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Reggeixation of elementary fermions in arbitrary renormalixable gauge theories
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An arbitrary, renormalizable non-Abelian gauge theory with gauge group g and arbitrary scalar and

fermion structure is considered. Necessary conditions for all the fermions of the theory to lie on Regge
trajectories are derived. If no fermion transforms as a singlet under Q, then all fermions Reggeize. If some
fermions transform as singlets under g, then certain group-theoretic constraints on the fermion mass matrix
must be satisfied if all fermions are to Reggeize. These methods are applied to the %einberg-Salam and

grand unified theories. As a by-product of this study, kinematical-singularity-free, signatured helicity

amplitudes are constructed which allow for P and CP violation. Such amplitudes may be useful for
applications outside the context of the Regge program.

I. INTR()DUCTION t A~mP~= 0 (1.1a)

It is the purpose of this paper to discuss the
Begge behavior of elementary fermions near J
= ~ in an arbitrary renormalizable gauge theory.
This analysis should be considered a sequel to our
study' Lwhich we cail (I)] of the Heggeization of
the gauge vector mesons in arbitrary gauge theo-
ries. The reader should consult (I) for a detailed
discussion of the motivation and setting of the
question of Beggeization within the context of La-
grangian field theory. Here, as in (I), we stress
possible applications of our results to unified and
grand unified (GU) field theories. In particular,
if the Higgs-meson mass exceeds 1 TeV andi'or if
fermlon masses (eLther /nark or lepton) exceed
300 GeV, then partial-wave unitarity in the elec-
troweak sector is violated in perturbation theory, '
and the weak interactions must become strong at
energies exceeding 1 TeV. In this case one anti-
cipates that the unified SU(2) x U(l) theory will
exhibit resonances and Regge recurrences of
interxnediate vector bosons and elementary fer-
mions, and other rich phenomena usually asso-
ciated with the strong interactions. We hope that
our analysis will contribute to the understanding
of these aspects of unified theories, as mell as to
a, general appreciation of the elegance of GU the-
ories, at least within the context of our discus-
s 1.0n.

In this paper we show that the presence of ele-
mentary fel mions transforming as either l ight-
handed or left-handed singlet representations of
an arbitrar y, non-Abelian gauge group 8 implies that
some fermions nlay not, Beggelze unless cex'tain
necessary conditions are satisfied. On the other
hand, if ~o fermion transforms as a singlet under
9, then gl/ fermions lie on Begge trajectories.
Our criteria are as follows: Necessary conditions
to be satisfied for all fermions to lie on a Begge
trajectory are

for all g,
(1.1b)

whexe rn is the fermion mass matrix, and
t ~ (t R) is the left-handed (right-handed) fermion
representation matrix (in general reducible) in the
basis in which the gauge-vector-meson mass ma-
trix is diagonal, with A labeling a particular gauge
meson. One forms the Casimir operators for the
left- and right-handed fermion representations,
l.e. ]

I, tAtA
A

R Z 'A~A'
A

Then P~ and j'R are the projection operators onto
the null spaces of C~ and C~, respectively. That
ls~

PC =CP =0

P~C~ = C~P~ = 0.
These requirements provide a considerable ex-
tension of earlier work, ' which led to the erron-
eous conjecture that all elementary fermions al-
ways Beggeized in. a renormalizable gauge theory.
We provide specific counterexamples to this false
conjecture in Sec. IV, in that we present models
which fail to satisfy Eqs. (1.1). II Eg. (1.1) is sat-
isfied for some but not all vector-meson states
A, then some but not all fermions may lie on
Begge trajectories. It should be emphasized that
all our results are natural in the technical sense,
being independent of the magnitude of coupling
constants, and valid for arbitrary reducible or
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irreducible scalar-meson or fermion multiplets,
for arbitrary (renormalizable) scalar self-cou-
plings, and arbitrary gauge group 9.

In Sec. IV we analyze the Weinberg-Salam the-
ory from the point of view of requirements (1.1}.
We show that if the lepton sector is made of sev-
eral generations of left-handed doublets and right-
handed singlets, with massless neutrinos, then
all leptons lie on Begge trajectories. Qn the other
ha.nd, the guarks of the SU(2) x U(l) Weinberg-
Salam theory do not Beggeize. If we then consider
the standard model with the SU(2) x U(l) x SU(3)
group, we show that the colored gauge bosons en-
able all fermions in the standard model to Reg-
geize. In a GU theory' such as SU(5), O(10), or
E„all quarks and leptons also Reggeize, since
it is possible to avoid singlet representations of
9 in model building. A typical example is pro-
vided by the simplest SU(5) model, where each
generation of fermions transforms as a 5+ 10
under 8. Combining the conclusions of (I) with
those of this paper, we find that all gauge vector
mesons and all elementary fermions lie on Begge
trajectories if the gauge group 9 is semisimple
(with no Abelian subgroups), and if all right- and

left-handed fermions transform nontrivially under
9. Therefore, g/l gauge bosons and all fermions
Beggeize in typical GU theories, a property which
is in sharp contrast to that of the Wei.nberg-Salam
model. Therefore, the analytic 8 matrix of the
SU(2) x U(1) electroweak theory is dramatically
differ'ent from that of a GU theory, with the dis-
tinction being natural in the technical sense,

