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Quark-model calculations involve an extended static object localized in space. We introduce new methods,
involving momentum-space wave packets, which account for this localization. These methods have little
effect on heavy states, whose sizes are large compared to their Compton size 1/m, but are very important
for light particles such as the pion. In this treatment the pion’s mass is naturally very small, and, in order
to connect with a spontaneously broken chiral symmetry, we require that m, vanish when the light quarks
are massless. Expanding about this limit (and also readjusting the fit to other hadrons),” we obtain
m, = (m, +m;)/2 =33 MeV. We calculate F, ~ 145 MeV (using a normalization such that F,|., =93
MeV), Fy/F, =1, and various corrections to static properties of baryons. In addition we explore the
relationship of our methods with chiral perturbation theory, deriving the formula
m,*=(m, +my){m()|g(0)q(0) |m(p)> in the appropriate approximation and commenting on the
quark mass obtained from the nucleon’s o term. Finally we discuss the bag model’s use of the scalar density
gq as an order parameter describing the separation of the spontaneously broken vacuum phase from the

perturbative vacuum of the bag’s interior.

1. INTRODUCTION

The static bag model applied to hadrons made
up of low-mass quarks has had a considerable
phenomenological success in its reproduction of
hadron masses and other parameters in terms of
a few fundamental constants.!™ The most notable
exception to this success is the 7 meson. It is the
purpose of this paper to develop a simple improve-
ment to the static approximation which will play
a relatively minor role for the more massive
states, but will be of crucial importance for the
pion. In particular, it will enable us to show that
it may be possible to resolve the apparent dicho-
tomy between the quark-model pion and the PCAC
(partial conservation of axial-vector current)_pion.5

The bag model is a formulation which incorpor-
ates in a local and relativistic framework the fol-
lowing features which have been abstracted from
the observed properties of hadrons:

(1) Hadrons are composed of quarks which move
relatively independently within a single hadron.
Consistent with this is the following:

(2) The effective interaction between the quarks
at short distances is governed by quantum chromo-
dynamics (QCD) treated perturbatively.

These features are included in a model which al-
lows the hadrons to consist only of color-singlet
combinations of quarks.

In this model it is hypothesized that the region
of space within a hadron is the usual perturbation-
theory vacuum where quark interactions are rel-
atively weak. The true (and complex) vacuum out-
side of hadrons is unspecified except that it has an
energy per unit volume B lower than that inside.
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For light quarks the location of the boundary be-
tween these phases is governed by the scalar den- .
sity gq, with the bag action derivable from the
Lagrangian®

£=(Lqcp -B)gq) . (1)

As a further approximation the static bag model
assumes that the region of space which contains
the quarks is a fixed spherical cavity. In this
paper we shall develop a method to correct for the
effects of “nailing” the quark wave functions to a
fixed origin in space. The corrections are of in-
terest by themselves but as we stated above, they
will be of particular importance for the pion.

The quark-model description of the pion is that
of a quark-antiquark bound state with properties
not much different from other hadrons. When spin-
dependent forces due to colored-gluon exchange
are taken into account perturbatively, the pion
emerges naturally as the lightest state.® Spin
forces provide a rather large interaction energy

‘which subtracts from the unperturbed energy.

However, despite this, it is extremely difficult to:
obtain a pion with m,=140 MeV. For example,
the bag fit of Ref. 3 quotes a pion mass of 280
MeV.

The pion of the quark model appears superficial-
ly quite different from the pion of PCAC.""? With
vanishing up- and down-quark masses the funda-
mental QCD theory has a chiral SU(2)XSU(2) sym-
metry. This symmetry is assumed to be spontan-
eously broken, with the pion as the associated
massless Goldstone boson. For finite but small
quark masses, the pion deviates only slightly from
this description, picking up a small mass but re-
taining the couplings of a collective excitation.
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The connection between the PCAC pion and the pion
of the quark model remains a persistent question.

However, even within the quark model, the pion
has a property which distinguishes it from other
hadrons: It iz the only particle whose “size” is
smaller than its Compton size (1/m,). Quark-
model techniques have evolved from the bound-
state treatments of atomic and nuclear physics.

In these latter situations one deals with a heavy
system whose spatial extent is much larger than
its Compton size. This property is also true for
most quark bound states. For example, the proton
has a radius of about 1 fm while its Compton size
is ¢+ fm. However, the pion’s Compton size is 1.4
fm and estimates of its radius are near £ fm. In
this paper we use this as a basis for a reconsider-
ation of the pion in the quark model. .

