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A linear SU(3) o model with mesons and baryons is demonstrated to be renormalizable in the one-loop
approximation. The mesons and baryons are assigned to the (3,3*) @ (3*%,3) and the. [(3,3%), (3*,3)]
representations of chiral SU(3) X SU(3), respectively. The model incorporates both spontaneous and explicit
symmetry breaking. The baryon symmetry-breaking terms are chosen to allow the model to describe the N-
= mass difference. Higher-order renormalization is also considered.

I. INTRODUCTION

The 0 model’*? has been used extensively in
exploring the implications of chiral symmetry
in low-energy hadron dyanmics. Most of these
investigations have employed the SU(2) model
with mesons® and nucleons? and the SU(3) model
with mesons only.® More recently, the SU(4)
meson model has been studied.® In this paper we
describe a linear SU(3) model with mesons and
baryons and demonstrate, in the one-loop approxi-
mation, that the theory is renormalizable. We
employ a form of symmetry breaking that can in-
corporate the =-N mass difference.

The classic version of the SU(2) meson ¢ model
was developed by Gell-Mann and Lévy,! who con-
sidered both its linear and nonlinear forms. The
linear model was extended to SU(3) by Lévy.”

The SU(3) 0 model is of interest for several
reasons: The Lagrangian currents obey the
chiral SU(3)xXSU(3) current algebra; depending
on the choice of the symmetry-breaking Lagran-
gian, operator PCAC (partial conservationof axial-
vector current) may be incorporated as an identity; in
the appropriate limit (as the scalar masses -,

which effectively gives the nonlinear model), the tree-

approximation calculations reproduce the soft-
meson current-algegra—PCAC theorems?®; the
Lagrangian can be constructed to be nearly SU(3)
X8U(3) invariant. The approximate chiral SU(3)
symmetry of the Hamiltonian may be the only
reasonable way to explain the successful current-
algebra—PCAC results®; finally, the effects of
spontaneous symmetry breaking can be seen at
the tree-approximation level. Indeed, solutions
have been found in both the tree and one-loop
approximations that exhibit a Nambu-Goldstone
symmetry realization.

Numerical work in the one-loop approximation
in the SU(2), SU(3), and SU(4) linear meson
models and the SU(2) nonlinear meson-nucleon
models indicates that the second-order correc-

tions to the tree-approximation results are usu-
ally in the range of 10-20% or less. The differ-
ence between the second-order calculated values
and their physical counterparts is also within

this limit. Differences of this magnitude are ac-
ceptable in the spirit of perturbation theory. One
expects the SU(3) model with mesons and baryons
also to be within the acceptable numerical limits.

The SU(2) meson model incorporating symmetry
breaking that is linear in the fields has been
shown to be renormalizable by Lee'® and by
Symanzik.’ Lee and Gervais'? considered the
SU(2) model with fermion fields included. Crater'?
explicitly demonstrated the renormalization of
the SU(3)*XSU(3)-invariant meson model without
spontaneous symmetry breaking in the one-loop
approximation. Chan and Haymaker' extended
this to the SU(3) model with spontaneous and ex-
plicit linear symmetry breaking. The SU(n)
meson model for z = 4 incorporating both spon-
taneous and explicit linear symmetry breaking
in the one-loop approximation has been investi-
gated by Geddes.'® In all the above models, the
divergences can be canceled using only the
counterterms of the symmetric Lagrangian. In
the model outlined in this paper the coefficients
in the symmetry-breaking Lagrangian also acquire
divergent parts.

In the SU(3) model, the addition of the baryons
poseés several problems. First there is the choice
of the SU(3) representation for the baryons, i.e.,
octet or nonet. We choose the nonet form to pre-
serve the SU(3) current-algebra structure; how-
ever, this requires a reinterpretation of the SU(3)
singlet. Second, we must specify the form of the
symmetric Lagrangian. Only nonderivative coup-
lings are allowed. Finally, there is the choice
of the meson and baryon symmetry-breaking
terms. The latter must describe the =-N mass
difference. It turns out that the choice of the
baryon symmetry-breaking term imposes severe
constraints on the allowable form for the meson
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sector of the Lagrangian.

The paper is organized as follows: In Sec. II
we consider the choice of the meson and baryon
fields and construct the basic Lagrangian; Sec.
I restructures this Lagrangian into a form that
is useful for calculation; the model is demon-
strated to be renormalizable in the one-loop ap-
proximation in Sec. IV; higher-order renormali-
zation is briefly discussed in Sec. V; our results
are summarized in Sec. VI.

II. CHOICE OF FIELDS AND LAGRANGIAN

In this section we first consider the choice of
the basic fields and the structure of the chiral-
invariant Lagrangian, We then discuss the com-
position of the symmetry-breaking Lagrangian.

The meson fields are chosen so that the currents
obey the SU(3) current algebra and the axial-vec-
tor current divergences have a PCAC-type struc-
ture. As a result we assignthe nonets of pseudo-
scalar (m,K,n,7’) and scalar (g, k, 0, 0’) mesons
to the (3, 3*) @ (3%, 3) representation of chiral
SU(3)xS8U(3). To this end, consider the opera-
tors M% and M% (a,b=1,2, 3) which transform
as the (3, 3*) and (3%, 3) representations, respec-
tively. The upper (lower) indices denote the
3 (3*) representation of SU(3) and the unbarred
(barred) indices denote the left- (right-) hand
‘space of chiral SU(3)XSU(3), respectively. The
superscript 0 will be used to indicate unrenor-
malized fields and Lagrangian parameters.