It is not possible to compute the detailed behav-
ior of the fermion (boson) Regge trajectories out-
side the neighborhood of 8= —,

' (Z= 1) by currently
available methods. However, e.g. , the slope of
the electron or muon trajectories at J'=-,' are of
the order of b,Jlb, m-1 j(2 TeV}, which is the same
order as the slopes of the intermediate-vector-
boson Regge trajectories. Thus, if perturbation
theory fails for the unified electroweak theory
above 1 TeV' (due, say, to a heavy Higgs meson),
and if the Begge trajectories are straight lines,
then Begge recurrences of the intermediate vec-
tor bosons and elementary fermions are expected
in the 2-to-4-TeV region.

In Sec. II of this paper we formulate vector-
fermion scattering in an arbitrary gauge theory,
as is required for a study of Begge behavior near
J=-,'. Much of the notation and strategy, which is
to be found in (I), is not repeated here in the in-
terest of brevity. Section III is devoted to an anal-
ysis of the factorization condition, which is a nec-
essary condition for Reggeization [see Eg. (2.15)
of (I)]. This eventually leads to the criteria pre-
sented in Egs. (1.1}-(1.3) above. Several examples

which illustrate the general criteria are given in
Sec. IV.

In Appendix A we extend the usual formulation
of kinematical-singularity-free, signatured, natu-
ral- and unnatural-parity helicity amplitudes to
the most general situation in which neither parity
nor CP is conserved. The usual formulation' as-
sumes P and CP conservation; hence it is re-
stricted to the strong interactions, and is not ade-
quate for applications to unified and GU theories.
The material in this Appendix is new, and is prob-
ably useful for a variety of applications outside
the context of this paper. Appendix B contains
some details of the calculation of vector -fermion
helicity amplitudes.

II. VECTOR-FERMION SCATTERING

Our program requires the computation of the
kinematical-singularity-free helicity amplitudes
near J= 2 for vector-fermion scattering in an ar-
bitrary, non-Abelian gauge theory. We use the
notation and formulation of (I) and denote eciua-
tions from that paper with the prefix I. The La-
grangian in unitary gauge is

~gauge ~boson ~fermion &
(2.1)

where S„„„andZ~„, are given in Egs. (I 3.2)
and (1-3.'I) respectively„while

&... ,..=f4~'D„0 4m. 4 4—(r 4)4— (2.2)

(Recall we are following the general theory of
broken symmetry given by Weinberg, ' but with
Bjorken and Drell conventions. ) In (2.2) mo is the
bare-mass matrix of the fermions. The gauge-
covariant derivative of the spin- —, field g„(~) is

(D,g) „=~,g„+i(t )„„)~A,, (2.3)

where t is the matrix representation of T in the
(reducible) representation D~ of 9 furmshed by
the fermion fields. Thus,

[t~~ ts] = ac~ayt) (2.4)

t'„=-'(1 ~,)t. .
As a consequence,

[t:,t,'] =ac.,„t„',
[t., t, ]=tC.,„ts,

(2.6)

(2.7)

The representation matrices may be decomposed
into left- and right-handed parts, i.e. ,

(2-5)
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and

[t'. , t, ]=0.
Eqs. (I-3.18)-(I-3.22). When one diagonalizes the
vector-meson mass matrix, the representation
matrix of the fermions becomes

Similarly,
t~ —C „t (2.1V)

where

0'= 2(l -y, )4,
'(I-+ y, )4

Since i,(gy~D„g) is invariant under 9,

(t L)'= t '
and

(2.8)

(2.9)

(2.10}
where

(2.18)

where (C A] is the set of orthonormal vectors de-
fined in (I-3.19)-(I-3.20). Equation (2.17) is de-
composed as in (2.10). One shifts the scalar fields

(I-s.ls)

according to (I-s.ll)-(I-3.17). Then

(tR)t tR

The bare-mass term in (2.2) is also invariant
under 9, which implies that

t m0 —m0t =0

(2.11)

t ~mO motR O ~

D.&= s,&+ & Z(4»R. P
N

and where the zero-order fermion matrix is

m=m, +(r, ~),
with matrix elements

m, , = m,.6,.