This size distinction requires that the naive
‘static~bag techniques be modified in order to prop-
erly treat the pion. The type of correction we have
in mind is known generally as a “center-of-mass”
correction, but it has some novel aspects in a rel-
ativistic theory. As expected, the new methods
produce very little change in the properties of
heavy states. However, the pion emerges lighter
than before. In particular, it is possible to make
the pion massless. We will do this in the limit of
vanishing quark mass in an attempt to establish a
connection with the pion of PCAC. Some interest-
ing results emerge. We study the pion mass for
small quark masses, and make a connection with
chiral perturbation theory. The pion decay con-
stant F; is calculated, and our treatment is such
that it remains finite in the limit m,-~0, as is re-
quired by the chiral-symmetric theory. While we
are far from uniting the two treatments, our work
indicates that they are not as disjoint as previously
thought. )

In Sec. II we present the new tools and illustrate
them by a calculation of F,. Section III is devoted
to applying our new methods to compute correc-
tions to the pion’s energy and a discussion of the
pion mass. The methods developed require some
less significant changes in the other hadron states
also, so in Sec. IV we redo the fit to hadron
masses. We show the relationship between our
description and chiral perturbation theory in Sec.
V. Concluding remarks are made in Sec. VI.

II. BAG WAVE PACKETS, THE PION DECAY CONSTANT,
AND OTHER CORRECTIONS TO THE NAIVE STATIC-BAG
CALCULATIONS

In this section we use the calculation of F, and
some corrections to the static-bag approximation
for nucleons to demonstrate the construction of a
bag wave packet. The crucial observation is that
the static bag state (which we will denote simply
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by use of the particle symbol with the subscript B,
i.e., In) ) is not a momentum eigenstate [in usual
notation |7(p))]. However, we shall show that it
can be related to a superposition of such states,
or wave packet. We define, for a covariantly nor-
malized momentum eigenstate (r(p) lﬂ‘( ')
:(27[)35(3)(ﬁ _pl)zwm

mys= [t o(ple 552 +m¥e(p") |n(p))
3 : N
= [3E otwre= (o, @

Here, ¢(p) is a wave packet which describes the
localization of the particle around the position x.
We shall assume that it is possible to choose an
appropriate wave packet ¢ so that the momentum
spread approximates that of the total momentum
of the quarks in a static bag. We shall describe
how this wave packet is determined below. For
baryons, a more convenient convention is

(B30 =2m [ ap Txlp)o(s" +mHo(s)
Xe'#* | B(p),))
= [apZ T xMpe' BN, (@)
E, >
where here we have the usual
(B(P),\ [B(p"),\"y=21)°6(p =p'NE/m) . .

The bag states are normalized in the conventional

way
s [T =1,
o o (4)
5B M |B,M Y5 =0y

which corresponds to the wave-packet normaliza-
tions -

d3
J5% enrlowz=1, (52)
Jar g xt oI B =6 (5D)

For simplicity in this paper we shall assume
that it is possible to take as the wave packet for a
spin-3 baryon, xy(p), a form

leux(pm;’(p):u”(p)x(m , (6)

where X(p) is a scalar function, and u*(p) is the
covariantly normalized Dirac spinor with the spin
quantized along the same spatial axis as that of
the fixed cavity state. With this convention Eq.
(5b) becomes

fd%:E’”;lx(p)P(zfr)%l. (n

For particles whose extension is larger than their
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Compton size, the momentum spread of the quarks
in the static bag is small in comparison with the
mass. The reverse holds for the pion,

For heavy states this leads to the usual static-
1

bag-model methods for calculating matrix ele-
ments. We can illustrate this by considering the
axial-vector coupling constant g, =g ,(0), defined
by

(s (D") [ (x)y By sd (%) [N, n(P)y =ttns (P )y s DI al(p =D )N 0727 e e, (8)
Transforming to a bag located at X =0,
. .
0" [y ) [Mm)a = [ G e P T g PR e =)+ ()
»
or
’ 3y B 3, (M : 3 12 — "
s\M',p fd xXuy'ysd M;”>B: fd ﬁ(ﬁ:)(zﬂ) [X(P)[ a0y (P)y ysuy(p) + 700 (10)
r

Now let us assume that the wave-packet spread is
small in comparison to the nucleon mass, ( p2)
<«<M?. Then to first order, if we expand the right-
hand side of Eq. (10) we find

i 1(p°
gzgancbag:gA (1 _5%}) , (11)

where
2y=|a*p—=(2m) [x(p) [*? 12
" prp( m? [x(p) | (12)

is the mean momentum spread in the wave packet.
In the limit of the naive static-bag model, we re-
cover the standard result (g,) =(g5tic®e), The first
correction is

2
gamio 1+ 122). "

In the case of vector density, there is no correc-
tion to the static-bag result for the total charge.
Clearly this is necessary for the consistency of
our method. When we go beyond the integrated
quantitiy to obtain, for example, the mean square
radius or magnetic moment, we obtain {p®)/m?
corrections. For example,

. [ 1y¢p?
= e (1 +—2-§-f;—l}>. (14)

The charge radius is more subtle and is treated
in the Appendix, yielding

. 2
(rz>=</vz>;;‘;° (1+%§—%fn ), (15)
where '
(r? yatic = f d*r roia(r) . (16)

Clearly, all of these corrections imply a commit-
ment to a specific wave packet, and we shall now
turn to our proposal for that by studying the meson
state, in particular the pion.

