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Sum rules for the quarkonium systems

A. Burnel and H. Capr3, sse

(Received 28 June 1979)

In the framework of the radial Schrodinger equation we derive in a very simple way sum rules relating
the potential to physical quantities such as the energy eigenvalues and the square of the Ith derivative of the
eigenfunctions at the origin. These sum rules contain as particular cases well-known results such as the
quantum version of the Clausius theorem in classical mechanics as well as Kramers's relations for the
Coulomb potential. Several illustrations are given and the possibilities of applying them to the quarkonium
systems are considered.

I. INTRODUCTION

The discovery of the g in 1974' and the subse-
quent observations of the f-like particle spectrum
during 1975' suggested strongly that those new
particles can be described as a nearly nonrela-
tivistic bound system of charmed quark and anti-
quark. ' Charmonium, as this qq bound state was
soon called, has been extensively used in the
phenomenological interpretation of the different
properties of the psion family. ' ' Nowadays,
several factors have increased the interest of
this "naive" model. On the experimental side,
the discovery of the Y particles' and the con-
viction that they are associated with a still heavier
quark, the 5 quark, has led to the introduction,
by analogy with charmonium, of the b-quark-anti-
quark system. If charmonium is marginally non-
relativistie, we expect bb to be fully nonrelativis-
tic since m~ is about three times larger than m, .
On the theoretical side we have more and more
indications that forces between quarks depend on
colors and not on flavors. Therefore if some
type of potential is successful in charmonium,
essentially the same Potential should also be suc-
cessful in Pb. The model gets in that way more
predictive Po~er. Finally, it is largely recognized
that the simplest model which can accountnaturally
for CP-violating forces must at least contain six
quarks. The sixth quark called the t quark, has
a mass equal to or greater than 10 GeV.' It should
also generate a whole new family of particles
which can be described as tt nonrelativistic bound
states.

What is the potential to be used~ The answer
to that question is not yet known and is expected
to be very difficult. From quantum chromody-
namics (QCD) we can make two qualitative argu-
ments: First, when the distance r between the
quark and the antiquark is small, say r &0.2 fm,

asymptotic freedom tells us that the spin-indepen-
dent part of V(~) should be

where o., (r) is the running coupling constant. The
spin-dependent part is also calculable and dif-
ferent from zero. Second, when the distance be-
tween the quark and the antiquark is large, say
r ~ 0.8 fm, forces become strong, confining, and
essentially spin independent "Qu.alitative argu-
ments suggest that this potential could rise
linearly with the distance. " It should be stressed
that since confinement is not yet proved in QCD, "'
this last statement is quite uncertain. From our
present experience with the charmonium model,
we know that the mean radius of g is about 0.5
fm, i.e.„adistance where both short-range
forces and confining forces are expected to play
a role. Around this distance there is no basic
understanding of the nature of the potential.
Therefore, we deal, in the context of charmonium,
with an inverse problem which can be stated as
follows: From the experimental spectrum, from
transition rates, and from decay probabilities
deduce the form of the potential. This problem
looks very old fashioned" but here it has a very
novel feature which we would like to stress.
Heavy vector particles such as g, p', T, T', etc. ,
considered as bound QQ systems resemble the
hydrogen atom but at the same time they can de-
cay i.n a similar way to the positronium which is
a relativistic system. It then follows that the
value of the modulus squared of the wave function
or of some of its derivatives at the origin takes
on a physical meaning. This together with the
confining nature of the potential has led Quigg,
Rosner, and Thacker" and Grosse and Martin"
to reformulate the inverse problem for the E =0
states in a very efficient way. In this reformula-
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II. NOTATIONS AND CONVENTIONS

The three-dimensional wave function is written

g(r) =&(r)I'.(0, 4),
with the normalization conditions

(2 1)

tion the value of I(I(„(0)I' for each level n plays a
leading part. On a more modest level, the use
of sum rules has proved to be very useful in esti-
mating the behavior of physical quantities or to
constrain the potential without the need to solve
the Schrodinger equation.

Up to now two sum rules have been used. The
first one relates I(I(„(0)I' to the mean value of the
derivative of the potential V'(r), and has been
known for many years. " The second one is the
quantum-mechanical expression of the Clausius
theorem in classical mechanics. " It has been
rederived recently by Martin" from direct ma-
nipulations of the Schrodinger equation.