(2.19)

(2.20)

(2.21)

Further,
0 0

m0 P BZ0P o (2.12)

After a suitable redefinition of the fields g, we
eliminate all terms proportional to y, in ~0.

The invariance of the Yukawa interaction under
8 leads to

[t., y'r, ] = -(e.)„(y'r,), (2.1s)

r, = -,'(1+y, )r, '+ =.'(1-y, )r,",
so that (2.13) and (2.14) give

tLZ» ZLRtR- (g )a a 0'q c

and

tRrRL rRLtI (8 ) Z'RLappaakcc
Since the Yukawa interaction is Hermitian,

(2.14)

(2.15)

where 8 is the matrix representation of T in the
representation DB of 9 [see (I-s.'l)-(1-3.10)]. One
can decompose

in the basis in which m is diagonal. [This does
not mean (r~),, is diagonal, since in general (mo), ,
is not diagonal in this basis. ] In this representa-
tion, the shifted Lagrangian is given in unitary
gauge by (I-3.23) and (2.18), from which we ex-
tract the Feynman rules for a lowest-order cal-
culation.

Let us consider the vector-fermion scattering
processes

V„(k„)+F,.(p,)- V (k )+F,(p,), . (2.22)

where p, and p, are the four-momenta of the fer-
mions of type i and j, respectively, in the basis
defined by (2.21), and k„and kB are the four-mo-
menta of the vector mesons A. and B in the basis
defined by (I-3.19}-(I-3.21). In lowest order there
are four diagrams contributing to the process
(2.22): two fermion exchanges, one vector ex-
change, and one scalar exchange. These diagrams
give amplitudes

and

(z'«) t- (rRL)

(2.16)
x u(p, ) e„(kA) e~(kB), (2.23)

According to the program outlined in Sec. II of
(I), in order to verify the Reggeization of the fer-
mions near J= —,', we must compute the Born 9 ma-
trix for vector-fermion scattering. Therefore it
is best to work in a basis in which both the vec-
tor-meson and fermion mass matrices are diag-
onal. This is described for the vector mesons in

x u(P, }e,(kA) e„*(kB), (2.24)

~ u(p2)y (tG)u(pl) (kA kB)l(kA kB)
(t ~ 2) gsx

x CABG[g,„(kA+kB), +g„,(kA —2kB),

+~l.(kB —2kA). ]e.(kA) e.*(kB} (2 25)
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t--(p, —p,)', (2.27}

u=(p, -k, )',
with

2 2 2 2s+t+u= p~ + p~ +m,. +m, (2.28}

The complete Feynman amplitude for process
(2.22) is

D = D~ + D2+ D3+ D~ . (2.29)

In the center-of-mass system, the four-momenta'
of the boson and fermion states are

k„= (Z„,o, o, A.„),
ks = (Es,Ksy, 0,Ksz),

p, =(8, , 0, 0, -Z„),
p, = (8, , -Ksy, 0, -Ksz),

(2.30}

and

&,= -i[u(p.)(r,)u(p, )]
II

t-M) ~

x [(8 X8„)+(8„&8)] g,„e,(k„)e„*(k ), (2.26)

respectively. In diagram D~, the projection op-
erator II~, is given by (I-3.26), with the 8„defined
by (I-3.20). In (2.23)-(2.26) s, t, u denote the
usual Mandelstam variables, i.e. ,

s=(p, +k„)',

where z = cos8 and y= sin8, with 8 the center-of-
mass scattering angle. Also we define

W= Vs=(E„+S,.)=(E,+8,).
Further,

(2.31)

t=m,.'+m&' —28,.$ +2K„Z ~ (2.32a)

and

u= m,. + p~ —2g ]E~ —2K~K~g (2.32b)

in the center-of-mass system.
In computing the J-plane behavior of the ampli-

tudes near J= ~, it is sufficient to examine the
large-z form of the helicity amplitudes. ' This
fact leads to some algebraic simplification be-
cause it allows one to replace, in the denomi-
nators of D„D„and D„ the u —m', t —p2, and
t M' factors by -2K„K~z, 2K„K~z, and .

2K~K~z, respectively, after which the numera-
tors may be combined:

D = D, + (-N, + Na+ N4),
A, B

(2.33)

where N,. are the numerators of the D,. in Eqs.
(2.24)-(2.26). After some algebra, which involves
commuting y. &* to the extreme left and y. & to the
extreme right, we obtain:

-N, +N, +N, =2i(c e~)N[y (P,+ks)(tst„) y'tsy'mt„-]u —2i(ks &)u[y e*(tst„)]u
—2i(k„& )u[y'(tst„)y'y &]u+2i(p, c)u[y e~(t„ts}]u+2i(p, e )u[y'(t„ts)y'y e]u

-tu[y e'y (p, k, }y'(ts—t&)y'y ~]u-zu[y e'(t„my'ts)y'y ~]u. (2.34)

