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The slopes of the amplitude zeros in the Mandelstam plane passing through the intersection of s-channel
I = 3/2 resonances with the u-channel nucleon pole are considered for pion-nucleon scattering, for pion
production by vector and axial-vector currents, and for Compton scattering. New striking regularities
relevant for the construction of explicit dual models involving fermions and currents are found. Ef one
demands the zero slopes to be equal for all helicity amplitudes of the same process, the spin and parity
structure of the resonance excitation is predicted in good agreement with experiment. Demanding the zeros
to pass the intersection points close to the direction t -constant, the right order of magnitude of the
resonance couplings is obtained.

I. INTRQDUCTION

More than ten years have passed since Veneziano'
wrote down the first explicit dual resonance model
(DRM). In the meantime there have been beautiful
developments of this idea. which lead close to a
consistent formulation of dual multiparticle ampli-
tudes and visualize these amplitudes in terms of
the string picture.

Initially there was considerable excitement about
possible phenomenological applications of DHM's:
e.g. , Lovelace' applied the four-point function
to describe the Dalitz plot of Pn- 3v; then factori-
zation from the five-point function provided fur-
ther constraints for this process. ' Peterson and
Tornqvist' made encouraging applications of the
five-point function to production processes like
Ep- mmA. Very important was also the discovery
that the DBM, applied to inclusive reactions,
automatically provides an exponential p~ cutoff. "

However, very soon, serious problems became
obvious when DRM was applied for such standard
processes as pion-nucleon scatteri n g' and pion
photoproduction. ' In these processes, e.g. , parity
doubling and fundamental problems with current
amplitudes gave examples of the deficiencies of
DRM's. At present, the field gets more and more
abandoned, since the usefulness of DBM's for
phenomenology seems to be rather limited. '

In the following, we want to point out some new
regularities which perhaps may be helpful for
more successful constructions of DRM ampli-
tudes. Our approach follows the original line of
Lovelace, ' or, more specifically, the later work
of Odorico: In his investigations, Odorico' put the
emphasis on the study of the pattern of zero sur-
faces in the complex Mandelstam plane. If one has
poles in different channels, e.g. , a ~ in the s
channel and a nucleon pole in the u channel, quite
generally, a zero is required to pass through the
intersection point of these poles. A single Euler-

B-function term gives such a zero in the direction
of constant third Mandelstam variable (here t),
but, as has been stressed by Odorico, many other
patterns of zeros are equally possible.

We concentrate on processes involving particles
with spin and consider also current reactions,
i.e., just those cases which in the past have en-
countered particular difficulties. These reactions
are described by several independent helicity or
spi.n amplitudes. We shall investigate the hy-
pothesis that for a particular choice of basic am-
plitudes the double-pole-killing zeros have the
same slope in all helicity amplitudes. In many
cases we find that this leads to a successful non-
trivial prediction of the spin pattern of the reso-
nance excitation. Going further, and demanding
the zeros to follow approximately, e.g. , t =const,
we can accurately predict the absolute values of
the resonance couplings. Although the latter pro-
cedure has been proposed before, e.g. , in Ref. 9,
we show that it is much more successful than pre-
vious authors believed. We stress that our aim is
not so much to describe the data in all details, but
rather to find out some main structure. Thus we
are using the narrow-resonance approximation
throughout. Nevertheless, in many cases our
numerical results agree quite well with the ex-
perimental. data.

Our approach, which is purely algebraical, has
been stimulated by the regularities which we found
in our phenomenological investigation of the zero
structure of' pion photoproduction. " However,
since with broad resonances the zeros generally
lie at complex. values of s nad/ rot, a phenom-
enological determination of the zero surfaces re-
quires an analytical continuation by means of a
partial-wave analysis. Consequently it is strongly
influenced by the still considerable uncertainties
of such analyses. " Therefore we believe that our
algebra. ic approach may be stimulating also for
future phenomenologica1 partial-wave analyses.
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where I' is the total resonance width and

(1.2)

f, =g m. ,.
' —M'+ iMI' —m'. (1.3)

Drn, ' is the sum of the external mass squares;
x, and x„are the pole residua, evaluated at the
intersection. From Eq. (1.2) we see that near
f =i„f has a zero trajectory satisfying

f, —t& = ~—1 s -M~+iMX",

which has the slope

(1.5)

Here we shall always assume the limit of narrow
resonances. r, is related to Imf(s =M', f), which
we shall abbreviate by Imf":

r, =-MI'Imf".

Equa«ons (1.5) and (1.6) now give the relation be-
tween $, Imf", and r„wihhcwe shall study for a

For pion-nucleon scattering very detailed phe-
nomenological investigations of the zero sur-
faces have been performed by the Karlsruhe"
and Berkeley groups. " A zero analysis is also
available for pion-pion scattering. '

Our algebra will start from the following con-
siderations which have been discussed in detail,
e.g. , by Odorico': Consider an amplitude f which
has an s-channel resonance at s =M' —iI'M and a
u-channel pole at I= m' (compare Fig. 1). In the
vicinity of the intersection point of the two poles we
approximate

number of particular reactions:

(1+$)MI' Imf" = -x„.
In the following, x„will always be the explicitly
known expression of the Born amplitude. Forming
the ratios of different helicity amplitudes and as-
suming that their zero trajectories aD have the
same slope $, the ratios of the Imfs are com-
pletely determined by the ratios of the r„since
the factors MI'(1+ $) drop out.

