,(ic',f),E),
(25)

where ni =x/¥, An examination of (9) reveals
that K}j(is) satisfies (24) with the plus sign and
R;,;(P) with the minus sign, where the a? term in
these quantities refers to a =radius of inversion.
Hence, both of these tensors have appropriate
inversion properties for the case in which the
physical extrinsic curvature obeys (22) and solves
(1) in a metric satisfying the isometry condition
(16). A similar examination of (10), the R;; with
intrinsic angular momentum, shows that it too
satisfies (24) or (25) with the negative sign.

Xi j(j) contains no parameter corresponding to the
radius of inversion.

IV. HAMILTONJIAN CONSTRAINT

The Hamiltonian constraint is (4) with p=0. We
seek a solution on R®-{0} that satisfies ¥(x)
=(a/7)¥(x). Instead of seekingthis solutiondirectly,
we pose a boundary-value problem that achieves
the same result and also helps in obtaining numer-
ical solutions. Our boundary-value problem is to
find ¢ for »=> a such that

V¥y=—3RK, Ry for r=a, (26)
9y 1 =

87’+2azp—0 for r=a, (27)
$>0, lim $=1. (28)

T

A proof of the uniqueness of a solution of this prob
lem hasbeen obtained.?®* Existence is demonstrated
by actually solving (26).2* Instead of sketching
the proof, we shall present an exact solution of
the above problem when I?UI?“ closely imitates
the exact values obtained from (9). But first we
show how the solution of the boundary-value prob-
lem is converted into a solution of the original
problem.

Let y=F(r, 0, ¢) denote the unique solution of the
above boundary-value problem. Define a related
function

= a _[fa? a

For,0,0)=28(Z 6,028 G,0,0. @9
Note that F is defined for 0 <y <a and that F(q, 6,)
=F(a,0,). Moreover, the first derivatives of F
and F agree at »=a. We need only check the ra-
dial derivatives. Equating these at »=a gives
[ef. (18) and (19)] 8F/8r +(2a)"*F =0, which is
guaranteed by the boundary condition.

Likewise, one finds that the second derivatives
of F and F also match at »=a. In fact, from the
well-known inversion theorem of electrostatics,?
we have

VeF |'r=(;,—) VeF l?=(a2/'r) . (30)
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We can use (30) to establish that F is, in fact, a
positive solution of the Hamiltonian constraint for
0<7<a. Note from (24) that we have

R, (R () =(§)12&j(7 R (31)
Using (29) shows that

Fr)=a/v)F7@F).

Therefore, because F obeys (26) for »= a, it
follows that for 0<7 <a,

VF(r) = =3B, ()R (r)F"(r) (32)

i.e., F is a solution of the Hamiltonian constraint
for the interior of the sphere »=a (with the origin
deleted). The matching conditions satisfied by F
and F show that the complete solution of the Ham-
iltonian constraint on R®-{0} is given by
Y=F forr=a, (33)
p=F for 0<r<a. :

But the solution inside the sphere was obtained
by using the isometry condition (17) that relates
the value of the solution at a point to its value at
the corresponding inverted point. Therefore, the
solution i thus obtained automatically satisfies
the desired isometry condition under inversion.
We obtain two asymptotically flat, conformally
flat, isometric ends joined at an extremal sur-
face y=a. We see that this occurs primarily be-
cause of the boundary conditions and the special
inversion properties of K, .

To illustrate the above results, we consider a
model solution, From (9), we have that the actual
form of (K, K')*=H* is

I:r*=——2 [(1 ;gz—)2+200s26 (1 :I:4‘a—2+£)] (34)
27i (\! T2 ) )

where we have chosen P* in the Z direction. To
obtain a problem we can solve exactly, we employ
a “model” value (ignoring angular dependence)

P2 a2 2

Hmodel=67 (1—;-5) . (35)
Note that H,, 4 has qualitatively correct asymp-
totic behavior (terms with »™,#™®, and »®) and the
correct behavior H,, 4 (¥) = (a/%)'2 H,, 4o (¥) under
inversions. Then the solution of V2y_ i..= =5Hmodel
Zlb;r?o-:lel is
(36)

7.4

2E 6a®> 24°E 4 )“4
+ -3 ’
where the total energy is E = (P?+4a?)"2, This
solution is positive, goes to one at infinity, sat-
isfies the boundary condition at »=a, and satisfies
the isometry condition (17). Moreover, if P?/a?

is negligible, then (36) reduces exactly to the
Schwarzschild value [1+a/7 ], where E =M =2a,

M =Schwarzschild rest mass. This, together with
E =(P?+44%"'? in the model solution, suggests
that 2a may be a good estimate of the “rest mass”
of the moving object we are studying.

