
PHYSICA. L REVIEW D VOLUME 21, N UMBER 7 1 AP R I L 1980

Renormahzafion of an SU(3) linear o model with mesons and baryons
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A linear SU(3) cr model with mesons and baryons is demonstrated to be renormalizable in the one-loop

approximation. The mesons and baryons are assigned to the (3,3*) e (3~,3) and the [(3,3*), (3*,3)]
representations of chiral SU(3) &( SU(3), respectively, The model incorporates both spontaneous and explicit

symmetry breaking. The baryon symmetry-breaking terms are chosen to allow the model to describe the X-
:- mass difference. Higher-order renormalization is also considered.

I. INTRODUCTION

The 0 model" has been used extensively in
exploring the implications of chiral symmetry
in low-energy hadron dyanmics. Most of these
investigations have employed the SU(2) model
with mesons' and nucleons~ and the SU(3) model
with mesons only. ' More recently, the SU(4)
meson model has been studied. ' In this paper we
describe a linear SU(3) model with mesons and
baryons and demonstrate, in the one-loop approxi-
mation, that the theory is renormalizable. We
employ a form of symmetry breaking that can in-
corporate the "-Xmass difference.

The classic version of the SU(2} meson c model
was developed by Gell-Mann and Levy, ' who con-
sidered both its linear and nonlinear forms. The
linear model was extended to SU(3} by Levy. '

The SU(3) o model is of interest for several
reasons: The Lagrangian currents obey the
chiral SU(3}x SU(3) current algebra; depending
on the choice of the symmetry-breaking Lagran-
gian, operator PCAC (partial conservationof axial-
vector current) may be incorporated as an identity; in
the appropriate limit (as the scalar masses --~,
which effectively gives the nonlinear model), the tree-
approximation calculations reproduce the soft-
meson current-algegra-PCAC theorems'; the
Lagrangian can be constructed to be nearly SU(3}
&&SU(3) invariant. The approximate chiral SU(3)
symmetry of the Hamiltonian may be the only
reasonable way to explain the successful current-
algebra-PCAC results', finally, the effects of
spontaneous symmetry breaking can be seen at
the tree-approximation level. Indeed, solutions
have been found in both the tree and one-loop
approximations that exhibit a Nambu-Goldstone
symmetry realization.

Numerical work in the one-loop approximation
in the SU(2), SU(3), and SU(4} linear meson
models and the SU(2) nonlinear meson-nucleon
models indicates that the second-order correc-

tions to the tree-approximation results are usu-
ally in the range of 10-20/p or less. The differ-
ence between the second-order calculated values
and their physical counterparts is also within
this limit. Differences of this magnitude are ac-
ceptable in the spirit of perturbation theory. One
expects the SU(3) model with mesons and baryons
also to be within the acceptable numerical limits.

The SU(2) meson model incorporating symmetry
breaking that is linear in the fields has been
shown to be renormalizable by Lee" and by
Symanzik. " Lee and Gervais" considered the
SU(2) model with fermion fields included. Crater"
explicitly demonstrated the renormalization of
the SU(3) &&SU(3)-invariant meson model without
spontaneous symmetry breaking in the one-loop
approximation. Chan and Haymaker" extended
this to the SU(3) model with spontaneous and ex-
plicit linear symmetry breaking. The SU(n)
meson model for n) 4 incorporating both spon-
taneous and explicit linear symmetry breaking
in the one-loop approximation has been investi-
gated by Geddes. " In all the above models, the
divergences can be canceled using only the
counterterms of the symmetric Lagrangian. In
the model outlined in this paper the coefficients
in the symmetry-breaking. Lagrangian also acquire
divergent parts.

In the SU(3) model, the addition of the baryons
poses several-problems. First there is the choice
of the SU(3) representation for the baryons, i.e.,
octet or nonet. We choose the nonet form to pre-
serve the SU(3) current-algebra structure; how-
ever, this requires a reinterpretation of the SU(3}
singlet. Second, we must specify the form of the
symmetric Lagrangian. Only nonderivative coup-
lings are allowed. Finally, there is the choice
of the meson and baryon symmetry-breaking
terms. The latter must describe the =-N mass
difference. It turns out that the choice of the
baryon symmetry-breaking term imposes severe
constraints on the allowable form for the meson
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sector of the Lagrangian.
The paper is organized as follows: In Sec. II

we consider the choice of the meson and baryon
fields and construct the basic Lagrangian', Sec.
III restructures this Lagrangian into a form that
is useful for calculation; the model is demon-
strated to be renormalizable in the one-loop ap-
proximation in Sec. IV; higher-order renormali-
zation is briefly discussed in Sec. V; our results
are summarized in Sec. VI.

M~ = Z" + z@"
b b (2.8)

M =Z —ic",b
—

b b~ (2 8)

M =(M ) =Z,b+2C b (2.10)

where Z and 4 denote nonets of scalar and
pseudoscalar fields, respectively. Finally, for
matrix notation we identify

II. CHOICE OF FIELDS AND LAGRANGIAN M =(M' ) =Z' —24~. (2.11)

and

[E;.,M~] = —
2 X,', M2-' (2 = 1, . . . , 8),

[E;.,M"]=-,' ~,*,M0,',
[E;.,M",]=-,'- X,', M"„

[E-. M'b] = 'V M"--'

(2.1)

(2.2)

(2.3)

(2.4)

withE' and E the generators of SU(3)&&(3) which
act on the left- and right-hand spaces, respec-
tively. These generators are related to I" and E',
the vector and axial-vector charges, respective. -
ly, via

(E ~E2) (2.5)

The fields also obey the Hermiticity relation

{M") =M" P"6)
and transform under parity as

EMO-'(x f)P '=M"(-r t) (2.7)

In this section we first consider the choice of
the basic fields and the structure of the chiral-
invariant Lagrangian. We then discuss the com-
position of the symmetry-breaking Lagrangian.