As is well known, no convincing criteria are
available which tell us which particular spin am-
plitudes should be used. Even demanding good
analytic properties, various choices remain,
e.g. , relativistic amplitudes IA (s, f) and 8 (s, f)
for v Nsc-attering], or parity-conserving helicity
amplitudes, etc. This is an important problem if
one wants to study amplitude zeros, since in gen-
eral, by forming linear combinations the zero
structures get completely changed. However, by
demanding that the zero-trajectory slopes $ at the
pole intersections should be the same in all spin
amplitudes of the same process, we force the zeros
to coincide at least near the pole intersections. So
we minimize the ambiguity caused by the choice of
a particular set of amplitudes.

In Sec. VI we explain why it is not reasonable to
ask that also different isospin amplitudes should
have the same zero-trajectory slopes. So the
problem of the choice of a special set of isospin
amplitudes remains. %e shall give an argument
that for I, = 2 our results should not be strongly
dependent on the particular choice of isospin am-
plitudes which have been made.

In Sec. II we study the consequences of our hy-
pothesis for I, = 2 pion-nucleon scattering, Sec.
III gives the analogous application to pion photo-
production, and Sec. IV treats Compton scattering.
The case of weak axial-vector-current pion pro-
duction in Sec. V brings unpleasant problems.
Section VI contains a discussion of the isospin
problem. Finally, Sec. VII summarizes our con-
clusions.

II. PION-NUCLEON ELASTIC SCATTERING

FIG. 1. The Mandelstam plane (e.g. , here for pion
photoproduction), showing the s-channel 4 pole and the
u-channel nucleon pole together with the zero trajectory
passing through the pole intersection.

%e choose to work with s-channel helicity am-
plitudes f, which have the half-angle factors re-
moved (see the definitions given in Appendix A).
Consider now an s-channel resonance at s =M'
—iI'M with angular momentum j = l+ —,

' and parity
(-1)"' [like the &(1232)]. Then, according to the
partial-wave expansion of the f„Eq. (A3), we
write the resonance contribution analogously to Eq.
(1.5) as

(2.1)
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tqt x",I M(1+~ (2.4)

If the resonance is in f„, , there is just an addi-
tional + sign:

Here x is the cosine of the scattering angle and

1m', means Imf, . evaluated at the resonance en-
i

ergy. In a narrow-resonance approximation, we
thus get in the neighborhood of the intersection
of s=M' with u =m' (m is the nucleon mass):

gg
™M," (P...(x.)~P;(x,))+ " .

(2.2)

The nucleon-pole residua are given explicitly in
Appendix A, Eqs. (A5); x, is the unphysical. value
of x at the intersection, see Eq. (A6). Since we are
considering an elastic process, we have

(2.3)

where I'„ is the elastic width of the resonance.
A formula very similar to Eq. (2.3) is obtained if
the s-channel resonance instead has the parity
(-1)': one has just to replace f,, by +f„, ac-
cording to Eq. (A3).

As has been shown in Eq. (1.7) of the Intro-
duction, the ratios of the residua in Eq. (2.1) de-
termine the zero-trajectory slopes in the ampli-
tudes f, at the intersection of the poles. Taking
into account Eq. (2.3), we get from Eq. (2.2) if
the s-channel resonance is in f„[i.e., its parity

( l )1+1]

$, =-0.23, $ =-0.28, (2.9)

B. The F&7(1945)resonance

According to Eq. (2.4) for the E»/nucleon-pole
intersection, approximately equal slopes $, = (
are obtained if

(2.11)

Actually, for W= l.945 GeV the left- and right-
hand sides of Eq. (2.11) are 2.05 and 1.82, re-
spectively [shifbng the energy W somewhat does
not improve (2.11) much since both sides have a
very similar & dependence]

Using I'=0.23 GeV (Ref. 16) and inserting nu-
merical values for the right-hand side of Eq.
(2.4), we obtain

so that in both amplitudes the zero trajectories
pass the intersection point nearly in the direction
t = const as in a one-term Euler-B-function model.

The old well-known Chew-Low static model"
gave a quite similar formula for the width of the
n(1232):

= 0.115 GeV . (2.10)
g' ~' M(M+m)

Chew-Low,

Omitting in the denominator of Eq. (2.8) the small
term —p'/2 —q3/3=-2 p.', one notices the sim-
ilarity of both expressions. Remember that also
in the Chew-Low model, the ~ width is deter-
mined by the u-channel nucleon pole.

IqIx",r M(1+$ ) (2.5) (1 + $ )I"„/I' = 0.39, (2.12)

Let us now discuss these relations in turn for the

&(1232), the F»(1945), and for the high-s limit.

which for $ = 0 is in excellent agreement with
I'„/I"= 0.40 of Ref. 16.

A. The h(1232) resonance

For the ~ in the s channel we have

P',„(x,)+I',(,) =3x,+1, (2.6)

where from Eq. (A6) we find numerically that x,
= —4.77. Using Eqs. (A5) and (A6) we get, since
I'= I x,=- I -m'/2q'. (2.13)

C. High-energy limit

%e finally go to high energies in the s channel
and neglect m' and p' compared to s. Then x„
the s-channel scattering angle at the intersection
point of a high-energy 6 resonance with the nu-
cleon pole, becomes approximately

and

+10—i
6v M' Eq, —p, '/2+q'/3 (2.7 )

For x, close to -1 and large I we approximate
the P', (x,) and P,'„(x,) of Eqs. (2.4) and (2.5) in
terms of modified Bessel functions Io and I, (see,
e.g., Ref. 17):

q Slgo
6v M' Eq. -q'/2-q'/3' (2.8)