V. ENERGY, MINIMAL SURFACE, AND APPARENT
HORIZON

The total .energy E can be calculated from (13).
We relate this to the Hamiltonian constraint (26)
by using Gauss’s theorem in the region »=> a and
the boundary conditions (27) and (28). A simple
calculation gives

=_1—" iyt a5 . @ (or fr \ .
E={7 La&;k ¥ dv+4wfo ow(a,9,¢)sxn9d9d¢>.
' (37

Therefore, >0 implies E >0.

Next we turn to the question of whether the ex-
tremal surface »=a is actually minimal. It is
easy to find sufficient conditions, relating P and
a orJ and a, that a minimum occurs. To do this,
we return to the area integral (20) and compute
its second derivative with respect to ». Using the
Hamiltonian constraint and the boundary condition
at »=a, and assuming symmetry about the z axis
(B or J in the z direction), we find at »=a, after
partially integrating angular terms,

e _ 8ma® [ [—1— W a) - 3K, Ky 4(a )] sin6d 6
972 fo 4q? 8%y '
+ 247 J‘ : w(a)(-gig) sin6de . (38)

The second term on the right is positive. To es-
timate the first term, note that ¥(a) = 1 follows
$>0, p~1as r—-, V?)<0, and 39/97 <0 at
r=a. Therefore,

Batta) = 3R, R > 1 = 3K, R (). (39)

Hence, sufficient conditions for 82@/972 >0 are
easily obtained.
For linear momentum, we find from (9) that

P2
54— cos?6
®&@p={ “ Y, (40)
PZ
18— sin®0
a

while for angular momentum, we find from (10)
that

R,,R(@) =185sin%. (a1)

The sufficient conditions that follow from (38) and
(39) using these values are, respectively,
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2

Ps‘—;, pP<-%, Js—f-ﬁ-. (42)
These estimates are undoubtedly too conservative.
For example, the model solution ¥ ., has sur-
faces 7 =a that are minimal for any value of P/a.
The quantity P/a can be taken as a rough measure
of how relativistic the characteristic speeds are.
For example, if we take a~3M, M =rest mass,
then P/a=6"*2 implies v ~ 0.2 (c=1) and (1 — »?)"*/2
~1.02, while P/a=5 gives v~0.93 and (1 — v?)"V2
~2.7. A numerical study involving even higher
ratios confirms that all cases have »=a as a mini-
mal surface, even though (42) is violated by a
large amount.!!

An apparent horizon® is a closed two-surface
on the Cauchy slice whose outward-pointing unit
normal si(g,; ;sts’=+1) satisfies

Vst —trK+K,;s's7=0, (43)

In our case we have trK=0, If, moreover, one
has a time-symmetric slice, or more generally
if K, ,s's’=0, then (43) becomes V;s* =0 and the

apparent horizon coincides with a minimal surface.

The existence of an apparent horizon means,
assuming “cosmic censorship” (more precisely,
“future asymptotic predictability”’?®) that the ev-
olution of the data will contain an event horizon.
The intersection of the horizon with the initial-
data surface will be a closed two-surface that
necessarily lies outside of, or coincides with,
the apparent horizon.?®

In the present study we have trK=0. Let us de-

fine the unit outgoing normal of the apparent hori-
]

zon in the flz}\t metric by §' =y2s?. Recalling also
that K, =¢K,,, we find that (43) becomes

9,51 +48' 9, I+ YR, 3187 =0, (44)

We expect that an apparent horizon exists for »
= a (call this the “top sheet” of the geometry).
Then, from the inversion symmetries, we ex-
pect that there be another apparent horizon on the
bottom sheet. We may see this as follows. If
si(x) satisfies (43) with trK =0, then we define
st(x) by

)=+ (@)is'®, (45)

where x is the point obtained from x by inversion.
The sign is chosen to be the same as in (22) for
K;;. Then we have

sw=+{2) @, (46)

Substituting (46) into (44) yields again (44), but
with each term computed and evaluated at the in-
verted point. Hence, there will be two solutions
of (44). These solutions will, of course, coincide
when the apparent horizon is a minimal surface.
Such is indeed the case for &, (), where one has
R,,@)ssi =0,

For completeness, we shall exhibit the form taken
by (44) when it is solved in practice. We assume
that the apparent horizon is defined by the vanish-
ing of the function 7(r, 6) =7 — h(6), when we have
axial symmetry: P=P(3/3z). Then we can always
write §; =xV;7, with A= (1 +1,2/h2)V2, p,=dh/d6
=-97/860. Using either form of IE'“. (P), we find

Tgpt h72hg3(COtO + 4P ) + 2 (= 3k — 4Y7'Y)) +ho(cotd +4P71y,) + h (=2 — 4RYY))

=Pt (L +h@h 22 (MK, +hPh K gg— 21K ) . (47)

Usually this equation will require a numerical solution obtained, for example, by using a technique such

as that employed by Eppley*? or Piran.!