These operators have the equal-time commuta-
tion relations

[F;,M“;]:—%A;GM";‘ (i=1,...,8), - (2.1)
(Fi,Mo]=52,,M% (2.2)
[F;’MOE]Z% )‘:;aMOEs (2.3)

and

[F7, M%) =~ L0 M, (2.4)

c

with F* and F~ the generators of SU(3)X(3) which
act on the left- and right-hand spaces, respec-
tively. These generators are related to F and F®,
the vector and axial-vector charges, respective-
ly, via

F*=1(F +F®). (2.5)

The fields also obey the Hermiticity relation

(a2t =M% (2.6)
and transform under parity as

PM%(X, t)P™ =M%(~%, t) . 2.7

These relations allow the reduction of M% and
M to operators of definite parity as

M°¥:=Z°g +i®% (2.8)
and

M%E=5% _ g%, (2.9)
where Z and & denote nonets of scalar and

pseudoscalar fields, respectively. Finally, for
matrix notation we identify

M% = (M°),, = T, +id, (2.10)
and
M% = (M), =20, — i®Y, . (2.11)

Chiral-invariant operators can now be con-
structed from the M’s by contracting indices in
the left- and right-hand spaces; for example,

¥ =M% M% =Tr(M°M°"). (2.12)

There are four independent, even-parity, chiral-
invariant operators that can be built using the
M’s. The others are

¥ = Tr(M°MOM°M®Y), (2.13)
¥ = Tr(M°MOTM°MTMOM®Y), (2.14)
3
and
I = § gy £ ML M M
et MEMMYG (2.15)
=detM° +detM°t, (2.16)

I°Y, 1°¥, and I°Y are invariant under the full
U(3) X U(3) group, while I’ is invariant only
under the SU(3)XSU(3) subgroup. Consequently,

‘the most general renormalizable form for a

chiral-invariant meson Lagrangian is
£, =4 Tr(2,M°0*M®) = § pO1¥ + F(14):
+fal% + 8T (2.17)

To accommodate the 3*baryon octet we can con-
sider both the [(3, 3%), (3%, 3)] and [(8, 1), (1, 8)]
representations.’® We chose the former for
three reasons: First, it is the only one that
allows the currents to obey the SU(3) current
algebra’; second, it allows the Goldberger-Trei-
man relation to be given directly; third, it gives
a D-type axial-vector current rather than the F-
type corresponding to the [(8, 1), (1, 8)] repre-
sentation. The ninth baryon in the [(3, 3*), (3%, 3)]
representation can be interpreted as a 1~ object,”
perhaps the A(1405).

The baryon-nonet operator B% can be decom-
posed into left- and right-hand components under
SU(3)XSU(3) via

( L°>“=§(1i75)3°g, (2.18)

R°/,
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where L° and R% transform as the (3, 3%) and
(3%, 3) representations, respectively. These
fields obey commutation relations analogous to
Egs. (2.1)-(2.4). Under parity the operators
transform, for example, as

PL%(X, )P =v,Ri(-%, 1). (2.19)
They also obey a Hermiticity relation of the form

L% = L% =1 B (1 +,), (2.20)
which gives

IO =1B%1-y,). (2.21)
For matrix notation we set

B% =(B%), (2.22)
and '

BT =(B"),, . (2.23)

Chiral-invariant operators can now be con-
structed following the prescription used in the
meson case. The simplest invariant is

I°2 = L% L% + R RY (2.24)

=Tr(B'B°), (2.25)

which is ineligible for the Lagrangian. As is well
known, the baryon mass term Tr(B°B) is not

chiral invariant.
The chiral-invariant operator

1988 =I5y L% + R% y “RY (2.26)
— Tr(E‘o,yuBO) (227)

is used to construct the baryon kinetic-energy
term. Higher-order baryon invariants are not
renormalizable. Consequently, the most general
renormalizable chiral-invariant baryon Lagran-
gian is just the kinetic-energy term

£, =i Tr(B%- 0B°). (2.28)

Next consider the mesori-baryon sector. The
only renormalizable nonderivative chiral-invari-
ant coupling is

IoMB — L e _cedef ZOE‘, M"é Ro? +1 eabceéé?ﬁogl M"% L"; .
(2.29)

Thus, the Lagrangian coupling is
'BMB = hO%Eabcedeﬁgd(zge +1 ysq’ge)Bg! . (2’30)

The symmetric Lagrangian is now complete.
Before considering the symmetry-breaking La-
grangian, however, it is useful to restructure the
symmetric Lagrangian into a nine-component
form employing the decomposition

Z (o]

1 .
[ :57\&; ¢ (i=0,...,8). (2.31)
B/, b

These fields obey the linear commutation rela-
tions'®

[F,, q}?]:i_f”qu,’z (i=1,...,8), (2.32)

[Fy, 0]=if ;;,00, ' (2.33)

[F % d)(j’]': id;;,0%, (2.34)

[F3, 0%]=—id,;,$%, : (2.35)

[F;, 0] =f 14505 (2.36)
and

(F3,08]= =g VD5 - (2.37)

Using the standard SU(3) tensor reductions,® the
symmetric Lagrangian transforms to

Loym =5 0,00%0%+1 0, $20" ¢ + b0y . b0
- Wo%(0%07 + 6799
1
+ 35 F (03050300 + 62050269

) 04000 0 (~0.0 0 0,00
T2 FYy, m®3970%0% + G j(09050% — 395050%

+HS, ;(b00303 + b0y 5b303) , (2.38)
where
0 071 )ig 2
Fiimi=FJimt D) AP (2.39)
2l fo 3
F%j,kl :fgﬁijém +§2Juklr (2.40)
Gin=28"J %> (2.41)
hO
H:z)b,i Z?J:w ’ (2.42)
i1 = 033001 + 840, + 0,0, (2.43)
I 5300 = Qi jmBomir T QirmOmss + G 1B (2~44)
I 500 =i jmOmtr + FiemFmit T FitmFmins (2.45)
and
V2 1
J?!k:-—g— dijn— 7—'3'(5;'0511: +8,;0035F Bpo0ij)

+v736,,0,00, - (2.46)
i0Y jo~

The symmetry-breaking Lagrangian is con-
structed from three separate parts. The first
part is built from the (3,3*) @ (3%, 3) representa-
tion linear in the meson fields and explicitly is

L£ig = —c30?, (2.47)

where c? is nonvanishing only for the I=Y =0
operators. This class of symmetry breaking
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allows an operator PCAC type of structure for
the axial-vector current divergence.