The right-hand sides of Eqs. (2.7) and (2.8) have
the values 0.089 and 0.083 GeV, respectively.
This shows that indeed we have $, = f More.
precisely, using I"=0.115 GeV, we find &=(f+l)[2(l-lx.l)]"= (~+l) /lql. (2.16)

P,'„(x ) +P', (x,)= (-1)'(l + 1)I,(B), (2.14)

'P~()x-oP', (x,)= (-I)'(I+1)~2I,(R)/It, (2.15)

with
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Since for high s we have

(2.17)

since 2dl =ac%. If we assumed $ = 0, we would

get

from Eqs. (2.4) and (2.5) we get for parity
a (-1)"' resonances with I, = —,',

(2.18)

If, more specially, we consider peripheral re-
sonances lying on a square-root trajectory"

1 +-,'=fqfa, (2.19)

with the radius a fixed, say at a=1.05 fm, then
A has the energy-independent value

A =ma=5. (2.20)

(2.22)

Assuming $ &-1, we see that Eq. (2.22) also
excludes parity (-1)'" resonances for even l,
again in agreement with phenomenology. Specia-
lizing to peripheral resonances according to Eqs.
(2.19) and (2.20), Eq. (2.22) simplifies to

(1 ) )
0.25 GeV

+2
(2.23)

It is instructive to estimate the contribution
o",~~"„of these peripheral I= ,' resonances (wi-th

even parity and l odd) to the total cross section.
Assuming a sequence- of narrow resonances at
W=M, (l =1,3, 5, . . . , ), one has generally:

Even for R= 5 the approximation (2.14), (2.15)
is very good. In Eq. (2.18) we get

(2.21)

From Eqs. (2.18) and (2.21) we see that in the
case of resonances in f„, the slopes 5, and $

have to be almost equal. However, in contrast,
for f„, resonances, 1+g, and I+ $ must be of
opposite sign. Thus demanding $, = $ excludes
such resonances. This agrees mell with the fact
that for I, = —,

' no dominant resonances with parity
(-1)' have been observed.

For s»m' and large L, the relation between
I'„and $ provided by Eq. (2.4) reads

o~'~.'~„= 41 mb GeV /s . (2.27)

Considering that the m'P total cross section falls
by V. 5 mb going from s = 6 to s = 2QQ Ge&',"we

see that Eq. (2.27) gives quite the right order of
magnitude of the nondiffractive cross section.
Of course, one expects a decrease rather like
s ' ', which from Eq. (2.25) may be obtained by
a variation of $ with energy or by including also
resonances which are not quite peripheral.

Resonances not fulfilling Eqs. (2.19) and (2.20)
may be included simply by smearing of the values
of a. Since the Bessel functions I; (R) increase
exponentially with R, ancestors with respect to
the peripheral resonances quickly get a very
narrow width and will contribute little to o't f'.

From the success of the calculations presented
in this section, we see that the problems which
have been encountered in applying DRM's to
pion-nucleon scattering (see, e.g. , Ref. 6), must
not be cured in a way which changes the zero
structure, at least for the s-channel b, (u-
channel N) term. We have seen that from this
zero-trajectory structure there follows a number
of phenomenologically correct and nontrivial
predictions.

R1,3 P l+ +Bi+1,-)( l + l+g)i (3 1)

III. PION PHOTOPRODUCTION

The requirement that the zero trajectories cross
the pole intersection with the same slope in all
helicity amplitudes, obviously becomes more
stringent if we consider reactions with a more
complicated spin structure. So it is interesting
to check whether it leads also to reasonable re-
sults in the case of pion photoproduction and
Compton scattering, moreover since dual models
have particular problems with current amplitudes.

For the treatment of pion photoproduction we
use amplitudes H; which are the Walker helicity
amplitudes" with the half-angle factors removed.
In terms of Walker's partial waves A„,B&, the
H; have the partial-wave expansions":

(2.24)
II, 4= Q(A„vA„, )(P,'+P', „). (3.2)

For our series of odd-L peripheral resonances
satisfying Eqs. (2.19) and (2.22) for high s, this
leads to

(2.25)

The residues r"; of the u-channel nucleon pole in
the amplitudes 8; for I, =-', are given in Appendix
B. The cosine of the s-channel angle at the inter-
section point of s =M' with u =m', is now given. by

vg R
sIO(R)(1+ ) ) ' (2.26)

(3.3)

In analogy to Eq. (2.1), we write the s-channel
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resonance terms as

(3)2) -I"M ImA ~

~+&r~ (3.4)

1.03
(1+ $, ,) Im(M"„E-a ) = (3.10)

g
1,3

MrfP"(x)~P" (x)] ' (3.5)

(similarly for B„).We shall first consider only
I= —', resonances with parity (-1)"'and their
intersection with the nucleon pole in the u chan-
nel. This leads us to four equations of the type
Eq. (1.7):

0.84
(1+ $, ,)lm(M„+~E„)=

1 15. (3.11)

Again-we see that we must have $, = $, and t, = $,.
Assuming $, ,= g2 „it follows that Ea3 «Ma„, as
predicted in the qua, rk model. Finally, (,.= 0 leads
to the prediction ImM„= 1.0x 10 2Qeg ', which is
consistent with the value

8

1+ $ ImA 2.4

Mr P '(x ) ~ P (x )]
' (3 6)

ImM" ' ~=1.15x10 'Gey ' (3.12)

given by multipole analyses of the experimental

where the $, are the zero-trajectory slopes in the
amplitudes H; for I, = —,'.

Now we consider again several special cases
as we did before in Sec. II.