VI. SLOWLY MOVING SCHWARZSCHILD BLACK HOLE

To help in the further interpretation of the pre-
ceding results, we shall study a slowly moving
Schwarzschild vacuum black hole. On the time-
symmetric slice of Schwarzschild-Kruskal space-
time, the initial data are

a 4
&ii= (1+;)fif » K;;=0, (48)

where a=M/2 and 7is the isotropic radial co-
ordinate, We shall make a Lorentz boost of this
data, to first order in the boost velocity. This
transformation is implemented by using the first-
order form of the vacuum Einstein equations, i.e.,

those giving 8,g,; and 9,K,,, with appropriately
chosen lapse function o and shift vector gi.13

The transformation we want to use is not un-
iquely defined in curved spacetime unless certain
conditions are imposed. One such condition is
that the lapse function for large » should approach
its flat-spacetime value. Another condition we
adopt is that the boosted slice should be maximal.
Finally, a boundary condition is needed at »= M.
We have two good choices:

a(r,e,¢)=+a<f’;,e,¢) , (49)

alr, e,¢)=_a(‘i; ,e,¢) . (50)
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The first condition says that we use a Neumann
condition d¢/87=0 at »=a and the second, «=0
at »=qa (Dirichlet condition). The two distinct
boosted maximal slices we obtain are analogous
to the two distinct families of spherically sym-
metric maximal slices of Schwarzschild-Kruskal
spacetime (those that reach spatial infinity). Con-
dition (49) gives the family that penetrates the
horizon and for which “time” advances “forward”
on both sheets?®?"; condition (50) gives the family
that covers only the region exterior to the hori-
zon and for which time runs in opposite directions
on the two sheets (i.e., the standard #,, = const
slices in the spherical case).

To select 8* we adopt the “minimal distortion”
criterion,* which, in this case, gives the trivial
result g=0. Hence, from

8;=-20K,;+V,,+V (51)

we find that the slowly boosted metric is still
given by g,; = (1+M/27)¥,;, with a=M/2 defining
the sphere of inversion symmetry. Through O(V),
this sphere is still also an apparent horizon.

The Einstein equations for 8,K; tell us that!s

9,(trK)=-Aa+K, Ko+ B VLirK. ' (52)

With the above demands, this can be rewritten
quite simply as

Vi@ a)=0, (53)

¥=1+M/2». Our two solutions a*, with “+” cor-
responding to (49) and “~” to (50), are

-Vz a®
a*=1+a - (11;), (54)

where we have chosen a boost in the negative z
direction. [The left-hand side of (54) is really
a*dt, ¢t =standard Schwarzschild time, but we
omit 5 here.)
The new K ; can be computed from the Einstein

equations®® (here gi=0)

K,;=-V,Va+ta[R,+trK)K, - 2K,,K}],  (55)
where R;; is calculated from g;;. The calculation
yields, with a =a*, the interesting result

K3 = Zb-zkfj ’ ' (56)

where R}, is given by (9), with P, =MV, and a
=M/2. .

The above discussion shows why K3, takes the
form it has for general P¢ and a. Of course, our
¥ will not be spherically symmetric nor will the
simple relationship M =2a=F still hold. We must
specify P* and a, solve for ¥, and then compute
E to find E=E(|P|,a).

We should also remark that a finitely boosted

maximal slice in the Schwarzschild-Kruskal space-
time would not be conformally flat. Calculations
similar to the above through O(V?) give the same
extrinsic curvature Kj; but show that the boosted
metric is not conformally flat in O(V?).28'2® There-
fore, the spacetime that is evolved from our data
(¥*f,;, ¥"2K3,) will not be a disguised (i.e., boosted
and regauged) Schwarzschild-Kruskal black hole.
In this connection, we wish to emphasize that the
assumption of conformal flatness was made in our
analysis for simplicity and facility in obtaining
exact results. It is certainly not necessary as a
point of principle.