The present work is an investigation of sum
rules both from the point of view of their deriva-
tion and of their use. Specifically we show that
the sum- rules already used are particular cases
of much more general sum rules. We propose
a simple procedure to derive them. We show that
they are valid for any value of the angular mo-
mentum. We illustrate by several examples how

they can be utilized to discuss the physical prop-
erties of quarkonium and to obtain constraints
on the potential.

In Sec. II we define our notations and conven-
tions. In Sec. III we show through an example
that the hypervirial theorems" must be handled
very carefully to avoid inconsistencies. We pro-
pose a constructive way to avoid this. Finally
we show how to deduce sum rules. In Sec. IV we
illustrate the context of the sum rules through
many examples. In particular, we show how to
recover already known sum rules including
Kramers's relations for the Coulomb problem.
We also derive new sum rules relevant for the

study of quarkonium systems. We conclude with

a few remarks on their usefulness and make
suggestions for further developments.

To close this Introduction, let us stress that
we concentrate in this work on the radial-wave
Schrodinger equation neglecting spin-spin, spin-
orbit, and tensor forces. This is not an essential
restriction but it is done in order not to confuse
the main points of this paper.

I&(r) I'r'« = 1. (2.4)

The radial wave function is written

u(r) =rR(r) .
We introduce the scaled distance variable

p= ~r,

(2.5)

(2.6)

where n is any constant with the dimension of a
mass. As we shall see later on, the form of n
can vary with the specific physical features of
the interaction. Going from the r variable to the
p variable the radial wave function can be written
successively as

u(~) =ra (r( = —((
(
—
)

= pR (pj = w (p) . (2.7)

Therefore the normalization condition for w(p) is

I w(p) I'dp = o(.
Jo

The Schrodinger equation for w(p) is

&(p) w(p) =ew(p),

with

KP&(p)=- . +~(p),
dp

(2.8)

(2.9)

(2.10)

(2.11)

V(p) =20 o. 'V— (2.12)

g=2pQ E . (2.13)

In Eqs. (2.12) and (2.13), V(r) and E are the usual
expressions of the potential and of the energy
eigenvalue. Whenever it is needed we explicitly
display the quantum numbers, which label each
eigenfunction, and denote them by n and L, i.e.,

w(p)- w.i(p). (2.14)

If a wave function is not necessarily an eigenfunc-
tion of H we denote it by a symbol different from
w. The Dirac notation for w„, (p) is Ino or Im),
when we do not need to display the angular mo-
mentum, or simply I w), when we do not need to
display quantum numbers. Finally we write for
any operator G(p)

(G(p)) = I = — *(p)G(p) (p)dp

J
dna, *.(e, &)I, .(e, f)=&„&.. .

(2.2)

(2.3)

(2.15)

It should be stressed that G(p} is not symmetric
(or Hermitian) in general. In order to stress that
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)

G(p) must always be applied to the ket vector and
not to the bra vector, we write &m~G(p)m& for ii:s
matrix element instead of the usual notation
&m(G(p)(m&.

III. THE DERIVATION OF SUM RULES

&m( [H, W](m& =0. (3.1)

It is obvious that whenever II is supposed to be
symmetric the right-hand side is indeed zero.
However, the following example shows that it is
often not the cgse.

Take

It is a well known fact that sum rules can be
deduced from the hypervirial theorems. " How-
ever, these theorems, as they are usually stated,
involve an implicit assumption, namely, that the
Hamiltonian matrix elements are always sym-
metric, i.e., &f ~Hg& =&g~Hf)*. Since the domain
of Hilbert space, in which it is indeed the case,
is not explicitly given, it is easy to find examples
where these theorems are violated. In a separate
article, we have examined the mathematical prob-
lem in itself." In this section we merely propose
a way to avoid the difficulties. Basically we show
that the violation of the hypervirial theorems is
always connected with the appearance of boundary
terms. Once these boundary terms are taken into
account, they lead to a modified form of the hyper-
virial theorems out of which suez mles can again
be deduced. First we remind the reader how

hypervirial theorems can be stated in the context
of the radial wave Schrodinger equation: If W

is a time-independent operator function of p and

djdp then

is not alsvays true. This is the case when l =0
because the state

[f& =—[m&
dp

(3.8)

is such that f(p=0)o0. Therefore (3.7) is vio-
lated by a boundary term. " Next we show how lt
is possible in all cases of physical interest to
extract boundary terms. '

Definition. We introduce the sesquilinear form

& glHf& = g*(p) [(Hf)(p)]&p.
4p

Then

(3.9)

[(Hg)(p)]*f (p)d p.