A. The 5(1232) resonance

UsingA„= —,'(M„+3E„)and B„=E„-M„and
inserting numbers on the right-hand side of Eqs.
(3.5) and (3.6) for l = 1, we get (for I' = 0.115 GeV) x,= -1 —m'/(2q') . (3.13)

C. Highwnergy limit

Also the high-energy limit (always for I,= —,')
leads to an interesting result: We take s» m', p.'
and use the simplified expressions of the y",. given
in Appendix B, Eqs. (B10)-(B13).Equation (3.3)
becomes

(1+$, ,)im(M"„- E"„)= (3.7)
We approximate the spherical harmonics by Eqs.
(2.14}and (2.15) and use

M~+»E~+, (3 9)

which is the well known selection rule, e.g. , of
the quark model.

(iii) Using from multipole analyses" 1m'
= 0.27 GeV ' and ImE~1 « ImM~1„ then in pur crude
narrow resonance approximation we obtain, e.g. ,
$,= -0.23. This is very similar to the small
slope found in Eq. (2.9) for pion-nucleon scatter-
ing. So the zero trajectories in all four 0,pass.
the s= M2~/u =m' crossing point nearly in the di-
rection t = const. Of course, this argument may be
turned around: Assuming the g, = 0, we predict the
value ImlVI(, = 0.2 GeV '. This is 30/p low, but not
bad if we remember the simplifying narrow-res-
onance approximation.

B. The F&&(1945)resonance

The same procedure for the E» (1945) gives,
using I'= 0.23 GeV (our unit is again 10 ' GeV ')

((+ ( ) m(M("„+ E"„3)=(, (3 8)

where ImM„and ImE„are defined in analogy
to Eq. (3.4) and the unit is 10 ' GeV '." The
numbers in Eqs. (3.7) and (3.8) tell us

(i) Without further assumptions, g, and $, must
be nearly equal, similarly $, and $,.

(ii) If we demand all four slopes $; to be ap-
proximately equal, we get ——,

' l ImB"„(1+$, ,) = y(a v 1)/I, ,(R ),

ImA„(1+ g, ,) = y()(+ 1)/I, ,(R),
with

g = 1+g~ = 4.706,

(3.16)

(3.17)

(3.18)

egm
=16~!q I arm '

We conclude as follows.
(i) One obtains $, = $, if

((.' —1 I,(R)
((:+ 1 I,I'R) '

and $,= $, if

x —1 ~I(R)
x+ 1 Io(R)

(3.19)

(3.20)

(3.21)

For peripheral resonances fulfilling Eqs. (2.19}

P,"„(xo)+P))'(x, ) = (-1)'"l(l+ 1)(l+ 2)I,(R)/R, (3.14)

P „(x.) -P (x.)= (-1)'"l(l+ 2)(l+ I)'2I,(R)/R',

(3.15)

with I, and I, denoting spherical Bessel functions.
R is defined in Eq. (2.16). The generalization of
Eq. (3.7), etc. , is now, inserting Eqs. (B10)—(B13}
and assuming l » 1:
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and (2.20} the right-hand sides of Eqs. (3.20} and

(3.21) have the values 0.72 and 0.89, respectively.
Comparing this to (v —I)/(v+ 1)=0.65 we see that

g, = $, and g, = g, is crudely satisfied.
(ii) Requiring $,"-$, leads to

-~ I Im8"„= (ImA"„)I,(R)/Io(A) . (3.22)

This means that, in order. to have all four slopes
$,. approximately equal, we must have nearly
Pure magnetic excitation. , because generally

(l+ l)E„=A„+~IB„. (3.23)

D. Intersection of s-channel I= ~ resonances with the
channel pion pole

In pion photoproduction we can also consider
the intersection of an I,= —,

' resonance with the
pion pole in the t channel. Do the zero trajector-
ies killing the double pole at this intersection
also have a similar slope in all helicity ampli-
tudes and do they follow the direction u = constant?

The intersection point is now at

IV. COMPTON SCATTERING

We use the Hearn-Leader" helicity amplitudes
4,(i.= 1, . . . , 6) but we divide the half-angle fac-
tors out. More precisely, we define P,. in terms
of the Hearn-Leader 4,. by

8vWQ,.=+ 4,./cos(3/2), for k= 1,3, 5

8w /VAN, .=+4,/sin(3/2), for f = 2, 4, 6

(4.1)

(4.2)

y, ,= Q [(I+2)'f~~' + I'f„"„—2l(l+ 2)f„'s]

43.4= ~ Q [(I+ 2)4s' ~f~u+ ~fgd

(4.3)

x ~(1+x)(Pf„+Pf'),

where 3 is the s-channel scattering angle, and
we shall also use x = cos3. The partial-wave ex-
pansion of the P,. reads, if we keep only the, terms
of parity ( —1)'":

(3.24)x', = q, /I q I = 1+ p, '/(2q') .
'The t-channel residua of the H,. can be found in
Appendix B. Very close to the intersection point,
the zero trajectory satisfies

&s.6=+ 2 ~&sz' +fu'a+ &fuz~k(I +x}s"r

with

(P'= P" + P"+—(xv l)(P" vP")

(4.5)

(4.6)

rt
u —2m +M —iI'M= ——1 s -M +i1M . 3.25r'

/r —1. .s
ds

(3.26)

(so that for an Euler-B function with b and pion
poles one would expect g;. = 0}, instead of Eq. (1.7)
we get

(1+ t',.) i~", = ~',./(I M) . (3.27)

For the 6(1232) this gives, if we use ImE,", ""
= 0 arid ImM~'~'~ = 0.2V GeV '

1+

Defining the zero-trajectory slopes $;. in the amp-
litudes H~~~2~ thro

AI2+ m2
(4.7)

From the six amplitudes Q,. we get six equations
of the form Eq. (1.7), e.g. , from p, and Q, we
obtain

The definition of the partial waves fs's', etc. , is
as in Contogouris. In the region s ~ (m+ 2 p, )',
unitarity relates the imaginary parts of the Comp-
ton partial waves to single-pion photoproduction
multipoles [see Eqs. (C7)-(C9) in Appendix C j.