The meson fields are chosen so that the currents
obey the SU(3) current algebra and the axial-vec-
tor current divergences have a PCAC-type struc-
ture. As a result we assigntbe nonets of pseudo-
scalar (v, K, q, q') and scalar (q, x, o, v') mesons
to the (3, 3*)g (3*,3) representation of chiral
SU(3) &SU(3). To this end, consider the opera-
tors M~j and Mb~ (a, b = 1,2, 3) which transform
as the (3, 3+) and (3+, 3) representations, respec-
tively. The upper (lower) indices denote the
3 (3*) representation of SU(3) and the unbarred
(barred) indices denote the left- (right-) hand
space of chiral SU(3) &&SU(3), respectively. The
superscript 0 will be used to indicate unrenor-
malized fields and Lagrangian parameters.

These operators have the equal-time commuta-
tion relations

Chiral-invariant operators can now be con-
structed from the M's by contracting indices in
the left- and right-hand spaces; for example,

P"=M'- M' = Tr(M'M i).
b c (2.12)

There are four independent, even-parity, chiral-
invariant operators that can be built using the
M's. The others are

and

P2 =Tr(M'M'~M M ~),

I 2 =Tr(M M iMoMotMoMot)

(2.13)

(2.14)

e = 6&abg

+'e—g 'M M M'
abc

=detMO+ detMO

(2.15)

(2.16)

Py p Pg p and I 3 are invariant under the full
U(3) &&U(3) group, while P~ is invariant only
under the SU(3) &&SU(3) subgroup. Consequently,
the most general renormalizable form for a
chiral-invariant meson Lagrangian is

I Tr(8 M08PMO) 1 p02fbN ~ f0(foN)2

(2.17)+ f0 f2 N + gOfbN

To accommodate the g'baryonoctet we can con-
sider both the [(3,3*),(3*,3)] and [(8, 1), (1, 8)]
representations. " We chose the former for
three reasons: First, it is the only one that
allows the currents to obey the SU(3) current
algebra', second, it allows the Goldberger-Trei-
man relation to be given directly; third, it gives
a D-type axial-vector current rather than the E-
type corresponding to the [(8, 1), (1, 8)] repre-
sentation. The ninth baryon in the [(3, 3*),(3*,3)]
representation can be interpreted as a —,

' object, '
perhaps the A(1405).

The baryon-nonet operator B~b can be decom-
posed into left- and right-hand components under
SU(3)&SU(3) via

These relations allow the reduction of M~b and
M', to operators of definite parity as

gLO a

i

=-'.(1+~.)&"o,
&a'),

(2.18)
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PL' (x, -t)P '=y+b(-x, t) . (2.19)

where I,''an-d Rob' transform as the (3, 3m} and
(3*,3} representations, respectively. These
fields obey commutation relations analogous to
Eils. (2.1)-(2.4). Under parity the operators
transform, for example, as

(2.31)

These fields obey the linear commutation rela-
tion s18

(2.20)

which gives

Bb(1 y)
For matrix notation we set

(2.21)

They also obey a Hermiticity relation of the form

f Obt I 0th I Botb (1 py )a 2 a

i& ~J] zf iik teak ( z= 1q . ~ ~ p 8.) p

[E,, ;]= f,„"„
[F ', , y,'] =id, „g'k, .

[F ~i~ gi] = 'dig»—4'k ~

[Fi, b,']=zf;,bbbo,

(2.32)

(2.33)

(2.34)

(2.36)

(2.36)

and

Bob (2.22)

[E',, b,o] = -d,.„y,bob. (2.37)
Bota (Bot) (2.23)

Chiral-invariant operators can now be con-
structed following the prescription used in the
meson case. The simplest invariant is

pB L Ofa L ob + go/a g05
1 b a a

=Tr(B'tB'), (2.25)

which is ineligible for the Lagrangian. As is well
known, the baryon mass term Tr(B'B) is not
chiral invariant.

The chiral-invariant operator

Using the standard SU(3) tensor reductions, " the
symmetric Lagrangian transforms to

izo 2(gogo + yoyo)

y 4 E o (gogogogo + yoyoyoyo)

+2' kt)~ipigkg, + G'iik(gigig» —3),.yigk)

(2.38)

where

$0B& —IOay&1 0 +go y &gob
2 b a

=Tr(B y"B )

(2.26)

(2.27)

go
0 0 1 & 2 2E i i»if ~ zi ii+k2 ~i'm»»

go
0 0 J2 3E, , =f 6, 5, +—Z.

(2.39)

(2.40)

is used to construct the baryon kinetic-energy
term. Higher-order baryon invariants are not
renormalizable. Consequently, the most general
renormalizable chiral-invariant baryon Lagran-
gian is just the kinetic-energy term

zs =i Tr(Boy ~ BBo) . (2.28)

Next consider the meson-baryon sector. The
only renormalizable nonderivative chiral-invari-
ant coupling is

E—&def IOalobgOc+ 1
6 6d +Oath Ioc

abc d e f 6 abc d e f '

(2.29)

and

ijk ~~iik&

Ilao
ab i 2 abi&

~')ai = &;)~~i+ & ~&pl+ ~-i~)a

i jul di jm mal ikmdmjl i lmdm jlf &

~ tiki = diimdmki + fi kmfm j&
+ fiimfmik &

M2 1
d i'm» (~ io6—ik+ ~ io~ i»+ ~~6 v }

v 3

+v 36,,6„6„.