Theorem If ~~.& is an eigenfunction of H and
if f(p) is such that

(3.10)

&~IHf&= ~ ~*(p)(Hf)(p)dp&",
0

we can always write

(3.11)

&(() =2 —,&)(~)j.
d
dp' (3.13)

Obviously whenever f is in the domain where H
is symmetric" we always have

(~Iaaf) &f(~M)'+2(~ =—,&(n) f . (3.)))
dp

This formula plays a crucial role in our deriva-
tion of sum rules. It is interesting because each
term can be given a well-defined mathematical
meaning. The boundary term is the matrix ele-
ment of a well defined operator

(3.2) &~IJf(p)If& =o (3.14)

then

fH, W]= H, „=-U"(p).d

1

Therefore, (3.1) implies

&m (
U'" (p) ~m) = 0 .

(3.3)

(3.4)

Formula (3.12) is not mysterious. It is only a
convenient way to write the partial-integration
formula. To see that, we notice first that it is
enough to consider H, = -d'/dp', because when-
ever U(p) is real the form &w ~Uf& is always sym-
metric. Starting from &]&) )Hof& and doing two
successive partial integrations we find

This relation is certainly not true in general
since, for instance, when

U(p) =~p,

(3.4) implies

(3.5)

&EU]e f) =&f]ea)'+ M"—f- w
)y

dp dp p

(3.15)

&m)m& =0. (3.6)

The only reason we arrive at this inconsistency
is that

Writing the boundary term as a matrix element
leads immediately to (3.12). From (3.12) it fol-
lows that the hypervirial theorems (3.1) can be
written in the following generalized form:

m H —.m =e~ rn m (3.7) (m][JI, w]]m) =+2(m j—,a(p))w m) . (3.16)
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This formula allows us to consider all operators
W such that Wlm& does not belong to the domain
in the Hilbert space inside which the Hamiltonian
H is symmetric. Before we proceed further, let
us notice that we can also consider off-diagonal
elements of [H, W] without difficulty. If Im& and
Im'& are two different eigenstates then (3.16) be-

comes

&m I [H, W] Im '& = (e —e )&m I W lm '&

+2m „,6p 8 m'

(3.16')

A. Sum rules

We shall deduce from (3.16) sum rules which appear to have a physical interest. Since many choices of
W are possible, there are also several ways to deduce them. We present here the simplest one. Let us
choose

W(P) =g(P)—
dp

(3.1V)

In order to satisfy (3.11) we assume that g(p) does not increase exponentially. We compute the com-
mutator [H, W] and we find

H, g(P) d=-g'"(P) „+2g'"—(P)H 2g"(P-)U(P)-g(P)U'"(P),

where the upper indices indicate the order of the derivatives. The left-hand side of (3.16) is

(
)

m H, g(p)—- m = — m g"'(p) —m +2e &m(g'"(p)m& -2(mlg" (p)U(p)m& -&mlg(p)U'"(p)m&.
dp dp

The right-hand side can be computed directly. The result is

2m —5P gp m =-llm gp K(1) p 2 gpm*pK(3) p g(1) pm~pm(1) p
d

p ~Q

Equations (3.16), (3.19), and (3.20) lead to the following (infinite) set of sum rules:

(3.16)

(3.19)

(3.20)

—ge„(mlg '
&p)m) zg&mlg ' (p)ZZ(p)m) e ez g '

(p) m) +&m g(p)g' (p)m)
dp

= »m [g(p)l~'."(p)I'-g(p)~.*(p)~'."(p) -g'"(p)~.*(p)~'."(p)] (3»)

To obtain the final form of the sum rules we shall eliminate the appearance of the first derivative in the
term &m I

gi'i (p)(d/dp)m&. To this end, we go back to (3.16) and choose

W(p) =g'"(p).
Following the same steps as in the previous calculation we find

(3.22)

. (mlgz'z(p)m) eg(m g"(p) m = —(im g'*'(p)(m (p)1*.
dp I0 Q

(3.23)

From (3,.21) and (3.23) we get finally

-
2 &m I g '

(p)m& —2e &m I g "
(p)m& + 2&m I g (') (p) U(p)m& + (m I g(p) U '

(p)m&

= im [2g'"(p)l~. (p)l'+g(p)l~'"(p)l'-g(p)zo*(p)w' (p) -g ' (p)tv+(p)gy (p)]. (3.24)