If we study X,,(J), we may ask about the relation
of our data to that of the Kerr metric on its “(¢, ¢)-
symmetric” slice (f—~-f, ¢ —~=®).3° This slice
is maximal with extrinsic curvature identical to
ours in O(»"®), the dominant term for large 7 in
this case. OQur slice is also maximal and (¢, ¢)
symmetric. However, the ¢ =constant slices of
Kerr (Boyer-Lindquist time) are not conformally
flat. Hence, the spacetime evolved from the data
[% 45 z/)‘zl?i j(j)] will not be identically the Kerr
metric, except in the case that (J/E?)%is negligibly
small.

Therefore, in the cases of both linear and angu-
lar momenta, we conclude that our data will pro-
duce “dynamic” black holes involving, as seems
likely, the emission of some gravitational radia-
tion in the course of their evolution. However, it
is clear from an Arnowitt-Deser-Misner-type
Poynting flux vector calculation® that the flux of
any “wave” energy that may be hidden in the geo-
metry is zero on the initial slice. One expects
each to “settle” to standard (boosted) Schwarz-
schild holes or Kerr holes, respectively. It
should be noted that as |P|/E becomes small (or
J/E?), the data approach the slowly moving
Schwarzschild configuration (or the slowly ro-
tating Kerr configuration) and any “hidden” gravi-
tational energy that is available for radiation will
vanish rapidly in this limit. Studies of the area of the
apparent horizon (lower limit on irreducible mass)
compared to the “initial rest mass” (E? — P2)*/2 (E and
|P| are both conserved because they are cal-
culated at spatial infinity) are under way in order
tohelp settle some of theseissues.!* For example,
it seems plausible that [(E? = P22 — M equcivle |,
Migeaucivie =[(167)! X area of apparent horizon]"/2,
would give an upper limit on the amount of hidden
wave energy that might redistribute itself in the
course of evolution.

' VIL. TWO BLACK HOLES

Two possible methods come to mind when we
consider how to extend the previous work to two
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(or to N) black holes. We first consider the work
of Misner,® who treated the time-symmetric con-
formally flat N-body problem. By using the
method of images for scalar potentials satisfying
Laplace’s equation, Misner was able to obtain
initial geometries consisting of two asymptotically
flat isometric sheets joined by N Einstein-Rosen
bridges. This elegant result required the sum of
contributions from an infinite number of point
sources. Lindquist® generalized this work to in-
clude electric charge. ‘

If we were to follow an analogous method for
the time-asymmetric two-body problem, we would
look for extrinsic curvature tensors K ;; consisting
of an appropriate infinite superposition of point-
source extrinsic curvature tensors. [Each of
these has the form of I?“(?) when we set a=0.]
The final geometry would consist of two isometric
sheets joined by two Einstein-Rosen bridges.
Physical equivalence of the upper and lower sheets
would require that K, ; be completely symmetric
(K%,;) or antisymmetric (K;,) upon inversion through
either bridge. However, the potential Wi that
generates K, is a vector rather than a scalar and
we have not completed work on this. approach.

However, there is a second method that can be
used. In their analysis of the time-symmetric,
conformally flat two-body problem, Brill and
Lindquist” allowed for two separate and distinct
lower sheets. Here the topology is equivalent to
R3 - {two points} and no infinite series of images
is required. Solution of the momentum con-
straints in such a case is straightforward: We
can simply superpose extrinsic curvature tensors
of the type already described. For example, let
there be two identical objects (1 and 2) with equal
and opposite momenta and (Euclidean) separation
vector 1 . Then

N 3 .
& T [Pinss +P riays = iy = eyt PPrcom]
1
3a? &
¥5, 1 [Pi"(1u+PJ”mi+ (fis =50y y)P M)
Y
=7 @ Ray e (57)
where

Ta = !F‘*%rlp Ny =+zl)7q)",

| g -
V@)= [F"]Eﬂ,n gy =F=21)7 ™"

Thus, the momentum constraints are solved ex-~
actly. One may then impose boundary conditions
at (,, =a and 7 ,, =a and solve numerically a
boundary-value problem for ¥ similar to that for
one object. Note that the resulting initial-value
problem has insufficient symmetry for it to be
reduced to two spatial dimensions, so, for practi-

cal reasons, we introduce simplifications.