(2.41)

(2.42)

(2.43)

(2.44)

(2.46)

(2.46)

Thus, the Lagrangian coupling is

a h oebbbe»&BO~(Zbb+ zyb@bb)Boy (2.30)

The symmetric Lagrangian is now complete.
Before considering the symmetry-breaking La-
grangian, however', it is useful to restructure the
symmetric Lagrangian into a nine-component
form employing the decomposition

1 0 0
~SB CiVi ) (2.47)

where c', is nonvanishing only for the I= F=O
operators. This class of symmetry breaking

The symmetry-breaking Lagrangian is con-
structed from three separate parts. The first
part is built from the (3, 3*)@(3m, 3) representa
tion linear in the meson fields and explicitly is
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&se= -'"fs.kb:»' (2.48)

Other baryon symmetry-breaking contributions
such as b,'b,' and d, b,'b,' are not included as they
render the theory nonrenormalizable.

The final part consists of various bilinear
meson-. terms that are required to permit the in-
clusion of the baryon symmetry-breaking term.
The reasoning behind this particular choice of
terms is discussed in Sec. IV. Here +e merely
state that

~SB ii( s i j k~~i~i)

allows an operator PCAC type of structure for
the axial-vector current divergence.

The second part, i@eluded to enable a descrip-
tion of the "-N mass difference, is

this translation, we do not normal order this
translated Lagrangian. "

After the translation the Lagrangian can be
written as

g = ', a„-s', a"s', +-', a„ga "y', +zb'y ~ ab;- ,'m'„"-y',.y',

ij i g ab a 5
~08 $0/0 y/0 bobo

+ ,'E', —,(s', s's's. ', + P', P'P'Q', )

+ 2Eii

«litchi

~isks i + GQ«sisisk —3Gii «Q~ifisk

+ H~ i(b,bksi + zb, ysbbitii) —Eisi, (3.3)

where
Os2

mi~
——p . 5,) —66i~ v —4Fi~ gv vg

+ 2gs J ig + 2dld8

where

d d ii(oioi+ QiQi)

—(d:~ ii + de';i)(o ioi —0i0i), (2.49)

+ 2d2J,'~+ 2d 3J';~,
OQ2 02

mi~ ——p, 6i~+66i~ v —4Ei~ gv v~

+ 2a~J i&+ 2d&dsig —2d2J i&
—2d3J

(3.4)

(3.5)

and

3V 3
ij fiskfksi 14 si j t

.4MsJ ig 6 ig d8ig

7 2
~ii =5iobio 7 (5iobis+ bisbio) '

(2.50}

(2.51)

(2.S2)

m,', = —H,', ,v' + ze'f~, ,
Os 0 4 0 0
igk i jk y ijkeve

gOQ g0 4 gO VO
igsk i Jk Y ig, ke e &

and

Ei —Ci + P. V i
—3Gi gV Vg —y Eiegyvevevy

(3.6)

(3.7}

(3.8)

On the basis of previous numerical work with
0 models, this symmetry-breaking term is ex-
pected to be small. The complete Lagrangian is
now

~ =&8m + ZsB+Ssa+Css ~
2 3 (2.53)

III. THE RESTRUCTURING OF THE LAGRANGIAN

(ohio', io& =v', . (3.1)

Several modifications must be made to the
Lagrangian before calculations are possible.
These include allowing a Nambu-Goldstone sym-
metry realization, introducing -the wave-function
and Lagrangian-parameter renormalization con-
stants, and outlining the type of perturbation
theory to be employed.

To permit a Nambu-Goldstone symmetry reali-
zation20 we define the vacuum expectation value
of the scalar fields as

g, (M, B,X}= (1/As}g(XM, XB}. (s.lo)

X is used exclusively for power counting and is
set to unity at the end of the calculations. This
is, in effect, an expansion in the number of
closed loops in the Feynman diagrams contribut-
ing to a given process. The symmetry properties
of the Lagrangian are preserved order by order
in this expansion. "

We next introduce an "intermediate" renox mal-
ization, "which we use to mean the renormaliza-
tion procedure that leads to a finite S matrix
without at the same time leading to the conven-
tional asymptotic renormalization of the fields.
A final finite renormalization is needed for this.
Consequently, we introduce the chiral-invariant
wave-function renormalization constants Z„and
ZB via

(3.9)

Perturbation theory is defined as an expansion
in the powers of X which is introduced via

A new scalar field with a vanishing vacuum ex-
pectation value is next defined as (g, s'„v', ) =Zii (P, , s„v,.) (3.11)

0 0 0Si =O' ~ —Vi ~ (3.2)
and

These fields are then introduced into the Lagran-
gian; however, owing to problems inherent in

b0 —Z ~~2b
a B a e (3.12)

Henormalization constants are also introduced
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f,' =Z~t ft/Ztt' (3.13)

for each parameter in the Lagrangian; for ex-
ample,

and

e'=Z, e/Ze.