We must stress that up until now the above cal-
culations are purely formal. This is because we
have not yet placed any constraint whatsoever on
the functions g(p) when p-0. Therefore it may
well be that neither the matrix elements nor the

t

limit of the right-hand side have any finite value.
The important point is, however, that as soon as
the right-hand side has a finite value, the left-
hand side has also a finite value and (3.24) is
indeed the correct relation. "



2004 A. BURNEL AND H. CAPRASSE 21

IV. ILLUSTRATIONS AND APPLICATIONS

(a) . l(p) = a.l
p"',

p ~P
(4.1)

This section is entirely devoted to one goal:
to show the importance of the information con-
tent of the sum rules (3.24). I.et us first remind
the reader of the boundary conditions on the eigen-
functions au„, (p):

(I-n)( + n)
I

I.I,. (.~+„)
2

p ~p

We distinguish two different situations:
(1}q &-2l. Here

(4.3)

(4.4)

The case g(p) = p". From (3.21) and (4.1) the
boundary term called S has the following expres-
sion:

(b) lim p'I ~(p)I - 0 for any k. (4.2} and the sum rules (3.24) can be written"

e„,&nl Ip" 'Inl& =&nlIp" 'V(p)Inl&+ (nlIp"V' (p)Inl&+" 2l(i+1) — &nllp" 'I«& ~

ha

(4.5)

...=(V(p))., +&-.'pV'"(P)&„, . (4.6)

In writing this relation, we have used (2.11) to
separate the contribution of the centrifugal bar-
rier. This last coritribution vanishes if and only
if q= 1. For g= 1, using (2.8) and the definition
(2.15), we get the well known Clausius rela-
j onlv, 18

L~ 1 and g=0,
we are led to the relation

&«I&'(&)I«& = — « —:,I «)d l(i+I)& i

dp p )I

(4.13)

(4.14)

f

third illustration we consider the following case.
When

The relations of Kramers. '4 We take the Cou-
lomb potential

or equivalently to

(nlIU' (p)Inl) =0, l=1, 2, . . . . (4.14')

V(r) = e'ir-
From (2.12) and choosing

n= Pe

we get

V(p) = —2ip.

Since

(4.7)

(4.8)

(4.9)

We see that relation (3.4) is indeed valid for
all waves except the S wave. It illustrates nicely
the action of the centrifugal barrier. In the case
of the Coulomb potential it leads to the relation
(I& 1)

(nlIP 'Inl& =l(l+1)(nlIP 'Inl&. (4.15)

In the case of a purely linear (confining) potential

e„g= —1 n 2 (4.10) V(p) =2hp, (4.16)

the equation (4.5) gives a relation between the
mean values of different powers of the bound-
state radius p. It is '

lt gives

(4.17)

--,'ri(q —1)(ri —2)(p"-') + 2(q —1)l (l + l)(p"-'&

2(I-2n)&p"-'& =- „". &p"-'&. (4.»)2n

When we substitutue q+ 1 into q and rearrange the
different terms we find the desired relations,

"„. &p') =(I+2n)&p" '&

As a final illustration we give a relation between
matrix elements of p and V which is obtained
from Clausius's relation and (4.5) with 7i = 2. It
is valid for any l ~ 0 that

(P&&V& -&PV&+-'. (2&p&&PV "& -&P'V'&) = &P '&
2

(4.18)

--.'nI(21+»'-n']&P" '&, (4.12) (2) q= —2l. From (4.3) we see that S is always
finite and different from zero. It is written as

with g~ 0.
From the different relations obtained when g

is successively taken equal to 0, 1, 2, . . . , we can
write all mean values (p"& with 0 = —1, 0, . . . , in
terms of the quantum numbers n and L. As a

~ = (2l+»'Ia. I'. (4.19)

A look at the left-hand side of (3.24) shows that,
with the exception of the second term, each term
is infinite because the singularity is too strong at
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p=0. What we show now is that the centrifugal
barrier is such that it cancels all infinities in the
sum

—l&ml g'"(p) &+2&ml g'"(p)U(p)m)

+&m I g(p) U'" (p) Im) . (4.20)

To see this, we separate, using (2.11), the centri-
fugal barrier from U(p) and make the usual as-
sumption that V(p) is less singular than p ' at the
origin. A simple calculation shows that the singu-
lar part has the form

4 n
V(r) =-——'