We can avoid having to- solve a new bounda-
ry-value problem if we restrict our attention
to cases in which |P| is sufficiently small,
and |T] sufficiently large, so that one has, to any
desired accuracy, two slowly moving Schwarz-
schild black holes headed for an encounter. We
can create in this way, using the sum of appro-
priate &, ;’s, initial data for collisions with four
parameters (assuming B, +B, =0): M,/M,, |1, V4,
and b =impact parameter (]ﬁ and b are fixed in the
“background” Euclidean metric). :

The point of the approximation we desire here
is to permit the “kinetic energy” term K K%/
=0(V?) in the constraint that determines ¢ to be
ignored. However, we wish to retain K i =0(V) in
the momentum constraint to preserve time asym-
metry and we wish to retain the “geometrostatic
interaction energy””” between the two black holes.

Let us assume for simplicity that the two holes
have equal masses. In (57), we set P, =MV, and
a=M/2. Then { satisfies, initially, Laplace’s
equation, for which the Brill-Lindquist solution’
is

. A
=1 +— 4+—
v=l LAY +7’(z> ’ (58)

The total energy is calculated by a surface integral
on the upper sheet and one finds E =4X. The mass
M of each of the holes is found by performing a
surface integration in the asymptotically flat re-
gion of one of the two lower sheets. The results
are

M=2x+222|1|7?, (59)

n=t | T)[@+2m/| T2 -1]. (60)

The geometrostatic interaction energy is there-
fore ~M ¥/ IT[ and our approximation requires that
VZ2be sufficiently small relative to M/|1|. Now ob-
viously the above approximation introduces a
small inexactitude in the initial data that could
readily be avoided by solving the ¥ equation with
the (K, ;&*)y~" term included. However, the ap-
proximation we are making clearly corresponds
to a case of astrophysical interest, namely, two
black holes that are moving slowly, in a bound
state, a relatively large distance apart. There is
virtually no gravitational radiation that will be
produced by their spiralling, infalling collision
that can have been present initially. Moreover,
from a practical point of view, the evolution will
have to be computed numerically, using the exact
Einstein equations of motion and, therefore, no
matter how precise the initial data (and there is
no matter of principle whatsoever that prevents
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the data’s being precise), there will inevitably
be errors resulting from the numerical computa-
tions. It seems very likely, based on experience
gained thus far in numerical general relativity,
that such errors can be controlled with good
precision, but that they will not be smaller than
any that would result solely from our approxi-
mation of the initial data. If this is so, and one
can achieve an accuracy of, say N per cent in
numerical evolution of the full evolution equations
from exact data, then in our approximation the
initial separation of the holes would be 7~100 N
black-hole radii.’

Clearly, in the problem of computing the evolu-
tion, one must make a compromise in regard to
the choice of V2versusM/|1|. Large | T| makes the
initial data more nearly exact but implies the
necessity of a larger grid for computations. Be-
cause this collision will involve all three spatial
dimensions, a smaller grid is especially de-
sirable. Moreover, larger IT[ means alonger time
before the interesting part of the collision occurs
and, hence, a possibly unacceptable increase of
numerical inaccuracies as the integration proceeds
in time. Therefore, the “trade off” involves the
fact that starting the holes off closer together,
with less accurate initial data, may well result
in a more accurate solution of the evolution prob-
lem and computation of gravitational radiation.

The above discussion clearly must be based on
assumptions of “stability”” in the evolution of
initial data. One such assumption is a mathemati-
cally rigorously established form of Cauchy stab-
ility of the Einstein differential equations.!% 25
(Roughly, small changes in the data resultin small
changes in the resulting spacetime.) Another kind of
stability refers to the finitely differenced Einstein
equations and to the way in which these equations
are evolved. One method is to solve the con-

straints and propagate them using the hyperbolic
equations of motion (Z;; and K;,) together with
prescriptions for the choice of lapse and shift
functions. Another method periodically resolves
the constraints along the way.®* In the latter case,
one will have to solve, in effect, nonlinear ¥ eq- -
uations as the holes near collision. All the answers
to the difficult stability problems that arise are
simply not known at present; moreover, our dis-
cussion is only meant to be a very rough sketch.
Up-to-date discussions are available.”2 The cal-
culations™? performed thus far give us confidence
that, for all practical purposes, the initital-value
problem for a bound, spiralling collision is now
solved. One expects that the evolution will show,
just as in the head-on collision,® that the final
state will be a single black hole. However, in the
present case the deformations of the two holes,
as they merge, rotate and settle (“ring down”)
to a final Kerr black hole, should produce a sig-
nificant amount of gravitational radiation.®
Obviously, data for two black holes that will
undergo marginally bound or unbound encounters
are also of great interest. These cases will be
dealt with elsewhere.
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