The Lagrangian can finally be rewritten as

(3.14)

1 2 2
g = ', B„-s,B"s, + —', B„ttttB Pt+ib, y Bb, —,'m—tb& tttt@t —,'m—t'tstst —m„b,b,

+ ~ +ilht(Ststshst + ~t~lphpt) + 2X Ett htptptshst + XGtths tstsh —3XGft hptptsh

+ AH~ t( b, bbs,. +ib,y, bbttr, .) —(1/X)ES, +(Z.„—1)—,'(B„s,B"s,. + B„Q,.B"Qt)+i(Zs —1)b,y Bb, , (3.15)

where only the wave-function renormalization-
constant counterterms have been explicitly
written. The couplings have also been restruc-
tured; for example,

5=D+h. (3.20)

counterterms can be separated into divergent (D)
and finite (&) parts, i.e.,

Ettht Zftft~ttht + 2Zyhf2+ltht ~ (3.16)
Similarly, v, has contributions to all orders. To
second order we set

The Feynman rules for this Lagrangian are given
in Fig. 1. The vector and axial-cector currents
are

=2f thZe. (slB"Sh+ @tB "Ah)

+ ft&Q„V&BsS —if, ,bZSb, y b, (3.1V)

A. t" dtthZ„——(tftt 8"sh vtB Qh-)+ d, ah ZBb.sy ysbb r

(3.18)

respectively.
All parameters in the I agrangian have con-

tributions to each order in perturbation theory.
For example, to second order we write

Zy ft = f1+~'5ft (3.19)

where the counterterm is denoted by 5. The

v, =$t+ X25)t. (3.21)

In this paper we are concerned only with the di-
vergent parts of counterterms.

In Sec. IV we demonstrate that a consistent re-
normalization is possible with D)t =0 and evalu-
ate the divergent counterterms to second order.

Finally, we note that in the definitions of the
masses and coupling constants of the final La-
grangian all the basic Lagrangian constants
appeared linearly, except the v, To ensure
that the symmetry of the Lagrangian is maintained,
only terms to a given order of X can be retained
in the counterterms. Thus, for example, 5E, to
second order is

5&; =&;(5p', 5f„5f2, 5g, 5c, 5a„5d) + m fq5 g
t

(3.22)

IV. RENORMALIZATION OF THE ONE-LOOP AMPLITUDES

In this section we demonstrate that the model is renormalizable in the one-loop approximation and eval-
uate the counterterms. We set

D5, =0 (4.1)

and, at the conclusion, it is clear that the remaining counterterms are sufficient to cancel all second-
order divergences. Each proper vertex is analyzed in turn and is shown to be finite. In subsections A,
B, C, and D below we consider the four-, three-, two-, and one-point amplitudes, respectively. In sub-
section E a non-S-matrix type of divergence from the current-field vertex is analyzed.

A. Four-point amplitudes

Three four-point amplitudes need to be considered. First consider the four-point scalar vertex. The
diagrams to be evaluated to second order containing divergent terms are presented in Fig. 2. Evaluating
these diagrams and requiring that the divergent parts cancel, one finds

»;thl — »tt.Al. :»."..;((ql+ &2)') 3~tt .A—l ..»"; +&1+& )')2

2 sh, t bc, t ge, Pf lD~Dgb, e, sat, ch(fl g@1 qbrr r64)+Dhg fe gc, ba(tf4r 12r.tfhr tel))

2 att, t bc j ge l+fg lrDI+ab, cg eg, gh(tftr Qhr Qsr 92) +Dhg fs gc b (tfh /sar tfhrr Qt)] + crossed terms =0, (4.2)
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where

&,. (P ) =i 2„-.D((/-P) )„D(P).,
d l (4.3)

d4l
D~,« „(q„q„q„q4)=i

(
)4Tr[D(l+q, )„D(l+q, +q, ),j3(/-q4), &D(/) „]. (4.4)

D((l p)2) 5„+m',, -(p'-2/ p+ v')5„~
p —v' P 2 2

and

(4.5)

To isolate the divergent parts of the Feynman
integrals, we expand the meson propagators
D"4((/ —p)'), d

about the point p'= 0 and the arbi-
trary chirai-invariant mass m'= v2, and expand
the baryon propagators D(/ —P)„ in a similar
fashion about P =0 and m = v. Explicitly, one
then has

d l 5)~5~,
O, kl(P ) (2ll)4 (P 212)2

(4.7)

and

-=«d5kP(v') (4.8)

DD ~, d eye„(q„q2; q3, q4) =45,35,45ee5ek/3(v ) . (4.9)

the integrals to be easily identified. %hen evalua-
ting the integrals, the trace of the y matrices
must be computed before performing the inte-
gration s.

Applying this prescription to the above integrals
gives

O.bD(/ —P)~ =g
" +

g „)2 [m„+ (p —v)5„]+ ' ' ' .

(4.6)

Convergent integrals can then be defined as

ll, hl&') =Did, kl&') —5«l5kP(v')

and

(4.10)

This expansion is valid whether or not there is
particle miaing and allows the divergent parts of

I 3

ab, cd, eI, eh(q1& q2 t q3 & q4) ab, cd, ee, eh(ql I q2 i q31 q4)

—45,35,45&5ekB(v') .
(4.11)

El/nation (4.2) can now be rewritten as

kJ~j
a k b

i D [k ]..

io [k]

6l G'Ijk

8i Fijk

k
I

. J
r

i

k
j-, .-kr

ID~[k ]..

-6i G~-
Jk, l

i Fijkl

Ukl (+damn klmn ikmn l lmn llmrr ekmn

A

+id, mr/ kl, mn +1k,ma+el, mn

+&lr, Ak, .)~(v')

2(+&ski + +&kyl +Cldk+ Cl rk

++ihip + Hl eked)B(v '), (4.12)

where the crossed terms have been explicitly in-

Si Fij kl

k k J

I Hab —Hab, i 75

i(ZM I) k 8"2
IJ

i {ZM-I ) k 8(j
.C

b

+ crossed

a k@ b i(Z, —l)P'Sab

FIG. 1. Feynman rules for the Lagrangian of Eq. (3.15).
Wavy lines, dashed lines, and solid lines represent sca-
lar, pseudoscalar, and baryon fields, respectively.