For the pion, we shall begin with the vacuum-
to-m matrix element, that is, a calculation of F',
defined by

(0 [@(x)yysd(x) |n(p)y =T F pe'?*.  (17)

Taking the time component and transforming to
the bag state

(O [(x)y5 () [1ys =i 75 [ dp e’ *0(p) . (18)

Using the static-bag-model wave functions, the
left-hand side is given by

(0 |w(x)y ysd(x) |mys =iV B[ud(x) = 1%(x)],  (19)

where u (1) is the upper (lower) component in the
static-bag wave function. With this identification
we can solve for the bag wave packet ¢(p). This
is our crucial step. We identify the wave packet
which describes the total momentum spread of
the quarks in the static bag with that which comes
from the static-bag wave functions applied to the
total annihilation of the particles. Thus, we find

¢(p)=?—g Jé;;;g &0 (x) = 1%(x)) . (20)

F, is then determined by the normalization condi-
tion Eq. (ba). With m,=0, this results in

F,=0.501/R,. (21)

An interesting feature of this calculation is that
F, has a finite limit as m ,—~ 0, as long as the pion
radius R, remains finite. This is as would be
hoped for in theories where m, is small, and in-
deed is necessary for our calculation to be con-
sistent with chiral perturbation theory. In later
sections we will determine the pion’s radius to be
in the range R,=3.3-3.5 GeV“‘, which corresponds
to a value

F,=140~150 MeV (22)

to be compared with the experimental F,= 93 MeV.
There is one consideration that we have neglected
above which would lower the value of F,. We have
calculated the amplitude for the removal of two
quarks from a bag. This, however, leaves an
“empty bag,” not the true vacuum. Thus, there is
an extra factor in Eq. (19) which describes the
overlap of the inside, perturbative vacuum of the
bag with the true vacuum. One might anticipate,
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because of the spatial homogeneity of the vacuum
state, that this overlap would take the form
exp(-B%/*vV,X), with V, the volume of the pionbag,
and X a dimensionless parameter. However, with-
out a theory of the true QCD vacuum we are unable
at present to calculate the overlap. Since By,
~0.4 is not large, one might hope that this factor
is not the dominating one. We can also compute
Fg, where if Vi~V ,, the vacuum overlap should
be the same. That is, the ratio Fy/F, should be
insensitive to this. We shall return to this cal-
culation below.

The wave-packet amplitude ¢(p) will play a con-
siderable role in subsequent discussions. It has
the desirable feature that it is insensitive to the
bag boundary surface, since (u? —1%) vanishes
there. Alternative choices of the wave packet (for
example, that gotten by considering the annihila-
tion amplitude associated with the operator uy;d)
often have a discontinuity at » =R, which produce °
very-high-momentum components in ¢(p). We are
using in ¢(p) the cavity wave functions for the
state with no gluons. The gluons introduced per-
turbatively produce a sizable energy shift in the
pion, and could produce wave-function corrections
also. However, the boundary conditions at the
surface of the bag are independent of the coupling.
Since the ¢(p) is a smooth function whose main
property is that associated with its scale, we be-
lieve that the properties of ¢( p) derived above
are quite reasonable, and we will use Eq. (20)
throughout the paper.

We can at this time apply the same formulation
to the kaon, by using strange-particle wave func-
tions for one of the quarks in ¢(p). The same pro-
cedure with m;=0.5 GeV and m,~ 0.3 GeV yields

Fy/F,=1.01 R,/Ry. (23)

Since Ry =R, this produces Fy~F,. As we have
remarked already, we believe that this result is
more accurate than our absolute calculation of
either F, or Fy since the “empty-bag,” true vac-
uum amplitude should cancel in the ratio Fy/F,.
We recall that the experimental ratio Fy/F,~1.20.

III. MASS OF THE PION

The localization of the quarks described above
also produces a modification in the calculation of
masses in the quark model. In momentum space
we have the definition (using the proton to be
specific)

(P(p)|H|P(p))=E, (24)
where E = (p?+m? 2, so that for a proton at rest,
(PO|H|P©)=m. (25)

However, when we convert to bag states,

Ey.=p\P|H|P)y=(E), (26)

where (E) is the average of (p?+m?)* 2 using the

appropriate wave packet. For heavy states, with
R>1/m, (E)®m, in zeroth approximation yield-
ing the usual equality of bag energy and mass

E m. (27)

bag =
In fact, even the first correction to this has been

accounted for in the earlier static-bag calcula-
tions.®* Expanding the energy, one obtains

Ey=mas(P). (28)

Thus, in a state with independent particles, (p?)
an/R?, where n is the number of quarks. Since
the zeroth approximation to the mass in the bag
model is m =%#1(2.04/R) (with massless quarks)
there is therefore an approximate relation

m=E,_ —-C/R (29)

bag
with C independent of ».

However, this correction has the same form as
the “zero-point energy” term (-Z,/R) which was
included in the hadron masses calculated in Ref.
3. We now observe that part of Z, is accounted
for by the momentum fluctuation effect. The phe-
nomenologically determined value of Z, is about
1.8. We estimate that C would be 0.6-0.8. Hence
we still assume that E, , contains a term -Z /R,
but where we shall now expect Z,~ 1.