Now we call r",. the residues of the u-channel
nucleon-pole term for the amplitudes Q,. with

I,= 2. Explicit formulas are listed in Appendix C.
Por Compton scattering the value of x = cosh at
the intersection point of s =M' with u = m' is

$;.2, ,= -0.98; -0.75; -1.05; -1.02 (3.28) + ~ }Im( f~+ ' +f ++ 2f 1 kxo/M~ g ~ (xo)
at the intersection point. Vfe see that the zero
trajectories follow closely the direction t= const
(which is $' = -1), i.e. , they come almost parallel
to the pion pole; they are not following u-" const.

Since the pion pole in photoproduction is par-
ticularly related to the gauge invariance, this
not "hadronlike" behavior of the pion-pole inter-
section is very interesting. Any construction of
explicit current dual amplitudes should respect
this fact. '@le checked that, going to higher reso-
nances, this situation remains qualitatively the
same.

(4.8)

14.7
(1+ &i,.}Im(&f ss+f ~~ ~f ~z}=

9.5 ~

(4.9)

A. The h(1232) and the F37(1945) resonance

In the s channel, the b, (1232) can contribute to
the Compton partial waves fs'z, f„"„,and f~z.
Evaluating r",. and the spherical harmonics of ar-
gument x for s = (1.232)', we find
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12.4
(I+ &...) Im( 3f-ss+fs's 2f—ss) =

10.2,
(4.10)

(3.14), and (3.15), we use for Eq. (4.6)

6+(x )= (-I)'+'[21(l+ I)(l+ 2)]'I,(R)/R', (4.18)

6.6 6', (xo)= ( I)—'"~l(l+ 1)(l+ 2)lo(R), (4.19),
(I+ &5,.) ™(fss+fss+ 2fss) = (4.11)

Analogously, with l= 3 and s = (1.945)' we get for
the E37 resonance

with R, as usual, given by Eq. (2.16). With these
approximations, the equations of type (4.8) be-
come, if we consider peripheral resonances, Eq.
(2.19):

0.27
+ ti, a) ™(gfsE+fss 3 fss) =

0 11~ y

(4.12)
(1+ $, ,)b 'Im(fsg' +f„"„2f„'s)-=(Ic+1)'/I, o(R),

(4.20)

0.20
(1+ (5.6) Im(fss+ fss+ 2fss) = (4.14)

0.17
(1+ t, ,) Im( '56fss+ f„—"„-',f„'-s—)= (4.13)

~ j

with

g~ —1

1

3~PC

(4.21)

(4.22)

The numbers on the right-hand side are all taken
in units of 10 ' QeV '. Of course, all imaginary
parts of the partial wave are understood at the
respective resonance position. The $, in Eqs.
(4.9)-(4.11) are the zero slopes at the b intersec-
tion, in Eqs. (4.12)—(4.14) at the E» intersection.

First of all it is remarkable that all values on
the right-hand side of Eqs. (4.9)-(4.14) have the
same sign as the corresponding f„"„term on the
left-hand side. Furthermore, the first six num
bers center around + 1.1 x 10 ' QeV ', the others
around+ 1.9 x 10~ QeV ', so that in both cases a
dominant f„"ssolution is strongly favored. This
is, of course, what is expected from photopro-
duction via the unitarity relation Eq. (C8), since
in photoproduction MP ' (M,'~ ') strongly. dominate
over ~&'~' (E'~')

What about the predicted size of the resonant
multipoles? Phenomenological analyses of Comp-
ton scattering in the a(1232) energy range give~'

lmf'*t'~'(&=M )=1.7x 10 ' GeV ' (4.15)

and fs's and f„'s small, so that the $,. have to be
slightly negative, but not large. For the E37 us-
ing the multiple-analysis value Eq. (3.12) we get

Imfs3+s ~ 1.0 x 10 ' GeV ' . (4.16)

This is consistent with Eqs. (4.12)-(4.14) for
small $,. if we neglect fs's and fs3s and take into
account that the E»(1945) is only to -40%%u~ coupled
to the elastic m-1V channel.

B Highwnergy limit

The residues r"; simplify for s» m' (see Appen-
C). The angular terms of the partial-wave

expansion Eqs. (4.3)-(4.5) are again approximated
by modified Bessel functions since

x =-1 —2m'/s (4.17)
gets close to -1. Apart from Eqs. (2.14), (2.15),

2R
137a45"I' (4.23)

v„,=,Q I'(I+ 1)Imf„'„. (4.25)

In the narrow-resonance approximation, Eq. (4.24)
leads to

(4.26)

ol" since we consider only peripheral resonances
and take s»m',

~ 1.1w'5(s -M, ') 15 p,bGeV '~ 137aM, (1+ g, ) s(1+ $)
(4.27)

This is a reasonable order of magnitude, even if
t' is neglected. Of course, like in Eq. (2.27) one
rather expects a behavior as s ' ', so that nonper-
ipheral resonances or an energy dependence of
t must be present.