Qh
a. f

FIG. 2. Diagrams containing divergent contributions
to the four-point proper scalar vertex to second order.
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eluded and ijkl fr ijkl 2 f2 ijkl ' (4.16)
4& jki =&~,i».,j&.d, Pg, , r ~ (4.13) Consequently, the required counterterms are

The product terms can be evaluated in a straight-
forward manner using standard SU(3) tensor iden-
tities"; for example,

h4
Dfr = 8(13fr + 12frA + 3f2 ) 648

B(~ ) (4'17)

I4
i jkl 1296 (dijm mkl ikm mjl ilm mjk

+ 6.j~hr + ~:r6jk) . (4.14)

1 h4
Dfa = 48f2(fr + f2) 648 B(~ ) ' (4.18)

Evaluating and summing these terms gives

I4
+ J'rjhl f2(f1+f2) - 2

(4.15)

From Eq. (2.39) we also have

DE,jk, J'rjkr ——8(13f, +12f,f2+ 3f,') — B(rt')

With these values for the divergent second-
order counterterms the four-point proper scalar
vertex is finite in the one-loop approximation.
These counterterms also remove the second-
order divergences in the four-point proper
pseudoscalar vertex in a similar calculation.
The only significant difference in this case is
that the baryon loop diagrams involve the integral

4

D,'b",, ,f,h(q„q, ; q„q,) =2( -)4»Ir,D(~+ qr).p,D(~+ q, + q.)„r,D(& - q.)&~,D(0,h].

for which the divergent part is again

DDab)cdteftgh(qr) q2t q3) q4) 46ab6cd6ef5gkP

(4.19)

(4.20)

The diagrams containing divergences to be evaluated to second order for the four-point proper scalar-
pseudoscalar vertex are given in Fig. 3. Evaluating these diagrams and setting the divergent part of the
amplitude to zero gives

8DE, jh, —32E,j .„+kr„.„,DB„"~,((qr + q, )') —32E,jjkr, .„,DBe e. „„.((q, + q, )')
j. 5500 / ~ $ p 5500
2 ha, i bc) j de)k fg)r & ab)cd)ef)gh(q1) q2) qht q4j ba, kg, fe, dc(q2) ql) q4) q3)]

2 lia iHbe j de) rBfg)k IDab, cdef gh(qi) qat q4) q3) +Dba kg fe de(q2) qrt q3) q4)]+ crossed 'tel'IIls =0 .

This amplitude contains baryon loop integrals of the type

c.',":,, (t„t„)t„t,)=(j ( ), Tr[),D()+t,).,t,c((+e,+t,)p() —q,)tc()),„]

and

D.'b",.d,.f, ,k(qr q. ; q„q,) = 2
2

4»f&3D(~+ qr).bD(~+ q +qI).,r2D(13- qa),f D(&),h],
d4l

(4.21)

(4.22)

(4.23)

which have divergent parts

ab)cd)ef)gh(qlt q2) q3) qa) +( )5ab5cd5ef6ghB(r ) '

Isolating the divergent parts of the integrals and including the crossed terms, one finds

DEij, br =4(E j, Ekr +Erj ))Ekr ~
+2Ii, k)r j, r

+ ~l, r Ej,k )B(r )

2( i jkl Ijlk ikl j irkj ikjl il jk)

This reduces to
4

DE,j 2, —— 8(13f,'+ 12f f, + Sf2') —
648 6rj6krB(r)2) + 24f, (f, +f ) — JhrjhrB(r)2) .

(4.24)

(4.25)

(4.26)

From Eq. (2.40) DP, jhr can also be wr. itten as

DEr j, kr =Dfr ~i j~ki + 2Df2~'r jkr

Consequently, the counterterms of Eqs. (4.1V) and (4.18) also render this vertex finite.

(4.2V)
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B. Three-point amplitudes

Four three-point amplitudes need to be considered. The diagrams containing divergences to be evalu-
ated to second order for the three-point scalar-meson vertex are given in Fig. 4. Requiring the divergent
part of the amplitude to vanish gives

6DG,'jk —24Ge„+jk„.„DB~ . „„,(q')+ 24G c„,Ejk „.DBce, „„,(q')

Hj,—,Hb, jHd, Q[C„, dj(q„q„q,)+ Cj, d, „(q„q„q,)]+crossed terms=0. (4.28)

The divergent part of

d4i
C. ...(q„q., q.)= '

)
T ID(f+q, ).D(f-q.).P(1) 1

has the form

DC b,d,j(qi, qk qs) =4(5 b5~m j+ 5 b5~m, d+ 6 d5&m, b)B(p ) .
Isolating the divergent parts of the integrals, one has

DG', » 4(Gei g——jk„„—Ge„,Ejk „„+crossed terms)B(vk)

+ ,'[Hj, ,H„—jH„k(m~+mj, )+Hd, +„,H„j(m,d+ jjbd,, )+H„jH„Q~,(m„+jji„)]B(V').
Rewriting this using Eqs. (3.6)-(3.8) for m, G', and Gc gives

DGijk 4[G, ——„(Ejk„„—Pjk „)+Gj„„(F,k „—Eik e(„)+Gk„c(Fija„—Eij a„)

b (H a i jk Hn ikj H a ki j H aji k + ajbi ~a
k ji )~cP (~

But DG' is also given by

DGi'jk DGijk+ —
x—DFi jk

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

where we have assumed that Dg vanishes. The terms containing g in the above relation reprodu"e Eq.
(4.12) of the four-point scalar vertex calculation. The remaining constraint reduces to

DG,jk=DgZ', =24g(f, fk)P„P(v—'). (4.34)

Consequently, the required counterterm is

Dg = 24g(f, —f.)B(~') . (4.35)

From Eq. (4.31) it is clear that symmetric baryon symmetry-breaking terms such as b, b, or d~bb, bb are
not acceptable as they would contribute symmetry-breaking effects to the right-hand side, and thus render
the model nonrenormalizable.