The static bag states have {p)=0, but {p2)#0.
This correction to the energy can therefore also
be described as a “center-of-mass” correction
since it removes the effect of nonzero {p?) from
the static-bag calculation. For light states such
as the pion the “fluctuation” momentum ({p2))*/2
is not small in comparison to the mass, so equat-
ing the mass and the bag energy is clearly not
correct. Rather, to compute the mass one should
use

Ey o= {(p?+mdH 3, (30)

Even massless states have {(p2)*/2)#0 so that the
bag energy need not vanish. The important gener-
al feature of Eq. (30) is that, for a given E, ,, m
is-smaller than would be obtained from E,, =m,
since some of the energy goes into localizing the
quarks in a bag at a fixed point in space. This
makes a low-energy bag state correspond to an
even-lower-mass particle; a light pion becomes
even lighter.

When using a wave packet to estimate the con-
tribution to the bag’s energy of the total momen-
tum of the localized quarks, several alternatives
can be considered. A close parallel between our
treatment and chiral perturbation theory exists if
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we base our calculation on a fixed wave packet
with zero particle mass in the normalization con-
dition and zero quark mass in the wave function
(see Sec. V). The discussion in the remainder of
this section is also based on such a wave packet.
An alternate proposal, which does not lead to such
a close parallel, is to use a wave packet whose
form is self-consistently fitted to the mass of the
particle and the masses of the quarks. This is
the method used in Sec. IV to determine the light
quark mass as part of the overall fit to the had-
ronic spectrum. It turns out that the numerical
values of the quark mass obtained in Sec. IV and
Sec. V do not differ greatly. This would not be the
case if the pion mass were much smaller than
1/R. We have not made comparisons of which of
these proposals gives the more accurate estima-
tion of the center-of-mass correction by using
exact models. When making a variational treat-
ment of the mass spectrum based upon the bag’s
size, the proposal of a fixed wave packet, with
both quark masses and particle masses set equal
to zero, leads to the simplest discussion, which
is why we adopt it in the remainder of this section
and in Sec. V.

Before proceeding further we should discuss the
spin-dependent force due to gluons since it has an
important role in making the pion a low-mass par-
ticle. By considering single-gluon exchange be-
tween quarks there is a contribution to the pion
energy of the form

. %B)g

Egluon_" R 0> ’ (31)

where G, is a pure number (G,=0.7) which comes
from an integration over the quark wave functions.®
We have written the coupling constant as a function
of R to indicate the dependence of the effective
coupling on the scale size in the problem. With
massless quarks the mass scale is set by a/R
(with a~2), which provides a low-momentum cut-
off on the gluon propagator. Combined with the
idea of asymptotic freedom this suggests that the
effective a (R) should get weaker at small R and
stronger at large R. The specific form of a/R)
will not be needed until Sec. IV, but the general
variation of @ (R) is important in what follows.
The precise predictions of the previous bag
model fit® do not apply in the new framework,
since we must now adjust for the center-of-mass
effect and the running coupling constant. However,
when one makes such adjustments the pion mass
calculated from {(p%+m ,2)'/2)=E,,, naturally falls
close to zero. Therefore, the opportunity arises
to put in by hand a connection with the PCAC pion
associated with a spontaneously broken chiral
symmetry. It is not difficult to constrain the bag

model to yield m,=0 when the quark masses van-
ish. To do this, expand

m 2
2p
and evaluate {p) and {1/2p) with the wave packet

¢ (p) determined with #»,=0 and m,=0. This
yields

(p2+m ) 2=p + (32)

(p)=A/R, (33)

(1/2p)=R/C, (34)
with

A=3R f aple(p)P@n)=2.3 (35)
and

C=R { Idsp[ti)(,i))]z(.?w)s(?i;;)z}-1=2.9. (36)

The bag pion’s mass is then given by the following
function of the radius:

2= (B, oy~ A/R) . (37)

Here E,,, contains
(1) the quark kinetic energy
E, .= 2x/R (38)
(x=2.04... for massless quarks);

(2) the gluon-exchange energy

E = -2c,, (39)

gluon™

where G,=0.7 for massless quarks;
(3) the volume and “zero-point” energy,

47 .
Em=-§—BR3—Zo/R. (40)

The usual procedure is to minimize the energy as
a function of R to find the actual state. Here we
shall minimize the mass,

2
dm,

=0. (41a)
dr R=R,
We shall also demand
m*| pg,=0, (41b)

which may be regarded as a constraint on the pa-
rameter “Z,.” We note first that if @, were a con-
stant, no solution to both (41a) and (41b) would
exist with R,>0. Without the constraint (41b), a
solution in general would exist with Z, less than
some critical value, but at the minimum we would
find m,2>0. If we try to enforce (b), we should
find that Z, would be at the critical value, and
there R,=0. A zero radius pion is not satisfactory