V. PION PRODUCTION BY AN AXIAI VECTOR
CURRENT

'The last process which we shall consider is
axial-vector-current pion production. Just as in

For A = 5, the numbers appearing in the right-
hand side of Eqs. (4.20)-(4.22) are, 1.34, 0.50,
0.87, 1.21, 1.33, and 1.20, respectively. Although
there is some spread in these numbers, it is
again remarkable that they are all positive and
close to each other. An approximate solution may
take all $,. equal and neglect the fss ~, f„"s, leading
to

Imf„'„"= 1', a 1.1b
ss 1+ t. (4.24)

What is the contribution of these resonances to
the total cross section? If we keep only the partial
waves f„"„,
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photoproduction, we use helicity amplitudes,
here called E, , which have the half-angle factors
removed. In contrast to Sec. III, however, here
we shall adhere to Adler's normalization conven-
tions. " Equations (Dl)-(D3) in Appendix D give
the relation of our E,. to Adler's 8", In Appendix
D we also list the partial-wave expansions of the

E,. in terms of axial-vector multipole amplitudes
K„, 8„,g... etc. , k, and ~k~ denote the c.m.
energy and three-momentum of the current. We
shall also use

(5.1)

+ 1.77
(1+ $, ,) Im(5K"„—3hs3 ) =

+4.15 ' (5 9)

+ 0.92
(1+ $, ,) ImZ"„=

+ ~

(5.10)

Whereas t. = (, is still satisfied, we see that $,
= $, and $,= $, are no longer true. This becomes
more pronounced if we consider the high-s limit,
using the same approximations as in Secs. II-IV.
Appendix D contains the high-energy expressions
for the y'", For peripheral resonances according
to Eqs. (2.19) and (2.20) we get for s» m', &» 1. ,

A. The h(j. 232) resonance for X2 = 0

We consider first the intersection of the 6(1232)
with u = m'. We restrict ourselves to A.'= 0 and

Denoting the zero-trajectory slopes in the
amplitudes R,. for I,=-'; by $, , we get

m

WI, (R )

(1+ $, ,) Im(Ks, .+ gf.) =

2mf, (R )

(5.11)

-36,6

(1+ t, ,) im(mP„+ S"„)=-

+ 32.6
(1+ t, ,) im(3K"„-8;.) =

+ 21.3
(1+ (, ,)Imt, .=

(

(5.2)

(5.3)

(5.4)

Vld
$

(1+ &, ,) Im(K"„—Ss, )= Wf, (R)

8'd
2mf, (R )

+ d&/I, (R)
(1+ $, ,) Img"„=

+2d, Io(R)

where we have used the abbreviation

d, = 16m'„g/(W'a'I') .

(5.12)

(5.13)

(5.14)
where our unct is Geg '.

We see that the slopes come out to be pairwise
equal. Demanding also $, = $, or $, -" $, we get
ImK"„« ImS"„. From $, = $, or $,= $, we get
Im8, „= -2 ImZ", . Comparing this to Adler's
values, "

ImS = ——— = -42 QeV 'Bung~~
1+ gq

2

ImK « Im+
1+ 1+ &

-2Z„=h„,

(5.5)

(5.6)

(5.7)

we see an excellent agreement. Comparing Eq.
(5.2) with (5.5), even the numerical value of 8„,
comes out correctly if the $,. are small.

-0.73
(1+ t, ,) Im(K"„+8,.) = (5.8)

B. Higher resonances for X = 0

Unfortunately the success of our argument this
time does not continue (which, by the way, shows .

that the agreement obtained in the former cases
was not trivial). If we consider the I'»(1945)-
nucleon-pole intersection, always for X'= 0, we
find (unit is again GeV ')

We can still have $, = $, and $, = $, so that K„
«8„. However, the pair of equations (5.11) [and
also the pair of Eqs. (5.12)] contain different en-
ergy dependences on the right-hand side. So a,

solution with $, = $, and $, = $, is not possible.
This is in contrast to the three reactions treated
in Secs. II—IV, where the energy dependences in
Eqs. (2.18), (3.16) and (3.17), (4.20)-(4.22) all
matched, so that we could have equal slopes $,
Why the case of axial-vector-current pion produc-
tion does not have this property remains an open
question.

VI. I= 2 RESONANCE AND ISOSPIN PROBLEMS

In Secs. II—V we considered only J= & resonances
in the s channel. Unfortunately, the same proce-
dure cannot be expected to be successful in the
case of s-channel I=-,' resonances, i.e., the heli-
city structure of the excitation of I= & resonances
cannot be obtained by simply assuming equal
zero-trajectory slopes in all helicity amplitudes
at the intersection with the u-channel nucleon
pole. Already a glance at the phenomenologically
determined zeros of photoproduction amplitudes
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g (3/2) 2+s —M u —n& 2 (6.1)

then the ratios of the residua in the standard"
crossing-even and -odd (+) amplitudes following
from Eq. (6.1),

(6.2)

in Ref. 10 shows that for I, = 2 the zero trajectories
behave very differently in different spin ampli-
tudes. This is not surprising.

Generally in a dual model the complete ampli-
tude is a superposition of s/t, s/u, and t/u dual
terms. Assume that each single dual term has
the same simple zero structure for all helieities
(e.g. , like that of a Veneziano Euler-8 function).
Now it can happen that a certain pole appears in
more than one dual term, e.g. , an s-channel
resonance ean appear in the s/t and .s/u terms.
Then the residue of the resonance is split up in
two parts and the total residue does not reflect
the simple zero structure of the single-dual terms.
Observe that we are studying only ratios of pole
residues. So the mere presence of more than one
dual term does not disturb the zero slopes at the
pole intersections, as long as a pole does not ap-
pear in more than one term.