The calculation for the three-point proper scalar-pseudoscalar-meson vertex parallels the one above.
The diagrams are given in Fig. 5. Part of the evaluation duplicates that of the four-point scalar-pseudo-
scalar vertex and the remainder reproduces the calculation of Dg in Eq. (4.34). This amplitude requires
the integral

c'i „„(q„q)=c(f I,Tr(yc(1+ ) ,y, q(
- c),p((lc)&. ],

which has a divergent part given by

DCeb, cd, ef{qI~ qk~ qb) (6cd6ej~cb 6eb6cd~ej 6cb ef

(4.36)

(4.37)

The diagrams containing divergences for the scalar meson-baryon proper vertex are given in Fig. 6.
Evaluating the diagrams, setting the divergent part of the amplitude to zero, and neglecting spinors gives

Hcb, i Hcc, kHde, iHjb, jD~cd, cf, jk{qi» qb~ q2) Hec, k de, iHjb, j ~od, ef, jk(ql~ qb& q2) ~

where
d4E

D(f+ q,), D(f —q, )~+ (f ), ,
4

D{l+q ), D{l—q ), ~+ {P)

(4.38)

(4.39)

(4.40)



1994 H. B. GEDDES

and

D( ah t ol, (p( l l t l2 t l3) P ab t dalt/ (ql t 'q2 t q3) 5a 35aa5 i jB(v

Equation (4.38) reduces to

DH~,.—0.
From Eq. (2.42) the resultant counterterm is

Dh=0.

(4.41)

(4.42)

(4.43)

The calculation for the pseudoscalar-meson-baryonthree-point vertex is similar to the one above. The
diagrams are given in Fig. V. In this case we encounter the integrals

and

d l 2g„~ „(q„q» q, ) =i -( )4D(l—+-q, ),b r,D(l —q, ),4D (l )„ (4.44)

(4.45)

with divergent parts

Drab 4((~ if(qlt q2) q3) Drab 42 jj(qlt q2) 'q3) = r35 3-5 45&+(v') ~ (4.48)

C. Two-point amplitudes

In this subsection we consider the renormalization of the masses. These calculations are much more
tedious then those above as both the meson and baryon explicit symmetry-breaking terms manifest them-
selves at this level.

First consider the scalar mass. The diagrams for the scalar two-point function are given in Fig. 8.
Setting the divergent part of this amplitude to zero gives

(Z„—1)p'5,
&

—Dm',.&+ 4E,&„j)A„'„+4E,
&

j)A4„—18G;„„G~&,„,DBaa„, , (p2)

—18G„'„,O',„,PB'„'„,„(P')+H„,H„,D[B„(P)+B, , (P)]=0 (4 4y)

where

and

d4/
Al' i '

(
)4D(12)lq

d4l
B.b„a(I ) =&

2 )4
Tr[D(1 —P).bD(1)„1.

(4.48)

(4.49)

These integrals have the divergent parts

DA, =A(v')5, + (m', , —v25;~)B(v2) (4.50)

DB, , (p}=4A(v2)5, 5 +4[m,„m, +5 m„m, +5, m, ~ —(P'/2+v')5 , 5]2(B)v,

which involve both meson and baryon masses. A(v') is defined by

d4l
A(v ) —z

(2 )4 p (4.52)

(4.53)

Equation (4.4V) can now be rewritten as

Dm f) —(2„—1)p25,~
—4(E,~

+E,q„+2H~, H, b ~)A(v. 2)

+ 4[E,.q„„ma„„+E,~ „„ma„—v'(El~ +E,~ )]B(v') —18(G43„„Gla „+Gb„ lGa ~)B(v )

+5„(m„m~+ m„m ) —2(P2/2+ v')5„5„]B(v').
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FIG. 4. Diagrams containing divergent contributions
to the three-point proper scalar vertex in the one-loop
approximation.

From the reduction

h'
H,~ iH, q ~

———5i,. (4.54)

FIG. 3. Diagrams containing divergent contributions to
second order to the four-point proper scalar-pseudosca-
lar amplitude.

evaluation of T,.&
largely reproduces calculations

shown above; in particular, after using Eqs.
(3.4)-(3.8) for the masses (isolating the symmet-
ric part), G' and G~, one essentially duplicates
Eqs. (4.15) and (4.34). The remaining portion is
a 5;& component. The final result is

T;~~ — 16(pm —v~)(5f, + 3f2) —16g ——v~ 5)~
8k

one immediately finds

Z„+ I + 9'B(v') .
The remainder we write as

Dm+ =T"A(v') + T~~B(v')

A straightforward evaluation gives

(4.55)

(4.56)

—6DG, q E -4DF, ) ~$ g~. (4.59)

Next consider the contribution of the baryon
symmetry-breaking terms. From Eq. (4.53) this
is

(4.57)

2e h2
'9 (7fiemfjii8$ $3~~d8)g —»g) ~ (4.60)

T',.&' can be further decomposed via

(4.58)ys2 iso+ Z
sN + ysBij if ig

1

into parts that are obtained exclusively from the
symmetric and symmetry-breaking parts of the
meson and baryon masses, respectively. The

The meson symmetry-breaking term must be
ab1.e to accommodate this structure; however,
before analyzing it in detail we consider, the
pseudoscalar-meson mass.