1980 JOHN F. DONOGHUE AND K. JOHNSON 21

because consistency with chiral perturbation the-
ory requires that F remain finite when m, =0,
m,=0. Since F,~1/R,, this means R, #0. If we
try to enforce both (a) and (b), it is required that
da /8R >0, i.e., asymptotic freedom is necessary
for our treatment of the pion to be possible. The
enforcement of a condition on Z; to make the pion
massless is not a “natural” condition in the con-
text of the bag model; nevertheless, we believe
that it could be here where the bag model as a
phenomenological version of QCD with a spontane-
ously broken chiral symmetry must be con-
strained. The total volume and “zero-point” term
in E,,, refers to the energy of a bubble of pertur-
bative vacuum embedded in the true vacuum. I
these states differ by a spontaneous breakdown of
chiral symmetry, then it would be natural that Z,
would be such that the pion should be massless.
Since we do not have a microscopic theory of this
spontaneous symmetry breakdown, it is necessary
for us to enforce this requirement by hand. Equa-
tions (41a) and (41b) translate into two relations,
one of which determines R in terms of B, G, x,
and Z,, and the other is the simple relation

16m

GoRa,®)| =1mR:. (42)

dR ReRy
This equation clearly expresses the fact noted
above that without asymptotic freedom our treat-
ment of the pion would not be possible, since m,
=0 would also require R,=0. The fact that both
sides of Eq. (42) are governed by the scale param-
eter of the strong interaction means that such a
relationship is not absurd. From a phenomenolog-
ical point of view we shall regard Eq. (42) as an
equation for R if we are given B-and a form of o
It turns out that the forms of @ used in Sec. IV all
yield R,=3.3-3.5 GeV.,

The physical pion mass is not zero, but m,=0.14
GeV. This can be accommodated by giving the
quarks a mass. The pion mass can be solved for
by calculating

(p2+m AV H=E, (m,), (43)

where the left-hand side is obtained with a wave
packet that is independent of both 2, and m,. At
each value of the radius, for fixed m,, this equal-
ity determines a value of m,. For small m  we
can expand E, (m ) as

] ]
Ebas(mq)=EbaB(0) +mqam Ekin+maWEgluun
e q
m
= Eyop(0) + 25 +0.23m RE oy,
’ (44)

where the dependence of the quark’s kinetic ener-
ey,

X X, m

=042 LR = de oo
E°R +2(x0—1)+ , X,=2.04 (45)

and Fig. 3 of R%f. 3 have been used.

The most important contribution is the change
in kinetic energy, and this lessens the sensitivity
to the form of @ (R). The fits of Sec. IV all give
the observed pion mass for a quark mass

m,=33+2 MeV, (48)

where the +2 indicates the range of possible
values.

IV. FIT

The new methods which we have introduced re-
quire a redetermination of the phenomenological
quark parameters. The purpose of this section is
to provide such an evaluation. With the exception
of Z,, the bag parameters determined below are
quite similar to those of a previous fit in Ref. 3.
As mentioned before, Z , changes because some
portion of the phenomenologically determined Z ,
is now accounted for by the center-of-mass cor-
rection.

We do not have the wave packets ¢(p) or x(p) for
all the hadrons. Here we will employ the same
form of ¢(p) for all particles, and use Eq. (20),
and the mass-dependent normalization of Eq. (5a).
We do this for simplicity and because this form
has several attractive features described above.
In addition, we feel that the precise form of ¢(p)
should be only important for the pion.®

The contributions to the bag energy are dis-
cussed in detail in Ref. 3. The only change which
we make is the introduction of a running effective
coupling a (R) in place of the fixed one. We of
course do not know the precise form of a (R).
When R is small, one would expect that o (R)
would change logarithmically as determined by the
renormalization group. However, a naive identifi-
cation of the lowest-order QCD result with the bag
coupling, i.e.,

2w
*R)= TR /R)
for three flavors (R, is the scale parameter anal-
ogous to A in momentum space), has an unfortunate
consequence. This formula diverges at R =R,
There are some states, such as the nucleon and
the pion, which receive a negative contribution to
their energy of the form —a (R)M,/R. The mass
of these particleés exhibits an instability as one
approaches R, becoming arbitrarily small or
negative. This clearly is unphysical, except that
it in some way corresponds to the instability of the
perturbation-theory vacuum. Since this instability
in o corresponds to low-momentum fluctuations,

(47)
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FIG. 1. The average value of (ER) vs mR using the
wave function ¢ (p).

“bag” effects will make a(R) finite except as

R -, For the pion one could ignore the problem
because R, remains safely away from R,. How-
ever, the proton has a larger radius, and for this
form of o it is not possible to both fit the N-A
mass difference and retain a stable nucleon in
lowest order.

To overcome this, we introduce a set of forms
of a(R) which do not suffer from this problem.
We require that they yield Eq. (47) at small R,
but be smoother at large R. This can be obtained
by setting

21
9In(A+R,/R) *

For A=1 there is no singularity. For A= 0.3
there remains a divergence in a (R), but it is
moved sufficiently far away from the region of in-
terest that no problems arise. We will use
0.3< A <1 to obtain a feel for the dependence of
our results on the form of @ (R).

We now proceed by setting

(E)={m?+p?)/ ) =E,,, . (49)

a(R)= (48)

TABLE 1. The bag parameters obtained for various
forms of ag (R)=21/91n(A +Ry/R).
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TABLE II. A comparison of the bag parameters of the
previous fit (Ref. 3) with those obtained here (using A =1).