We believe that our success of revealing a sim-
ple structure in the I = & amplitude reflects the
fact that probably the whole series of ~ reson-
ances and the dominant part of the u-channel
nucleon pole is contained in one single-dual term.
However, for the I, = 2 resonances one has to
face seriously the problem of how to split up the
residues in order to achieve a simple structure
of each term. We think that this splitting might
be solved by using a purely algebraic procedure.

The particular choice of isospin amplitudes is
irrelevant, as long as we only require different
helicity amplitudes to have the same zero-tra-
jectory slopes $, . However, the actual magnitude
of the,", (remember that in many cases we ob-
tained good absolute predictions for the resonance
couplings by assuming that the $, are small) de-
pends on the choice of the isospin amplitudes
made. For example, instead of projecting the
nucleon pole on I, = &, we may have projected the
~ on I„=&. Fortunately, for the combination of .

I, =& resonances, with anI„=2 pole term, various
simple ehoiees of the basic isospin amplitudes
lead to numerically very similar results for the
ratios of the pole residues, and so also for the (, .
We show this in the following.

If

6 s —M2 u —en 2 (6.3)

differ only by a factor; or;, respectively. If
we used the amplitude with I„=—,', Eq. (6.1) would

become

6 s -M' u —m2 (6.4)

so that the residue ratio gets a factor ';. So, if
we choose the "wrong" isospin basis, the num-
bers for the ratios of the residues come out dif-
ferently only by 15 40+. The order of magni-
tude and the signs are all the same for the four
cases Eqs. (6.1)-(6.4).

The situation is quite different if we consider the
intersection of an I, = ~ resonance with the u-chan-
nel nucleon pole. In this ease, if

(6.6)

this becomes, in terms of A "',

~ (y) +s 3+u
2 2s-I u —~ (6.6)

or, for the I„=2 isospin amplitude,

g ( -, j./2) 2, 2s-I u —m
(6.7)

We see that here signs and numbers differ drasti-
cally. So, unless one can put forward a criterion
for which isospin amplitude should be used, with

I, =-,' resonances it does not make sense to expect,
e.g. , x, =r„or &, =0.

VII. CONCLUSIONS

Quite generally, if an amplitude has poles in
different channels (e.g. , resonances in the s and

u channel), it also has zero trajectories (i.e.,
manifolds where the amplitude is zero) in the
complex Mandelstam "plane" which pass through
the intersections of the poles. In this paper we
considered the slopes $ of these zero trajectories
in the Mandelstam plane for the case of reactions
involving particles with spin or currents. Since
we always assumed narrow resonances, we could
study the slopes in the real s-t plane. We studied
the possibility of whether at particular intersec-
tions of poles the zero-trajectory slopes g, in
all helicity amplitudes f, of the same process
may be equal.

The interest in this feature comes from dual
models. For example, Veneziano Euler-B-fun. c-
tion models prescribe specific slopes $,. How-

ever, dual models have met serious problems
when one tried to apply them to the phenomeno-
logy of reactions involving fermions or currents.



2018 G. v. GEHI EN AND %. PFEIL 21

So, if at least our "equal zero-trajectory slope"
hypothesis is verified, this would show one good
"dual" property of fermion or current amplitudes.

We concentrated on the intersections of I= ~

resonances in the s channel with the u-channel nu-
cleon pole and studied these for several processes
(the case of I=-,' resonances is expected to be
more complicated). It turns out that our hypothe-
sis is quite powerful. and leads to a number of
nontrivial predictions which are in agreement with
the data. The more complicated the spin struc-
ture of the process considered is (e.g. , nucleon
Compton scattering), the more remarkable is the
consistency of the equations which follow from the
"equal zero- trajectory slope" hypothesis.

In particular, we get the following:
(1) In pion-nucleon scattering I= ~ resonances

can be dominant only if they have odd l. For ~-
type resonances [i.e. , l odd, parity (-I)'+'J the
zero-trajectory slopes at the intersection with
the nucleon pole conze out to be accurately equ3, l
in both helicity amplitudes already without our '

hypothes is.
(2) We treat the high-energy case explicitly using

a modified Bessel- function approximation. We
get a formula expressing the nondiffractive m'P

cross section in terms of the zero-trajectory
sl.opes $.

(3) «pion photoproduction and Compton scat-
tering the &-type resonances must be excited
dominantly by magnetic multipoles (in agreement
with qua'r k- model pr edi ctions).

(4) Making the assumption that the zero-trajec-
tory slopes behave at least qualitatively as in an
Euler-B-function model, we can also exclude
dominant m-N resonances with I= —,

' and parity
(-1)' (in agreement with the data).

(5) If we now assume very specifically that the
zero trajectories follow approximately the direc-
tion t = constant at the s- channel- &—u- channel-nu-
cleon pole intersection, we can predict the abso-
lute values of the ~ and F37 couplings, i.e. , the
~ width, the E» elasticity, and the photoproduc-
tion amplitudes M'„' "and M,", ". In our narrow-
resonance approximation these agree within 30/o
with the phenomenological data. With the same
assumption the formula referred to above in (2)
gives the correct order of magnitude of the non-
diffractive z'p cross section.

(6) For axial-vecto'r-current n(1232) excitation
we get results very similar to those of Adler. "
However, for higher-resonance production by the
axial-vector current we encounter difficulties.
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APPENDIX A

Here we list some definitions and properties of
pion-nucleon elastic scattering amplitudes which
we use in Sec. II.

In terms of the standard center-of-mass spin
ampUtudes f„f, (see e.g. , IIef. 26):

(A1)

where q and q' denote c.m. unit vectors along the
directions of the incoming and outgoing pion,
respectively; we define our f, by

The partial-wave expansion of the f, has the form

(A3)

with x=(qq'), the cosine of the c.m. scattering
angle B.