The second part, included to enable a descrip-
tion of the Z-N mass difference, is

£n=~1€%5a003 - (2.48)

Other baryon symmetry-breaking contributions
such as 5262 and d,,,b%? are not included as they
render the theory nonrenormalizable.

The final part consists of various bilinear
meson terms that are required to permit the in-
clusion of the baryon symmetry-breaking term.
The reasoning behind this particular choice of
terms is discussed in Sec IV. Here we merely
state that

S8 = = I §(a30%09 + 36005

= ddg; (0505 + ¢39%)
—(d3d§,+did},) (0% - $303), (2.49)
where
3V3
J?jzfiskfkaj—?dsij ’ (2.50)
a3 :
J?jzﬁu—wa, - (2.51)
and
) . .
le=650610—_'-7_(510618 +6i8510) . (2.52)

Oh the basis of previous numerical work with

o models, this symmetry-breaking term is ex-
pected to be small. The complete Lagrangian is
now :

L=Loymt+ Lop + &% + 8% - (2.53)

‘TII. THE RESTRUCTURING OF THE LAGRANGIAN

Several modifications must be made to the
Lagrangian before calculations are possible.
These include allowing a Nambu-Goldstone sym-
metry realization, introducing the wave-function
and Lagrangian-parameter renormalization con-
stants, and outlining the type of perturbation
theory to be employed.

To permit a Nambu-Goldstone symmetry reali-
zation®™ we define the vacuum expectation value
of the scalar fields as

(0]03] 0 =15. (3.1)

A new scalar field with a vanishing vacuum ex-
pectation value is next defined as

sY=0%-17. (3.2)

These fields are then introduced into the Lagran-
gian; however, owing to problems inherent in

1989

this translation, we do not normal order this
translated Lagrangian.'®

After the translation the Lagrangian can be
written as

£=40,590"s] +42,030" ¢ + ibly - 90 — 4mis” 636

~ 3 535§ - mG,bhg

A (5528 2050200

+ 2, 19993835 + G35,59595 - 3G, 1990453

+HY, (6235 +zbgy5bg¢g) ~ B9, (3.3)
where
My = UO25, ;= 6GY,, 05 — 4F9, 50305

+2a3d 3+ 2d 4,y
. +2d°J?j+2d OJL, (3.4)

moo =p02%5,, +6GY, 1%~ 41::‘?]'“3,021)(;

+2a3J%,+2d%,;, — 2d%J 8, 24 7,,  (3.5)

ab“"Hgba a+1’ef8ab’ (3-6)
Giie=Glnt % FijraVa» (8.7
Gy v=Cln—3FY Vs> (3.8)
and

E? :co +ul 21}0 - SG?aﬂvo?vg ?Fiasvv?!vav
420205 + A%y + A3, AT (3.9)

s%ia

Perturbation theory is defined as an expansion
in the powers of A» which is introduced via

£M,B,\)=(1/2*)g(\M,\B). (3.10)

A is used exclusively for power counting and is

~set to unity at the end of the calculations. This

is, in effect, an expansion in the number of
closed loops in the Feynman diagrams contribut-
ing to a given process. The symmetry properties
of the Lagranglan are preserved order by order
in this expansion.?

We next introduce an “intermediate” renormal-
ization,'® which we use to mean the renormaliza-
tion procedure that leads to a finite S matrix
without at the same time leading to the conven-
tional asymptotic renormalization of the fields.
A final finite renormalization is needed for this.
Consequently, we introduce the chiral-invariant
wave-function renormalization constants Z, and
Zy via

(69, 8%, W) =Z,%(¢;, 54, v;) (3.11)
and
b2=2,""2p,. (3.12)

Renormalization constants are also introduced
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for each parameter in the Lagrangian; for ex-
ample,

=2, £,/2 (3.13)l

and
e=Z,e/Zy. (3.14)

The Lagrangian can finally be rewritten as

- 2 -
£=10,5,0%s,+10,0,0"p, +ib,y+ 0, —me d;d;~ 1m$,s;5, = M yD,by
+ AzFijkl(sisjsksl +¢;0,0.0,)+ 2X2F¢j,k:¢i¢1skst + NG4S iS58, — 3>‘G?j,k¢i¢jsk
+AHgy 1(DobyS; +ib,yshy®)) — (1/NES, +(Z, = 1)5(3,,5,0"s, + 3,6,0 ;) +i(Zg = Db,y - 3b,, (3.15)

where only the wave-function renormalization-
constant counterterms have been explicitly
written. The couplings have also been restruc-
tured; for example,

Fiim :ZflflJ%jkl +%Zf2f2J%jkt . (3.16)

The Feynman rules for this Lagrangian are given
~in Fig. 1. The vector and axial-cector currents
are

Vi=3finZu(s;0"s,+ ‘1515“471@)

+ Fi V2" Sk = FiaZsber"b, (3.17)
and
At =d,, Z,($;0"8,—v,0% )+ diop Z5b,y " ¥sbs s
(3.18)
respecfively.