Ref. 3 This paper (A =1)

Bi/4 0.145 GeV 0.135 GeV

Z, 1.84 ©1.01

ag(Ry) 2.2 2.1

Ry 5 Gev~! 5.5 GeV ™!
Ra 5.5 GeV ™! 5.6 Gev ™!
ag(Ry) 2.2 1.5

Ry 3.3 Gev™! 3.5 Gev ™!

The values of the dimensionless quantity (E)R as
a function of mR are given in Fig. 1. For large
mR ,(E)R - mR , while for m - 0,(E)R~2.3. The
equality (E) =E,,, then determines m(R) whose
minimum value fixes the particle mass.

The basic input to the fit will be m , m,, and the
requirement that m, vanish when m, =0. The de-
pendence of the parameters on the input is of
course coupled. However, to a large extent
my+m, determines the bag constant B, m, —m,
determines a (or in this case R,), and the condi-
tion on m, fixes Z ; (and predicts R,). The results
of such a procedure are given in Table I with a
quark mass of 33 MeV. That mass was chosen by
requiring that the pion be reproduced. Table II
gives a brief comparison of the parameters from
Ref. 3 with those for A=1. The gluon coupling
constant is somewhat weaker, and radii are slight-
ly changed, but otherwise the results are rather
similar. :

The p meson differs from the pion in the sign
and magnitude of the gluon-induced spin-spin in-
teraction. It it were not for this, the p would be
degenerate with the pion as in the SU(6) models.
There are no extra parameters to be determined,
and the mass of the p is a prediction of the model.
It is listed in Table III. We see that gluon ex-
change does provide a large splitting of the p and
pion, placing the p close to its experimental mass,
although a little low. It is not surprising that the

TABLE III, The mass and radii of the p meson pre-
dicted from our fit, for various values of A.

A Ry z, B4 Ry Ra A Ry (GeV-!)  m, (MeV) R, (GeV-)
i
1 2.13 1.01 0.135 5.47 5.62 1 3.5 704 4.4
0.9 2.68 1.10 0.137 5.40 5.43 0.9 3.5 682 4.2
0.8 3.22 1.16 0.139 5.35 5.28 0.8 3.5 © 663 4.0
0.7 3.74 1.22 0.141 5.33 5.16 0.7 3.5 647 3.8
0.6 4.24 1.26 0.142 5.31 5.05 0.6 3.4 634 3.7
0.5 4.74 1.30 0.143 5.31 4.59 0.5 3.4 620 3.6
0.4 5.23 1.34 0.145 5.32 4.87 0.4 3.3 607 3.5

0.3 5.71 1.36 0.146 5.35 4.79

0.3 3.3 597 3.4
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p mass should be sensitive to the form of o (R)
since that is the parameter which most directly
governs the p-7 splitting. The results favor A=1.

Particles containing strange quarks may be
accommodated by determining the strange-quark
mass. For strange baryons, m =0.28 GeV (the
same as in Ref. 3) reproduces the AS=1 mass dif-
ferences quite well. This value then predicts a
kaon mass m,=0.44 GeV (A=0.3)-0.46 GeV
(A=1), which is quite reasonable. Alternatively
one could use the kaon mass to determine m ,
yielding m = 0.33+0.01 for the various forms of
a(R). \

The basic static properties of the nucleon with
the above parameters are®*

gimtic bag = 1,13 , (50a)
zmp“sptatic bag — 2.1 s (50b)
<7_2>static bag = (077)2 fmz . (500)

The momentum fluctuation inherent in the wave
function which we are using corresponds to

10
%L?m(mmzuo.%. (51)

The first corrections to the static limit, given in
Sec. II, can therefore be computed, with the result

The most serious discrepancy in the static proper-
ties calculated in Ref. 3 was the low value of the
nucleons’ gyromagnetic ratio (2m,u,=1.9). The
combination of a slightly larger proton radius and
the fluctuation correction improves this consider-
ably.

V. THE RELATIONSHIP WITH CHIRAL PERTURBATION
THEORY

A massless pion is an exact consequence of a
spontaneously broken chiral symmetry. In theo-
ries such as QCD with small, explicit breaking
of chiral symmetry in the form of quark masses,
the pion is an approximate Goldstone boson, and a
chiral perturbation theory has been developed.®

In this scheme, one adds to the chirally invar-
iant Lagrangian the mass terms

AL =m,u + mydd . (55)
The pion mass in lowest-order perturbation theory
is

m,?=mn| @l ) + m(n|dd | m)

= (my+myXn|qq| ), (56)

where the matrix elements are evaluated with
m,=0. The mass parameters here are those of
“current quarks.”