For I,= ~, the u-channel nucleon-pole contribu-
tions to the f, are

f, = x,"/(u —m') + ~ ~ ~,

where (g'/4m= 14.6)

2 2
u g

8'
(wq, —p, ), r = mq, .

(A4)

(A5)

W and q, are the total and pion c.m. energies,
is the c.m. pion momentum. m and p, denote the
nucleon and pion masses, respectively. At the
intersection of the nucleon pole u =nz' with a
resonance pole at s= 3P, x has the unphysical
value x,:

x.= ( Eq.+ V'/2)/-q', (A6)

where q„q', and E= 8'-q, have to be evaluated
for s=M'.

APPENDIX B

In our treatment of single-pion photoproduction
in Sec. III we used several. definitions and formulas
for the pole-term residues, which we list in the
following.

Our amplitudes H, are related to the standard
c.m. spin amplitudes Y~, .. . , F4 of Chew et al."
by

(»)
(»)
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8', ~ '= r,"/(u —m') + r!/(t —p, ')+ ~ ~ ~, (as)

where the nucleon-pole residua r," are explicitly
given by

The corresponding u- channel nucleon-pole and t-
channel pole contributions, projected to I,= 2, are
written as

1
137(8W) ' (C6)

and y is defined in Eq. (3.17). In the high energy
limit s» m' one simply drops all m' in Eqs. (C2)—
(C5).

Unitarity tells us for s & (m+2 p)',

+. = -y lt)l I

—m)((+v) —W((su)
&( W' m')gr

I

(a4)

rmf,", = fq/ fZ„/',
imf„'„= fqf (M„ f',
Imf „'s = —fq f Re(E, ,M )w),

(C7)

(c8)

(C9)

(w' m')g,
r2 4= —pp — — + p, —m 1+v

—Wm(1 +v)

with

r= p[(w m)' t ']'~2/s,

v= g(w+ m)'- p']/[(W —m)'- p']] 'i',

(a5)

(a6)

(a7)

where the multipole amplitudes of photoproduction
on the right-hand side are normalized as in

CGI N, ~ and on both sides isospin I,=2 amplitudes
are understood. ~q~ is the pion c.m. momentum.
For s & (m+ 2)u)' these equations provide only
lower bounds for the imaginary parts of the Comp-
ton partial waves.

APPENDIX 0

rf, =&~q~[W+m+v(W m)], (a8)

and g»=3. 706, P=eg/87) =0.163. The pion pole
residua are

Here we give the formulas relevant for our cal-
culation of axial-vector-current pion production
in Sec. V. Our helicity amplitudes K, are defined
j.n terms of Adler's 9& by

r.',.= rv'(I+-v)/2.

For s» p,
' this simplifies to

m;»,
r, ,= Pm /@(g, +2)(2 fq f/m; I)/W,

rt = r,'= —Pm p'/s,
r' =)3( p,'~')/w

APPENDIX C

(alo)

(a11)

(a12)

(alS)

+lt3 3 4

IC, ,= 9", +9",+-,'(I+x)(9,"+9",),
gA ~gA

5y6 5 6

(»)
(D2)

(Ds)

(D4)

(D5)

Observe that j.n. Sec. V we consequently use ampli-
tudes normalized according to Adler's conventions.
Defining partial-wave amplitudes in. terms of Ad-

ler's 3Q„S„etc.by

8,,= ~ [(l + 2)K,.—l h „],

(t)13t ' '= r"/(u m') + ~ ~ ~, (cl)
where the (t), are defined in Eqs. (4.1) and (4.2).
Using the paper of Fox and Freedman, ' in parti-
cular their Eqs. (7), (A2), and Table I, one ob-
tains

Here we collect some formulas which we used
in our treatment of Compton scattering in Sec. IV.

The residua r," of the u-channel nucleon-pole
terms are defined through

~ ).= -A' (I + 1)&)./ Ik
~

(D6)

K, ,=Q (Z„v 2„, )(P", +P',,',), (D7)

&2 4= (D8)

(we shall not use the corresponding 6... etc. ),
the partial-wave expansions of the K, take the
same form as Eqs. (3.1) and (3.2):

r,",=f[—4m'+ (s —m') (~ a 1)'], (C2)
K, ,= Q (8,,+ 6,„)(P', w P'„,) . (D9)

r,",=—f[4m'+ (s —m') ()(+ 1)'],

r,"=f[4m'+ (s —m') (z' —1)],

r,"=—f[ 4m'+ (s —m')(a' —1)],

(cs)

(C4)

(C5)

The u-channel nucleon-pole residua H& of our amp-
litudes K, with I,= 2 are easily obtained from the
nucleon-pole terms of the 9", , using Eqs. (Dl)-
(Ds). The crossed-nucleon-pole terms of the

for Ig = g are

I'ql'(W+ m)8, „
2m(W —qo+m)where

(D10)
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(D11)

9", ",= " [2m@,(W+ m) 1 X'(W+ m —2q, )]A,",
2mk

(D12)

where

2gAg
1

Q m2

g has been given in Appendix A„g„=1.26.
In the limit s» p, ', the residua r," of the &&

'
take a quite simple form:

~=4~q~g„g, ~,"= 2mg„g,

e„=[(W u, ~ m)(W q, ~m)]" ' (D13)
W~ m' „W'+ m'

3=
HJ2m gAg' r4 8 gAg

r,"= 4%'g„g, r",= -4mg„g.

(D15)
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