All parameters in the Lagrangian have con-
tributions to each order in perturbation theory.
For example, to second order we write

Zy fy= 2%, (3.19)

where the counterterm is denoted by 6. The

counterterms can be separated into divergent (D)
and finite (A) parts, i.e.,

8=D+A. (3.20)

Similarly, »; has contributions to all orders. To
second order we set

v, =£; +2%0¢;. (3.21)

In this paper we are concerned only with the di-
vergent parts of counterterms.

In Sec. IV we demonstrate that a consistent re-
normalization is possible with D£; =0 and evalu-
ate the divergent counterterms to second order.

Finally, we note that in the definitions of the
masses and coupling constants of the final La-
grangian all the basic Lagrangian constants
appeared linearly, except the v;,. To ensure
that the symmetry of the Lagrangian is maintained,
only terms to a given order of A can be retained
in the counterterms. Thus, for example, 6E; to
second order is

OE,;=E (0% 0f;, 0f;, 08, 6¢, ba,, 5d)+ mi 5S¢, .
(3.22)

IV. RENORMALIZATION OF THE ONE-LOOP AMPLITUDES

In this section we demonstrate that the model is renormalizable in the one-loop approximation and eval-

uate the counterterms. We set

D=0

(4.1)

and, at the conclusion, it is clear that the remaining counterterms are sufficient to cancel all second-
order divergences. Each proper vertex is analyzed in turn and is shown to be finite. In subsections A,
B, C, and D below we consider the four-, three-, two-, and one-point amplitudes, respectively. In sub-
section E a non-S-matrix type of divergence from the current-field vertex is analyzed.

A. Four-point amplitudes

Three four-point amplitudes need to be considered. First consider the four-point scalar vertex. The
diagrams to be evaluated to second order containing divergent terms are presented in Fig. 2. Evaluating
these diagrams and requiring that the divergent parts cancel, one finds

8DF ;41 = 32F b m rne DB ot e (01 + 05 )°) = 32Fu,mnpkz,m'n'DB:;:n'.m'((ql + 42)2)
+ %Hah, iHbc,dee,rJife, ID[Dab,cd, ef,gh(ql! ql; q3: q4) + Dh:,fe,dc,ba(q4’ qs; qz: ql)]
+ ’%Hah,iHbc-,dee,lex,kD[Dab,cd,ef.:h(qv @23 4ar 93) + DM,fe,dc,ba(q:i’ 443 4z 41)] +crossed terms=0, (4.2)
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where
Bil,kl(pz)zi 'éi—;iiD((l-P)z)uD(lz)m (4.3)
and
. dil
Dab,ca,ef,:h(qv @25 43, 44) =1 f'("z';r‘)‘é Tr[D(1+q,),, DI+ gy + g5) X1 - ‘14)efD(l):h] . (4.4)

To isolate the divergent parts of the Feynman
integrals, we expand the meson propagators
D*°((1 - p)?),, about the point p>=0 and the arbi-
trary chiral-invariant mass m?=1?, and expand
the baryon propagators D(I - p),, in a similar
fashion about p=0 and m =v. Explicitly, one
then has

6 2 —-(@? -2l %)6
D((l_p)z)ij:?_;u;g"!'%i (p(lz_vz€2+v ) “+"'

(4.5)
and

D(l_p)abzl'éib—v""(liy)z [ma,?+(1$— V)Gab] +0.,

(4.6)

This expansion is valid whether or not there is
particle mixing and allows the divergent parts of

. 2 " 2
b iDS[k ]ij [ |D¢[k ]ij
a_— ks b iD[Kk]
i i
iw< 665 g’ =6i6%, ;
k Tk

i k i\\ .
>< 81 Fiji P 8i Fijy
i I N

./\
a'Fij,kI

a a
>--i iHap,i >----i ~Hab,i %
b~ b

K gnni HZy D K28y ik g--—j i(Zu-1)K%8y
a_kg 5 b i(Zg=1F#8gp

FIG. 1. Feynman rules for the Lagrangian of Eq. (3.15).

Wavy lines, dashed lines, and solid lines represent sca-
lar, pseudoscalar, and baryon fields, respectively.

the integrals to be easily identified. When evalua-
ting the integrals, the trace of the y matrices
must be computed before performing the inte-
grations.

Applying this prescription to the above integrals
gives

al 5,6

DB, u(t") =i | Gy 7y (4.7)
=5,,5,,B(v?) (4.8)

and

DDab,cd,ef,:h(qv a5 Qs 9a) = 40450040 es0 B (v?) . (4.9)

Convergent integrals can then be defined as
Fij,m(pz):B”,“(pz) - 5{151:13(”2)

and

(4.10)

Doy, ca, et ,end1s G35 D55 44)=Dop ca, et enld1 G35 s 1)

245,50 0/0 $B(v?)..

(4.11)
Equation (4.2) can now be rewritten as
DF ;11 =4F ymuF ramn + FitmnE j1mn + F itk somn

+ﬁ41,mnﬁk1,mn +ﬁik,mnijl,mn

* F iy 11, m) B (V)
= 3(Hj + Hipgy + Hipgo + Hijpe
+H‘;k” +H‘:,kj)B(V2), (4.12)

where the crossed terms have been explicitly in-

- K i kK k
- m m' s=am'
N~
i | i | i |

+ crossed

i | i k
FIG. 2. Diagrams containing divergent contributions
to the four-point proper scalar vertex to second order.
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cluded and
H‘iijkl:Hab,iHbc.chd,kHda,l . (4.13)

The product terms can be evaluated in a straight-
forward manner using standard SU(3) tensor iden-
tities'®; for example

H?jkl

(dum mkl ~ dikmdmjl + d{lmdmjk

+6N5kl+5i:151k)- (4.14)

1296

Evaluating and summing these terms gives

DF sy =i [ 80812 4121273+ 8) - g [BO)

+ Py (20501 - g [ BN (4.19)

From Eq. (2.39) we also have

DF ;4 =Df, T3y + 3Df2 I 5y - (4.16)

Consequently, the required counterterms are

h4
Df,= [8(13}’12 +12f, f, + 3f22)-é—4—§]3(u2) (4.17)

and

Df,= [48f2(f1+f2)—'é%§]3("2)- (4.18)

With these values for the divergent second-
order counterterms the four-point proper scalar
vertex is finite in the one-loop approximation.
These counterterms also remove the second-
order divergences in the four-point proper
pseudoscalar vertex in a similar calculation.