Equation (56) also arises in an approximation to
our treatment. To make this clear, we shall first

g4=1.27, (562) establish the connection between the field-theory

‘ matrix element (7(p)|g(x)g(x)[7(p")) and the bag-
2mp,=2.5, (53) model matrix element (ﬂ]c?(x)q(x)] mp using the

fixed wave packet ¢ with m =0, and zero quark
{(r?=(0.82)*fm?2. (54) masses as discussed in Sec. IL. This is
. )
* ’

oalawat [ mp = [epap LB v o) 7@ n(p), (57)

so in particular

a(

=(1/2p)(n(p) |q(0)q (0) | 7(p)).

Equation (58) will be basic in what follows. Now
we can do perturbation theory in the bag model,
again with the assumption that when the quarks are
massless m,=0. Then we have (as above)

E e ={(pP+m2 W =(p) +m,X1/2p) , (59)
SO

(p)+ m,2<2—1>‘= E,,(0) +mq~8%—Ebu (60)
or

W= ap2n B (1)1 700)(0) | 7(p)
B

(58)

2/ 1\ _ 5
m, % ~mq3-m—qug. 61)
If we assume that in the bag model we compute
8/3m(E,,,) in lowest order from the quark mass
term, we obtain

3%::%: 2 fd%cqo(x)qo(x)
=2 B<1r fd:’x g(x)q(x) 7r>B s (62)




where g, is the zero-quark-mass static bag wave
function. With the basic relation (58), and Egs.
(61) and (62) we find the same expression for m,?,

i.e.,
T
B

f Prg)g )

1
ot (g)am

=2m¢<2—j;><n<p)[q(0)q(o>{ﬂp». (63)

In particular, numerically using Eq. (4) and Eq.
(60), .

m 25’-=m 2 By _ Mg (64)

T C T 2.9 x,-1°
and for later reference,
(n(p)]|7(0)q(0)| 7(p)) = 1.4/R, . (65)

The quark masses in the bag model have always
been light, more like “current” quark masses than
those of “constituent” quarks which appear in non-
relativistic treatments. This derivation makes
clear the identification of the bag-model quark
mass with that of the current quarks. Of course,
absolute quark masses only make sense when the
prescription used to renormalize them is spelled
out. The use of the bag wave function in evaluating
m, is one reasonable method.

Actually, the derivation of the chiral perturba-
tion formula Eq. (56) does not depend on the bag
model. It is independent of the precise form of
¢(p), provided the wave packet itself is independ-
ent of m,. Note, however, that the wave packet
used in Sec. IV involved the hadron mass via Eq.
(5a), and cannot be used to obtain Eq. (63), since
the expansion of Eq. (59) does not apply to such a
wave packet, The important ingredients are (1)
the equality of (E) with the total quark energy
E, . (2) the vanishing of m, when m =0, and in
both cases, first-order perturbation theory.

Direct evaluation of Eq. (64) yields m,=22 MeV.
This corresponds to a chiral parameter

(0]7q| 0y = —F,n|gq|m =-(0.15 GeV)*

for R, =3.3-3.5 GeV. The mass m, is not meant to
be compared directly to masses from current al-
gebra. The current-algebra study of pseudoscalar
masses yields only mass ratios. Weinberg has
proposed a measure of absolute size.!® If
(H|gq{H)=2N,, where Z is a renormalization con-
stant and N, is the number of quarks in H, then

(H|mqgq|H) .
m} =———7ng—-—: m,Z (66)
can be defined. AS=1 mass differences can be
used to indicate m}* ~150 MeV (this is true in the

bag model also since there m =280-330 MeV, and
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Z =0.5). Current-algebra mass ratios'®!! then
suggest m} =3(m}+m})=6 MeV. The renormal-
ization constant Z is readily calculable in the bag
(see above). In fact, it is only the product m Z
which enters the calculation of m, through Eq. (62).
The result to be compared with the chiral pertur-
bation theory mass is m} =12 MeV (or as in Sec.
IV, more accurately, m} =17 MeV). The bag
model’s values of the up- and down-quark masses
are higher than those of chiral SU(3) by a factor
of 2 or 3.

The quark masses determined in our method
from the pion mass are consistent with those found
by a study of the nucleon’s ¢ term defined from '?

[F3,0,4%(0)]=5,0
or 67)
o= mq(ﬁu+c—id) .

Taking matrix elements of ¢ between nucleon
states yields m} =m Z directly':

m¥ =30,y (1 =(p?/2m,?). (68)

Estimates of 0,y range from 51 to 70 MeV or m}
=14-19 MeV. This translates to quark masses
m,=25-37 MeV, consistent with the quark mass
found in Sec. IV. Jaffee has recently discussed
the o term in his discussion of scale-dependent
light-quark masses.

The perturbation method developed in this sec-
tion, Eq. (64), yields m, =22 MeV, while the al-
ternative method based on a wave packet satisfy-
ing Eq. (5a) gave a value m, =33 MeV in Sec. IV.
The disagreement is due to two effects. First, we
have included gluon effects in Sec. IV, but omitted
them from Eq. (62). Second, the mass dependence
of ¢(p) is included in Sec. IV (but not in Secs. III
and V) and introduces terms proportional to
m,” In(m, R,) in the expansion analogous to Eq. (59).
But they are not a major source of discrepancy in
practice, since the fit of Sec. IV gave a value
m,R,=0.5. In chiral perturbation theory correc-
tions to the lowest-order result also involve
m,” lnm,?, although their effect is numerically
different from ours.