3 r '

it is convenient to choose

(4.26)

erties, i.e., the relation between different quark-
onium spectra. The reason for this is that if
scaling holds, V(p) must not depend on the re-
duced mass p. Therefore the p dependence of
Ifts(0)l' is entirely contained in the p dependence
of a.""'" In the particular case of the QCD
Coulomb-type potential

Ia„ I =&nOIV ) (p)In0) . (4.23)

Written in terms of the usual radial wave function
defined in (2.1), it becomes

Ift..(0)l'= '&V'"(p)&.. (4.24)

In terms of V(r) it becomes

Ifl, (O)l'=2p. &W" (r)&„,.
This is a well known relation" already widely
used to study the g-like and T-like particles. "

Before we proceed, we want to make a remark
concerning the form (4.24) of the sum rule. It is
particularly useful to express the scaling prop-

(4.25)

[2l (2l + 1)(l + 1) —4l2(l + 1) —2l (l + I)]

x &nllP " 'Inl&, &4 21)

where the coefficient in front of the matrix ele-
ment is obviously equal to zero. The relation
(3.24) expressed explicitly using g(p) = P " and
the relation (4.19) leads to the new set of. sum
rules

4le„,&nlIp " 'Inl) -4l&nlIP " 'V(P)Inl&

+&nllp "V'"(P)lnl& =(2l+I)'Ia.il' (4.22)

for all l ~ 0.
In these sum rules we see that- the centrifugal

barriers neve~ contn'bute explicitly because they
involve V(p) and not U(p). This has a clear physi-
cal significance. The factor p ", which enters
in each matrix element, allows us to probe the
region of space, where the centrifugal barrier
dominates the behavior of the wave function. It
does it in such a way as to allow us."to see" the
residual value of the wave function at p = 0. This
residual value is expressed through the boundary
term.

These sum rules are also particularly interest-
ing in the study of the quarkonium systems. This
is because Ia„,I' is directly related to exjen
mentally measurable quantities. Therefore the
illustrations we give below are directed to the
applications to the quarkonium systems.

The 8 wave. Here (4.22) reduces to

a=+pa, =a (4.27)

where a is the "Bohr radius" of quarkonium and
(4.24) gives

Ift.„(0)I'= 2 (4.28)

If the potential is oscillatorlike and takes the
form"

V(r) = ', )1&v
'—r',

we get analogously

a —(l1~$1/2

V(p) = p',

and

Ill, „(0)I' = 2(u~g'~WP&„, .

(4.29)

(4.30)

(4.31)

Formulas (4.28) and (4.31) display the scaling
behavior of IRs (0)I' explicitly.

When the potential includes several comPonents,
the relation (4.24) can again be written to make
the p dependence explicit. To show this, we take

4 n,V(r) = -—-'-+(2 r.
3 y C (4.32)

A simple calculation shows that

If~..(0)I'= 2(~.) +a-'&p-'&„,) . (4.33)

Ift(1) (0)I2 —++[&p-2v(1)& +4e (p-3)

-4&p-'V&.J,
or, using (2.V)

(4.34)

The behavior in p of the first term depends on
the assumptions we make on the p dependence
of n, . If confinement forces are assumed to be
independent of P then the first termbehaves like )1

and the second term like p3. However, (4.33)
shows clearly that we can easily modify the scal-
ing behavior of IB„s(0)I' without changing the
functional form of the potential. The cost is only
the introduction of some p dependence in o,

The P wave. E(luation (4.22) gives
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If'~~) (0) I2 —~ o(~[(p ~/&~&& 4(p

+4e.,&p '&.J. (4.35)

5/3

IA'g'„(0) I' = m, '[(2&+ 1)(p)„,m p

Contrary to the 8-wave formula, this relation
contains a dependence on the energy of the state.
We can eliminate this dependence if we take into
account Eq. (4.6), but since e„, is an experimental
quantity, it is not necessarily advantageous. On

the other hand, we see from (4.6) that e„, is very
sensitive to the large-distance behavior of the
potential (and of the wave function). This is in
contrast to the matrix elements in Eq. (4.35) which
are sensitive to the short-distance behavior of the
I)otential and of the wave function. Now IX' (0)I'
can be related to the decays of the 'P, ,QQ states
into a pair of photons or gluons by the formulas"

I"('P,- 2y)' 2Va'eo"