The only significant difference in this case is
that the baryon loop diagrams involve the integral

[ dil
Dig?gd,ef,eh(qu qz; qsy q4) =1 f WTI‘[‘}/sD(Z + ql)ab75D(l + QI + qz)cd7/5D(l _ (14)475D(l)m] . (4-19)

for which the divergent part is again

DDgg?ga, ef,gh(‘hs q25 435 Q4) = 46ub5cdagf63hB(V2) .

(4.20)

The diagrams containing divergences to be evaluated to second order for the four-point proper scalar-
pseudoscalar vertex are given in Fig. 3. Evaluating these diagrams and setting the divergent part of the

amplitude to zero gives

8DF;J 7 32th manlm n’DBmm' nn’((ql + ‘12) ) 32F:jmanl mn’D‘Bmm nn'((ql +q2)2)

-3 ha,iHbc,dee,kaz,l D[D; a.b,cd,ef gh(qu Q55 43y 94) +

ba,he,fe, dc(qZ’ 915945 qs)]

- 1Hy, Hye Hy, He kDID3% or enldis o3 da 95) +D3e % fe, ac(das 415 Gss q,)] + crossed terms=0. (4.21)
This amplitude contains baryon loop integrals of the type

D304, of enld1s @35 455 4) =1 f (%;%Tr[vsD(qu)abVSD(qu +02)eeD(1 = 4)s DD ) (4.22)
and

DI, 01, 053 004 =3 [ Tt ey aD(+ 4D+ s + 02Dl = 00)er DD, (4.23)

which have divergent parts

DD00E I d1s 43 G35 90) = +(=)0450 40 ofOenB(V?) - (4.24)
Isolating the divergent parts of the integrals and including the crossed terms, one finds

DFij,kZ=4(Fij manlmn+Fijmanl,mn+ ZF(m krerm,ln + Zﬁim,lnﬁjm,kn)B(Vz)

(Htjkl +H?jlk+H%klj + H:lkl H‘ikjl %ljk)B(Vz) . (425)
This reduces to
A h

DF;; = [8(13}‘12 +12f, f, + 3f,%) - 648] jék,B(VZ) + [.‘Ztlfz(f1 +£,) — 1296] J5uB?). (4.26)
From Eq. (2.40) DF';; ,; can also be written as’

DFy; 4y =Df16;;0, +4Dfo 3 - (4.27)

Consequently, the counterterms of Eqs. (4.17) and (4.18) also render this vertex finite.
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B. Three-point amplitudes

Four three-point amplitudes need to be considered. The diagrams containing divergences to be evalu-
ated to second order for the three-point scalar-meson vertex are given in Fig. 4. Requiring the divergent
part of the amplitude to vanish gives

GDG?M - 24Ggmyerkm'n‘DB:m',nn‘ (qZ) + 24G:m,iF llz,m‘n'DB:n:',nn' (qZ)
‘ ~Hyy Hye, iHae tD[Cos ca,er(d15 925 43) + Cro, g 5041 435 4,)] + CrOSSEd terms=0. (4.28)

N

The divergent part of

Cab,ca,or(1s 925 45) =1 f %;—Tr[D(H 41)apD (1= G3)eeD (1) o] (4.29)

has the form
DCqy ca,ef(q15 Gz A3) = 48350 oy g5 + 0050 fM ey + 848 o5 Mys)B(V?) . ' (4.30)
Isolating the divergent parts of the integrals, one has
DG$1,= 4G e yumn = G, iF 5, mn + CTOSSEd terms)B(v?)
+ 5[ Hyg, iHye, 1H oo, o(Mes + M)+ Hyy (Hog (Hoo (Mot my) +Hyy (Hey Hey (Mg +my,)1B(v?).  (4.31)
Rewriting this using Eqs. (3.6)-(3.8) for m, G°, and G°® gives
DGiy= 4[Gimn(ijmn - ij,mn) + G iunF s = Fik,mn) + G (F sy = Aij,mn)
+ % (F samF omn F samnE tomn ™ FramaF 1mn T Fico,me io,mn  F s, mik 15,mn Frcym 15, m) Ea 1 B(V2)
— S g+ Hogng + Hopag + Hagin+ Hogu + Hopgt)EB(0?) : (4.32)
But DG?® is also given by
DG, =DG s+ 3DF; oy s (4.33)

where we have assumed that D§ vanishes. The terms containing £, in the above relation reproduce Eq.
(4.12) of the four-point scalar vertex calculation. The remaining constraint reduces to

DG“,,:DgJ‘;Ikz 24g(f, - fz)J‘ﬁj,,B(Vz).- (4.34)
Consequently, the required counterterm is
Dg=24g(f, - f,)B(v?). " (4.35)

From Eq. (4.31) it is clear that symmetric baryon symmetry-breaking terms such as b,b, or dy,b,b, are
not acceptable as they would contribute symmetry-breaking effects to the right-hand side, and thus render
the model nonrenormalizable.