If we naively extended the bag-model version of
chiral perturbation theory to include the kaon, we
would obtain the usual chiral-SU(3) X SU(3) current-
algebra ratios (neglecting isospin breaking)

2
_mg _ m 1
Mme+mg  2my,° 26 69)
or
md/msu 2!.5' (70)

Instead, the correct bag procedure, using as in-
put m, and mg, yields
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my/my=g. (71)

In this application SU(3) is not a good symmetry,
and significant differences in the treatment of
pions and kaons are seen. This explains why we

agree with Weinberg’s value of m}, but not m;‘

VI. CONCLUSIONS

We have shown how the static bag model can be
corrected to take into account in a simple way
the effects associated with the localization of the
particle at a fixed point in space. Although the
modifications are small for hadrons whose size is
large in comparison to the scale set by the mass,
they have a very substantial effect on the lightest
hadron, the pion. By incorporating these correc-
tions, we have shown how it is possible for the
traditional quark-model state with a substantial
extended size to coincide with the PCAC pion,
which is a “collective state” associated with the
spontaneous breakdown of chiral symmetry. Al-
though we have by no means gone all the way to
reconcile these two seemingly very different phy-
sical pictures of the pion, we have at least indi-
cated how they could be compatible with each
other. Our methods have allowed us to estimate
with some success the 7 and K decay constants,
and to derive a connection with chiral perturbation
theory.

Finally perhaps it would be interesting if we re-
mark on a possibly significant similarity between
the chiral field theory and the bag-model descrip-
tion of hadrons composed principally of light
quarks. In field theory, the ratio

©lgqlo) _ .
eI I ) (12)

in the limit of massless pions. If we say (as in
the bag model) that the interior of extended had-
rons is accurately described by a perturbative
vacuum (that is, a chirally symmetric state), then
at “edge” where the effects of valence quarks
shouid be lowest one might expect that g¢=0 (as

in the bag model). Inside, with the presence of the
valence quarks g >0. Consequently
(m(p)|gq|=(p))>0. Hence, because of Eq. (72),
(0]gq10)<0, that is, G(x)q(x) changes discontinu-
ously from zero to less than zero at the boundary
of the hadron. In this way it is similar to the
order parameter at the boundary between two pha-
ses which differ by a first-order change. Viewed
in this way, the bag model for light quarks cor-
responds to a model of a “two-phase” vacuum with
the order parameter gq >0 defining the chirally

4

asprd®p 1

symmetric phase and g4 <0, the spontaneously
broken state where the chiral symmetry is spon-
taneously broken, it cannot itself be a chirally
symmetric model. It is, however, natural that the
bag model’s chiral density finds its source only

on the bag boundary.
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APPENDIX: NONSTATIC MATRIX ELEMENTS

For static quantities such as axial-vector coup-
ling constants or magnetic moments, the methods
derived in the main text are sufficient. However,
for nonstatic quantities, such as charge radius
contained in the form factor F(g), a further im-
provement is needed. This appendix provides the
necessary treatment.

When a photon couples to a particle it fransfers
to it a finite rnomentum ¢q. Therefore we must
necessarily go beyond a purely static treatment,
so rather than considering only fixed static bags,
let us consider a moving bag as a wave packet with
a nonzero net momentum §. We do this by trans-
forming each of the momentum eigenstates in the
wave packet by q, i.e., for mesons

M, 00 = [ty o) P+ ). (A1)
b pra

The normalization factor is such that
sM,q|M, =1, (A2)

This superposition produces a normalized bag
state, centered around the origin, with an overall
momentum a This wave packet can be written in
a more convenient faghion by redefining the inte-
gration variable.

4,005= / Gy o = ) M) . (43)
? ~q

To calculate the form factor F(q) defined by
M(p") |, &) |MP))=(p+p")F(p = p)e?* 7,
(A4)

we transform to a matrix element between one
static-bag state and one moving state:

201,190 11,00 = f T LL L (w4 0,00 )0 (DIF(p = p e (a5)
b’ p'-q b
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If we now integrate this with a factor e " * we find
Fro0)= [ 5L

where, dropping small kinematic terms of order
7 /m?, we identify
F,,u(q)=fd3xe“"’"‘<M,qIJo(x)IM,0> (A7)
with the Fourier transform of the static bag charge
density
Fopp= [ d?x e ivsp3atie() . (A8)

Here we wish to compute corrections to the form
factor of a heavy particle, the proton,; so again we

‘17(17)]2 (U-’ /wp+q) /2+(wp+q/wp)1/2](277)3F(q2 (wp+q"' wp) ) (AG)

I
shall neglect such small kinematic quantities of
order ¢?/m?. In this case, the spin-dependent ef-
fects are also absent and the formulas for mesons
and baryons coincide. If we express the result in
terms of the charge radius defined by

F(P) =1 =3 ey (A9)
we find

B exp=rD3agte (L+3(p%)/m%),
which is also Eq. (15).
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