-3(p '&.J.
When e = —1, we take instead of (4.40)

a=3Pn, =a

and the corresponding expression is

-2&p '&.,&p '&.J.
We can readily calculate it and we obtain

IA'„(0)I' = ~

(4.43)

(4.44)

(4.45)

(4.46)

.I'('P, - 2y), ,~5 o.'eo 4

.I'('P, - 2g), ~5 n, '

(4.36)

(4.36')

This result is, of course, already known since
the Coulomb case is completely solved. For n= 1
the right-hand side is zero since in that case I,

is necessarily equal to zero. Therefore, the two
gluon decays (4.36) of the P states around 3.5
GeV are very sensitive to the non-Coulombic part
of the potential. Present model calculati. ons"
show that

We do not yet have data on these quantities, but
there is reasonable hope of getting them in the
near future.

In all cases where we can make V(p) indeI)en-
dent of the reduced mass of the quarkonium sys-
tem, we get the scaling formula

IR~, (Q}l'=4&& 10 ' GeV'

with m, = 1.2 GeV.
The D suave. In this case we get

Id" (o)l'= —'~'[(p 'v&„, 8&p 'v&„,

+8e (p '&„,].

(4.4V}

(4.48)

For instance, when

V(r) =ar',

we find

(mg '))

Taking for o. the usual expression'~
rgb+~)

from (4.35) we get

(4.3V)

(4.38)

(4.39)

(4.40)

The discussion for the I' wave also applies for
the D wave.

Again, the connection with the experimental
data is given by the decay widths of the D states.
We have"

I'('I),- e'e ) = ." Ifth(0)l',

D( }I
D

For lack of experimental data we cannot pursue
the comparison between the theoretical formula
(4.48) and the experiment any further.

V. CONCLUSIONS AND REMARKS

with

e„,= 2z(1+ e/2)(p&„, .

+4e„,(p '&„J, (4.41)

(4.42)

When a=1, using Eq. (4.1V), we obtain

We have shown how hypervirial theorems cor-
rectly generalized to include "boundary" effects
can lead to interesting sum rules for the radial
wave Schrodinger equation. The two simplest
ones, i.e., Eqs. (4.6) and (4.24), have already
been used in the discussions on quarkonium. This
is not the case for all other sum rules. Among
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g (e —e;)']&m )p(i& )'= 2(m (
pU'" (p) [m&, (5.2)

which is obtained from

these new sum rules, those which give the expres-
sion of the square of the lth derivative of the
wave function at the origin are particularly in-
teresting.

The fact that the sum rules (4.5) stress the
long-range part of the potential and of the wave
function, and more so, for increasing values of g,
suggests a method of calculation in which the
potential is replaced by its confining part and the
wave function by its WEB approximation. Such a
method would be very analogous to the one used
recently by Blankenbecler and Richardson for the
one-dimensional oscillator. "

Moreover, it is also expected that E„, scales
more and more like p ' ' when l increases if the
confining potential is linear and flavor indepen-
dent. Again we lack data to verify this fact. The
sum rules (4.22) depend more and more on the
short-range component of the potential when l in-
creases. Therefore we expect that

(5.1)

can scale differently from E„, when l ~ 1. Again
we can hope to check this in the near future.

Anapproximate calculation of these sum rules
can also be performed if we first insert the value
of e„, and compute the different matrix elements
using only the short-range Part of the potential.

Sum rules which involve radiative transition ma-
trix elements can also be deduced. An interesting
case is

(5.3)

If L=O andif

v= —~+V4 ~
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where V, is the confining potential, using (4.6)
and (5.2) we can write

«.&,+&p&"&,=e,+a g(e. -e~)'l&mlpli&l' (5 5)

This relation expresses V, entirely in terms of
physically measurable quantities.

Finally, we want to make a comment on the
generalization of the above formulation to include
spins. It is well known that we can always make
a partial-wave decomposition in terms of the quan-
tum numbers J, L, and S. For the quarkonium
systems this decomposition is analogous to that
in nucleon-nucleon scattering. " The difference
is that one obtains four radial wave equations
among which two are coupled. Though more in-
volved, the previous sum rules can also be
wri, tten down.¹teadded. After completion of this work we
became aware of a paper by C. Quigg and
J. L. Rosner [Fermilab Report No. Pub-79/22
(unpublished)] in which our sum rules (4.5) and
(4.22) are deduced by direct calculations. The
connection of those sum rules to the generalized
form of the hypervirial theorems is however
overlooked.
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