The calculation for the three-point proper scalar-pseudoscalar-meson vertex parallels the one above.
The diagrams are given in Fig. 5. Part of the evaluation duplicates that of the four-point scalar-pseudo-
scalar vertex and the remainder reproduces the calculation of Dg in Eq. (4.34). This amplitude requires
the integral

. dYl
C:?,ca,ef(‘hr 425 q5) =1 f (2 Tr[‘ysD(l + 1) YsD(l - qs)cdp(l)ef] » (4.36)
which has a divergent part given by
DCZ g, er(G1s Gy 45) =484 g, = DB g op = 80D oMo B(1v?) . (4.37)

The diagrams containing divergences for the scalar meson-baryon proper vertex are given in Fig. 6.
Evaluating the diagrams, setting the divergent part of the amplitude to zero, and neglecting spinors gives

DHyy y+Hyo il yo iHpy ;D@ oy o, 1115 435 42) = Hae bH 4o, iH o, D@ og  of, 18(d1s 935 02) 5 (4.38)
where
[dil .
¢ab,¢¢'u(ql’ 425 q3)= ? IWD(Z + q;)abD(l - 113)C¢D (lz)ij » (4.39)

. da*l
G e, 15(d1s 425 95) =1 f(_ZW_)".YsD(l +¢,)0sD(L = 45) g ¥sD? (B) 4 (4.40)



1994 H. B. GEDDES 21

and

D@oy, ca,11(d1s 23 03) =D ca,15(d1s G25 @) = 84506405 ;B(v?) . : ' (4.41)
Equation (4.38) reduces to

DH,, ;=0. . (4.42)
From Eq. (2.42) the resultant counterterm is

Dh=0. (4.43)

The calculation for the pseudoscalar-meson-baryonthree-point vertex is similar to the one above. The
diagrams are given in Fig. 7. In this case we encounter the integrals

B, a3 €33 49) =1 [ A D+ 4)y 75D = 03), D), (4.44)
(2m)

and

. dUl
Caroa,ss(dus 35 45) =1 f B YU D 75D = a5)eg7sD° (), (4.45)
with divergent parts

D¢2b, o, 11(d1s 425 43) =D¢2§?cd,ij(ql’ 425 4)= —yséubécdoijB(Vz) . (4.46)

C. Two-point amplitudes

In this subsection we consider the renormalization of the masses. These calculations are much more
tedious then those above as both the meson and baryon explicit symmetry-breaking terms manifest them-
selves at this level.

First consider the scalar mass. The diagrams for the scalar two-point function are given in Fig. 8.
Setting the divergent part of this amplitude to zero gives

(Zy- 1)P25u - Dmﬁ +4F DA, + 4ﬁ£1,mnDA:m - 18G4, jm'n’DB:lsm',m’ (pz)
= 18Gy, G, DBpsuw 0% +H,q,H,,, /DIB, 5,0d®) + By o(P)]=0, (4.47)

where
. di

A”:l m—)—‘lD(lz)u (4.48)

and
. d?l .

By, cal0) =1 WTI'[D(Z =)D (D)4l (4.49)
These integrals have the divergent parts ‘

DA;;=A?)6,; + (m5, - v?6,,)B(v?) (4.50)
and

DB, (0} =4A12)0458 oy + 4[mgym g+ 8 M 0 oy + 0 iy g1 gy — (BP/2 + 12)5 5 4 1B (V) (4.51)
which involve both meson and baryon masses. A(v?) is defined by

d*l 1
2y
AY=i [ g (4.52)

Equation (4.47) can now be rewritten as
Dy = (Zy = 1)0%6;; = 4(F syt F i3 ot 2Hpy 1Hop JAW3)
+ 4[Fijmnm;2n + F\U,mnmzi - Vz(FiJmm+ Fi.l.mm)]B(Vz) - 18(G?mnG}smn + G:m,iG:m,l)B(lF)

+4Had,iHbc,j[mabmca + mbamdc+ 5¢11>("'nn:e"’”'e(l + mde’”ec)

F85(14gM g + My M g) = 2(D%/ 2 + v2)5,,5,,1B(v?) . (4.53)
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FIG. 4. Diagrams containing divergent contributions
“ gf % g' to the three-point proper scalar vertex in the one-loop
i/, | i/, k approximation.

FIG. 3. Diagrams containing divergent contributions to
second order to the four-point proper scalar-pseudosca-
lar amplitude.

From the reduction

h2

Hyy iHep 3= 5 <0, (4.54)
one immediately finds

Z,+1+4§B(v?). (4.55)
The remainder we write as

Dm§,=T{AW?) + TEB(v?). (4.56)
A straightforward evaluation gives

h2
T§=16 [5f1+3f2+—1§]6u. (4.57)
Tsj can be further decomposed via
T{P =T+ Ty + T3] (4.58)

into parts that are obtained exclusively from the
symmetric and symmetry-breaking parts of the
meson and baryon masses, respectively. The

(Zy - Dp?,, -~ Dm¢ +F,, . DA%, +F,. DA% —36G}

ad,iHbc. [Bif cd(p) +Bba dc(p)]zo

where

B, o) =i [ (gsa TxlysD(I~ Pl 7sD (D]

and

DBil?,cd(p) = =45 30, A1) + 4[Mm 4y oy = ByM M oy = B4

This can be rewritten as
—(Zy =10, =4A(F
+4[F ;i 4 F

Dm”

if mn

evaluation of T§ largely reproduces calculations
shown above; m particular, after using Egs.
(3.4)-(3.8) for the masses (isolating the symmet-
ric part), G° and G®, one essentially duplicates
Eqgs. (4.15) and (4.34). The remaining portion is
a 0;; component. The final result is

Ti) = [16(u2 - v2)(5f, + 3f,) - 16¢° ‘%yz]é“

_6DGija€a"4‘DFijaB§a§B' (4'59)

Next consider the contribution of the baryon

symmetry-breaking terms. From Eq. (4.53) this
is

2 &2
Tls? - ‘9 (7fi8mfm8.f - %3‘/—3d8i1 - 35{1) . (4.60)

The meson symmetry-breaking term must be
able to accommodate this structure; however,
before analyzing it in detail we consider the
pseudoscalar-meson mass.