The diagrams for the pseudoscalar-meson two-
point function are given in Fig. 9. Requiring the
divergent part of the amplitude to vanish gives

(S„—l)p'5,
q

—Dm~q'+Eo j)A' +F,q„QA~„- 36Gf „Gf ~ „.DB'„~„,„~(p')

H...H„-,D[B.", „(p)+B,".„.(p)]=0,
where

d4/
B,s (p )=if Tr[Y B(l—0)Y~D(l)J, (4.61)

(4.62)

and

DB~5,~(p) = -45~5,+(v2) + 4[m~m~ — ,,5m„m~- 5,~m„m~+ (p2/2+ v2)5,,5,~]B(v2) .
This can be rewritten as

A

Dmf( —(Z„— )IP25q —4(E,~ +Eo „„+2H,„,H, ~ q)A(v)

+ 4[E„„„m„'„+E,&„m~. „—vm(E,
&

+P. ,&„)]B(v ) —36Gf. „G~&„P(v )

+ 4H,~,H~, ~[ m, bm~ mh, m~,-+ 5„(m„-m,~+ m~,m„)
+ 5,~(m„m~+ m~,m ) —2(p'/2+ v2)5„5,~]B(v2) .

(4.63)

(4.64)
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FIG. 7. Diagrams containing divergent contributions
to the three-point proper pseudoscalar-baryon amplitude
to second order.

counterterms using Eqs. (4.56) and (4.65) gives

FIG. 5. One-loop approximation diagrams containing
divergences for the three-point proper scalar-pseudosca-
lar amplitude.

The P' term reproduces Eq. (4.55}. The re-
maining part is

Dm~'=T~'A(v')+ (T~'+ To~+ T~ )B(v'), (4.65)

paralleling Eqs. (4.56) and (4.58) for the scalar
mass. One immediately finds

2h2
+ 4 4(3u' —v')(5f, + 3f2) —4g—

—(3f, +2f, )(a, +a~)+ —,'e'O' B(v'),

Da, = 8a,f, +4f,(a, -a~}—,'e'h' B—(v'),

(4.70)

(4.71)

yg 1 yslj 4 (4.66)

The symmetric mass calculation partly resembles
those for the three- and four-point scalar-pseudo-
scalar-meson vertices and gives

P'

8b
Tufo

— 16(p,' —v')(5f, + 3f,) —16g — v' 5,&

Da~ = [Sa~f, —4f, (a, —a~ ) + —,'e'h ']B(v'), (4.72)

(4.73)

Dd, = 4 2d, (f, + 3f,) — f,(a, + a~) + e'h' B(v'),vS va, ,

+ 6DG, f $ —4DE,f.
The baryon contribution in this case is

(4.67)
Dd, = [Sf,d + 2f2(a, —a~) + -,'f, d, + & e'h']B(v'),

(4.74)

2e'h' MST„=— —3f;, f „—,3„;l — ; 3).l.
The meson symmetry-breaking terms must be

chosen to accommodate both T~and T~ . This
choice is complicated by the fact that the meson
symmetry-breaking terms feed back into Dm',

&

via the m'„contributions in Eqs. (4.53) and (4.64}.
Consequently, there is a minimal set of tensors
allowed. This set governed the choice of g» in
Eq. (2.4S). Using Eqs. (3.4) and (3.5), T~f is
now given by

and

Dd, =2[4f,d, —3f,(a, —a~) + 12fad ]B(v') . (4.75)

From the nature of these counterterms, it is clear
that the complex structure of S» is necessary.
For a nonvanishing e, all five meson bilinear
symmetry-breaking terms are required.

The diagrams for the baryon two-point function
are given in Fig. 10. Neglecting spinors and
setting the divergent part of the amplitude to zero
gives

—Dm„+ (Ze —1)P5„
T;~=8[E,f„„(a)J'„+d,d,„„+d,J„„+d,J' )

+F,, „„(a,J'„„d+,d, —d,Z„'„—d,d'„„)].
(4.6S)

1'~&" has F and F interchanged.
Evaluating these expressions and isolating the

where

D[Q;, (P) —$, ,(P)]. =0, (4.76)

r~
l

1
I )

m&
i J

FIG. 6. Diagrams containing divergences to second
order for the proper scalar-baryon vertex.

FIG. 8. Diagrams for the two-point scalar amplitude to
second order.
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FIG. 11. Diagrams for the vacuum expectation value
of the scalar. field to second order.

vides the counterterms
FIG. 9. Diagrams for the two-. point pseudoscalar am-

plitude- in the one-loop approximation. Dco =29 3g(a —a~ —4d, + & d, )B(v2) (4.87)

g;~, iq(P) =i J (2
a(t).~'((t P) }-gq'

d'l
,y,D(l)„~,D ((I —P}')i~

(4.77)
2'

Dc =—Dc.8, i7 0'

E. Current-field amplitude

(4.88)

and

Dg;, „(P)= (P'/25„+ m„)5,~B(v'),

and

Zs = 1+ B(v—')
9

D. One-point amplitude

D@;.,(P) =( P/26-. , + m„)6„B(v').
Consequently, we have

Dm, ~
—(Zs —1)II&,b ---pH, iH ~ )B(v2),

which affords the counterterms

(4.78)

(4.79)

(4.80)

(4.81)

(4.82}

(4.83)

The current-field loop diagrams of Fig. 12 con-
tain. a potential divergence not removed by the
above S-matrix program. This amplitude con-
tains the integral

d4l (2l —p)"
(2m)' (1,

' x')[(1 )' ']
for the meson loop.