The diagrams for the pseudoscalar-meson two-
point function are given in Fig. 9. Requiring the
divergent part of the amplitude to vanish gives

G® SO 2
im,n Jm',n' Bmm',nrl (P )

tjmm+FU mm+ 2H ab, iHab j)A(V)

+ wad’iHbc,,[—mabmcd — MM g + By (M Mg + M g,

+ 6cd(W"cus‘m'«ab + mbemea) - 2(152/2 + Vz)aabéca]B(Vz) .

(4.61)
(4.62)
My g+ (0°/ 2+ 1*)800041B(v7) . (4.63)
m -V ( Umm+Fij,mm)]B(V2)"36G?m n m'"B(Vz)
(4.64)
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FIG. 5. One-loop approximation diagrams containing
divergences for the three-point proper scalar-pseudosca-
lar amplitude.

The p? term reproduces Eq. (4.55). The re-

maining part is

DmP=TAW?)+ (T + T+ T2P)B(v?), (4.65)

paralleling Eqgs. (4.56) and (4.58) for the scalar
mass. One immedidtely finds

T =T, (4.66)

The symmetric mass calculation partly resembles
those for the three- and four-point scalar-pseudo-
scalar-meson vertices and gives

8h?
T = [16(;12 - v3)(5f, + 3f,) — 164° -5 uz]éi,
+6DG, b, —4DF ) ooy, (4.67)
The baryon contribution in this case is
2¢%h? V3
Ty =~ 9 (‘ 3 ismSmsi = ?dsw =0y ) (4.68)

The meson symmetry-breaking terms must be
chosen to accommodate both T*¥and T®2. This
choice is complicated by the fact that the meson
symmetry-breaking terms feed back into Dmf ;
via the m2 contributions in Eqs. (4.53) and (4.64).
Consequently, there is a minimal set of tensors
allowed. This set governed the choice of £%; in

Eq. (2.49). Using Egs. (3.4) and (3.5), T/ is-
now given by
T =8[F (@ Ty + dylgpy + Ao oy + dod 1)

+F¢, wn( Qoo + Ay — o & —d T T )],
(4.69)

T¢} has F and F interchanged.
Evaluating these expressions and isolating the

FIG. 6. Diagrams containing divergences to second
order for the proper scalar-baryon vertex.

. GEDDES

a c a c
e < e - gt Sl
€ j 0 I]
b X b

FIG. 7. Diagrams containing divergent contributions
to the three-point proper pseudoscalar-baryon amplitude
to second order.

counterterms using Eqs. (4.56) and (4.65) gives
Dy? —16<5f1+3f2 )A(uz)

2hV

+4[4(PL - v?)(5f, +3f,) - 4¢° -

- (3, + 2f,)(a, +a,) + §e2h2]B(u2) ,

(4.70)
Das:[8asf1+4fz(as"ao)_%eth]B(Vz), (4.71)
Da, = [8a, f, — 4f,(a,— a,) + 36*h2]B(v?), (4.72)

Dd, =4 [Zdl(fl +3f,) — gfz(ds +a,) +gezh2]B(V2) ,
(4.73)

Dd, = [szdz +2f(as—a,)+ % frds+ & e’n?1B(v?),
(4.74)

and

Ddy=2[4f,d; - 3f,(a,~ a,) + 12/,4,1B(v) . (4.75)

From the nature of these counterterms, it is clear
that the complex structure of £, is necessary.
For a nonvanishing e, all five meson bilinear
symmetry-breaking terms are required.

The diagrams for the baryon two-point function
are given in Fig. 10. Neglecting spinors and
setting the divergent part of the amplitude to zero
gives
—Dmyy, +(Z5 —1)p5,,

"Hac ,H D[Bzd'ji(p)_Bgd,ji(p)]zo, (4-76)

where

|.~\~( \y"\‘w, i g b j

~--’n d c

FIG. 8. Diagrams for the two-point scalar amplitude to
second order.
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FIG. 9. Diagrams for the two-point pseudoscalar am-
plitude in the one-loop approximation.

[ d% .
E:b,il(p):z y WD(Z),»DS((Z—?) )ij ’ (4'77)

B:b.u(i’)=if(_g;%ysD(l)ab%D@((l'P)z)u,

(4.78)

DB, (D)= ($/28, +my)8,,B(v?), (4.79)
and ‘

DB, ;;(0)=(—#/254+my)d,;B(v?). (4.80)
Consequently, we have
Dmy, = (Zg = 1)$0,, = ~pH,, ;H, B(v?), (4.81)
which affords the counterterms

De=0 . (4.82)
and

ZB=1+§B(V2). (4.83)

D. One-point amplitude

In this section we consider the vacuum expecta-
tion value of the scalar field. The diagrams for
this amplitude are given in Fig. 11. Evaluating
these diagrams and setting the divergent part of
the amplitude to zero gives

DE; - GGsimnDA:m + GG:m, iDA:n
+Hy, ;D(Ag, +Az,)=0, (4.84)

where
Ag =i f (—;’,,—iﬂr[oa)‘,,,] (4.85)
and

DAz, = 4mabA(V2)+ 4(macmcdmdb - mabVZ)B(Vz) .
(4.86)

The evaluation of this amplitude parallels earlier
scalar vertex calculations. This amplitude pro-

i i PN |
T O

FIG. 10. One-loop-approximation diagrams for the
baryon two-point function.

. N PN . a
x ,MNM""‘O ,MM'".".\-_’) ,,WW;O
FIG. 11. Diagrams for the vacuum expectation value
of the scalar field to second order. .

vides the counterterms
Dc,=2V 3g(a,— a, — 4d, + 4 d,)B(v?) (4.87)
and ‘

chz—ziq———ch0 . (4.88)

E. Current-field amplitude

The current-field loop diagrams of Fig. 12 con-
tain a potential divergence not removed by the
above S-matrix program. This amplitude con-
tains the integral

d* (21— p)*
(2m)* (12= (1= p)* = »°]

for the meson loop.

Formally this integral is linearly divergent;
however, explicit evaluation gives a finite result.
The only manifestation of the formal divergence
is a surface term that contributes to the finite
result. This term cannot be retained as it vio-
lates the Ward-Takahashi identities. A regulari-
zation procedure is used to remove the surface
term,!°

The baryon loop integral in this amplitude is
logarithmically divergent; however, the divergent
part contains the factor

R%(p, 5%, y%) =i (4.89)

(Mg = M4g)0 g+ (Mg = 140)04p

This antisymmetric factor renders the amplitude
finite when combining with the symmetric vertex
tensors. '

At this stage all amplitudes are finite to second
order. As indicated at the outset, the §; do not
acquire divergent second-order parts.

V. HIGHER-ORDER RENORMALIZATION

It is clear from Sec. IV that the bilinear meson
and baryon symmetry-breaking terms severely
complicate the renormalization procedure. The
question of the implications of these terms in

‘higher-order calculations then arises. In this

section we outline a nonrigorous proof that the

}
iA iA

FIG. 12. Two diagrams for the axial-vector-current—
pseudoscalar-field amplitude. The dot-dashed line rep-
resents the axial-vector current.
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theory is renormalizable to all orders. We
assume that the symmetric theory is fully renor-
malizable. The divergent parts of integrals will
be isolated using the propagator expansions of
Egs. (4.5) and (4.6), as in the one-loop approxi-
mation.

The superficial divergence D of any proper
diagram in this model is given by

D=4-E-V,+Iy-Vy, (5.1)

where E, V,, I, and Vg are the number of external
lines, three-point meson vertices, internal baryon
lines, and three-point meson-baryon vertices,
respectively. Consequently, all vertices with
E >4 are superficially covergent.

For meson vertices the maximum divergence
is then

D=4-E. (5.2)

Thus the four-point proper meson vertex is loga-
rithmically divergent. This divergence can be
removed by the counterterms of the symmetric
Lagrangian.

The three-point proper meson vertex contains a
logarithmic divergence that is linear in the bar-
yon mass. Circling the baryon loops in both
directions will then cancel the antisymmetric
part of the baryon mass. Consequently, the
divergence can also be removed by the counter-
terms of the symmetric theory.

The meson two-point function is quadratically
divergent. However, all quadratic subgraph
divergences in any order for both meson and
baryon loops correspond to lower-order mass re-
normalization and thus do not present a problem.
Consequently, we need only consider the overall
quadratic divergence. The quadratic divergence
itself can be removed employing the counterterms
of the symmetric theory. The logarithmic diver-
gence contains meson and baryon mass squared
terms. The symmetric part of this divergence
can again be removed as in the symmetric theory.
The remaining symmetry-breaking part corre-
sponds to a nonsymmetric tensor (as in the one-
loop case) contracted with a symmetric tensor.
The result will have the same form as the one-loop
case. Consequently, only the five bilinear meson
symmetry-breaking terms of the present model
will be needed. The Lagrangian symmetry-
breaking parameters will acquire divergent
counterterms. '

The meson one-point proper vertex is quad-
ratically divergent with cubic baryon mass terms
and quadratic meson mass terms. With the /=Y
=0 symmetry-breaking operators in the model,
only the E; with =0, 8 will be nonvanishing.
These can contain divergences not present in the

symmetric model, but they can be removed em-
ploying counterterms available from the linear
meson symmetry-breaking terms.

The vertices with external baryon lines have a
maximum divergence of

D=3-E. (5.3)

Thus all vertices with external baryon lines and
E >3 are superficially convergent. The three-
point proper meson-baryon vertex is logarith-
mically divergent. Consequently, it can be re-
normalized using the counterterms of the sym-
metric theory. )

The baryon two-point function contains a loga-
rithmic divergence linear in the baryon masses.
The subgraph divergences can be treated as in
the meson-two-point function. We need only con-
sider the overall logarithmic divergence. The
symmetric part presents no problem. The sym-
metry-breaking part can be renormalized using
the counterterms from the baryon bilinear sym-
metry-breaking term.

Consequently, assuming the symmetric theory
is renormalizable, this model will also be re-
normalizable to all orders of perturbation theory.

VI. SUMMARY

We have considered a linear SU(3) ¢ model
incorporating both meson and baryon fields with
spontaneous and explicit symmetry breaking. The
chiral-symmetric Lagrangian contains the most
general renormalizable nonderivative couplings.
The symmetry-breaking Lagrangian contains bi-
linear baryon terms to describe the N-= mass
difference, and linear and bilinear meson terms.

The bilinear meson symmetry-breaking terms
are required to construct a renormalizable theory,
but are expected to have a small numerical effect
so that the meson sector reproduces the success
of the linear (3, 3*%) @ (3%, 3) symmetry-breaking
meson model. These successes include a good
description of the meson mass spectrum and an
approximate chiral SU(2) X SU(2) Lagrangian sym-
metry.

The model is demonstrated explicitly to be re-
normalizable in the one-loop approximation and
the counterterms are evaluated. The model is
expected to be renormalizable to all orders.
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