Formally this integral is linearly divergent;
however, explicit evaluation gives a finite result.
The only manifestation of the formal divergence
is a surface term that contributes to the finite
result. This term cannot be retained as it vio-
lates the Ward-Takahashi identities. A regulari-
zation procedure is used to remove the surface
term. "

The baryon loop integral in this amplitude is
logarithmically divergent; however, the divergent
part contains the factor

In this section we consider the vacuum expecta-
tion value of the scalar field. The diagrams for
this amplitude are given in Fig. 11. Evaluating
these diagrams and setting the divergent part of
the amplitude to zero gives

DE, —66; QA„'„+66~„ADA~„

+ H,~,D(As~ +As~, ) =0, (4.84)

where

(m„—m~) 5„+(m„m„)5-„.
This antisymmetric factor renders the amplitude
finite when combining with the symmetric vertex
ten sors.
At this stage all amplitudes are finite to second

order. As indicated at the outset, the g,. do not
acquire divergent second-order parts.

V. HIGHER-ORDER RENORMALIZATION

and

A,~ =i — Tr[D(l},~]
d4/

(4.85)

DA, b
—4m, bA(v )+4(m„m, ~m~b —m, ~v )B(v ).

(4.86}

It is clear from Sec. IV that the bilinear meson
and baryon symmetry-breaking terms severely
complicate the renormalization procedure. The
question of the implications of these terms in
higher-order calculations then arises. In this
section we outline a nonrigorous proof that the

The evaluation of this amplitude parallels earlier
scalar vertex calculations. This amplitude pro-

I

iA

0 d

b a

FIG. 10. One-loop-approximation diagrams for the
baryon two-point function.

FIG. 12. Two diagrams for the axial-vector-current-
pseudoscalar-field amplitude. The dot-dashed line rep-
resents the axial-vector current.
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theory is renormalizable to all orders. We
assume that the symmetric theory is fully renor-
malizable. The divergent parts of integrals will
be isolated using the propagator expansions of
Eels. (4.5) and (4.6), as in the one-loop approxi-
mation.

The superficial divergence D of any proper
diagram in this model is given by

D=4 —E —Vs+I~ —V~, (5.1)

whereE, V„ l~, and V~ are the number of external
lines, three-point meson vertices, internal baryon
lines, and three-point meson-baryon vertices,
respectively. Consequently, all vertices with
E & 4 are supe rfi cially covergent.

For meson vertices the maximum divergence
is then

D=4-E. (5.2)

Thus the four-point proper meson vertex is loga-
rithmically divergent. This divergence can be
removed by the counterterms of the symmetric
Lagrangian.

The three-point proper meson vertex contains a
logarithmic divergence that is linear in the bar-
yon mass. Circling the baryon loops in both
directions will then cancel the antisymmetric
part of the baryon mass. Consequently, the
divergence can also be removed by the counter-
terms of the symmetric theory.

The meson two-point function is quadratically
divergent. However, all quadratic subgraph
divergences in any order for both meson and
baryon loops correspond to lower-order mass re-
normalization and thus do not present a problem.
Consequently, we need only consider the overall
quadratic divergence. The quadratic divergence
itself can be removed employing the counterterms
of the symmetric theory. The logarithmic diver-
gence contains meson and baryon mass squared
terms. The symmetric part of this divergence
can again be removed as in the symmetric theory.
The remaining symmetry-breaking part corre-
sponds to a nonsymmetric tensor (as in the one-
loop case) contracted with a symmetric tensor.
The result will have the same form as the one-loop
case. Consequently, only the five bilinear meson
symmetry-breaking terms of the present model
will be needed. The Lagrangian symmetry-
breaking parameters will acquire divergent
counterterms.

The meson one-point proper vertex is quad-
ratically divergent with cubic baryon mass terms
and quadratic meson mass terms. With the l= F
=0 symmetry-breaking operators in the model,
only the E~ with i =0, 8 will be nonvanishing.
These can contain divergences not present in the

symmetric model, but they can be removed em-
ploying counterterms available from the linear
meson symmetry-breaking terms.

The vertices with external baryon lines have a
maximum divergence of

(5.3)

Thus all vertices with external baryon lines and
E & 3 are superficially convergent. The three-
point proper meson-baryon vertex is logarith-
mically divergent. Consequently, it can be re-
normalized using the counterterms of the sym-
metric theory.

The baryon two-point function contains a loga-
rithmic divergence linear in the baryon masses.
The subgraph divergences can be treated as in
the meson-two-point function. We need only con-
sider the overaQ logarithmic divergence. The
symmetric part presents no problem. The sym-
metry-breaking part can be renormabzed using
the counterterms from the baryon bilinear sym-
metry-breaking term.

Consequently, assuming the symmetric theory
is renormalizable, this model will also be re-
normalizable to all orders of-perturbation theory.

VI. SUMMARY

We have considered a linear SU(3) o model
incorporating both meson and baryon fields with
spontaneous and explicit symmetry breaking. The
chiral-symmetric Lagrangian contains the most
general renormalizable nonderivative couplings.
The symmetry-breaking Lagrangian contains bi-
linear baryon terms to describe the N-" mass
difference, and linear and bilinear meson terms.

The bilinear meson symmetry-breaking terms
are required to construct a renormalizable theory,
but are expected to have a smaQ numerical effect
so that the meson sector reproduces the success
of the linear (3, 3*)Q (3*,3) symmetry-breaking
meson model. These successes include a good
description of the meson mass spectrum and an
approximate chiral SU(2) && SU(2) Lagrangian sym-
metry.

The model is demonstrated explicitly to be re-
normalizable in the one-loop approximation and
the counterterms are evaluated. The model is
expected to be renormalizable to all orders.
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