Note that the I/p~ term in N~, arising from the
projection operator II~, (I-3.26), cancels a simi-
lar term in N„a cancellation required by gauge
invariance. In establishing this result, we require
the identity

used in proving (I-3.30).
Equation (2.34) is particularly useful in comput-

ing the sense-nonsense and nonsense-nonsense
matrix elements, since

(y'r, }[(e,~e„)+(e„~e,)],
= -f [t„[t„,y'(~, r)]]+(w—a)}
=-[t [t,y' ]]-[t [»»' ]]

(y ()u=0

and for nonsense states .
u(y e~)=0

(2.3'7)

where use has been made of (2.11), (2.13), and
(2.20}. We also need the identity

(y,r, )g (e,~),(e,~),[(e,~e„)+ (e„~e,)],

As a result of (2.37), only the first line of (2.34)
is needed in the evaluation of the nonsense-non-
sense helicity matrix —a considerable simplifica-
tion. Other useful identities are

= i Q [to~ y m] ~~so( &s —&~ )~ &a ~

G

which is verified by manipulations similar to those

(2.38)
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P q"'*= WK /p

where q"' and q'3' denote the helicity =+1 and 0
I

vector-meson wave functions, respectively.
Equations (2.38} enter the computation of the
sense-nonsense and sense-sense matrix elements
of (2.34). The calculation of the kinematical-sin-
gularity-free helicity amplitudes is presented in
Appendix B.

III. HELICITY AMPLITUDES AND THE
FACTORIZATION CONDITION

~ gR+tL
T=-

2

~ tR+tL
1T=—
2

pR tL

~R+ tl. P

0

(3.4a)

(3.4b)

(3.5)

At J= &, where the fermion-vector partial-wave
amplitudes satisfy equations which admit solutions
without Castillejo-Dalitz-Dyson poles, the Begge-
ization requirement is equivalent to the factoriza-
tion condition'

' 5-ypg 0

0 6+m .
1 0

tX= [2m(E+ m)]"'

ss sn nn ns &

where the f 's are the coefficients of 5~,/„1/
(J--,')'/', 1/(J'--,'), respectively, in the partial-
wave projections of the sense-sense ( ~A ~, ~X'

~

=-,'),
sense-nonsense (/X

f

=-,', /X
f

= 2), and nonsense-
nonsense (/X/= /X'/= —,') helicity amplitudes. [See
(1-2.9).] Equivalently they are the coefficients of
z', 1/z, 1/z (for large z) of the helicity amplitudes
themselves. Our task is to compute these ampli-
tudes in the kinematical-singularity-free, right-
signature, parity combinations described in Ap-
pendix A. In checking the necessary conditions
for Heggeization of the fermions, we have deemed
it sufficient to look at sense states with only trans-
verse mesons, helicity +1. This leads to appre-
ciable simplification of the algebra and is not ex-
pected to cause any loss of generality in the final
results. The details of the computation of the cor-
responding helicity amplitudes are given in Ap-
pendix B. We denote the resulting coefficients of
z' in the amplitudes f,'/,",'/, by f„, and of 1/z in

g

fl/2 3/2t f3/2, 1/ 2t a f3/2, 3/2 by fsnt fnst and fnnt

respectively, and observe that each of these can
be written as matrices in parity space:

. (3.2)

with

fnn=&TsVVT~& t

f ='X(Ts'HT„+ 2TzT„S)3f,

f,„=X(2h TeT„+Tgq T„)X,

(3.3a)

(3.3b)

(3.3c)

f„= 4XS Ten/v 'T„SX,— (3.3d)

and the following matrices defined in parity space:

The individual entries in the above definitions are
matrices in fermio32 internal-symmetry space,
labeled by vectors g"=g'"~Sf"'" with m=m jjP
f&~ i/:—(phyl/ ~1&I3fl) and h —h Q. .. Ac
cording to the unitarity-analyticity method for
computing the S matrix in the J plane, the sense-
sense elements of the analytically continued S
matrix near J= —,

' are given from (3.1) by

lim f,„(J—-', -Xf„„)'Xf
J-+ j./2

(3.3)

where X is essentially an integral over phase
space and the matrix multiplication is understood
to mean

(f}s;,cs(J 2 Xf) cs, c'a'(Xf }c'3',/t. ; ~

ca, c'x'

The resulting expression is to be compared to the
sense-sense amplitude evaluated directly at J= ~.
Using equations (3.3), (3.9) can be written as

lim4Xh TT(J -XT%'T} 'XTT83f t
J~ 1/2

(3.10)

plus terms which are regular, and should be com-
pared with that pa, rt of f„which goes as z' in D„
D„and D,. The crucial point is that f„, corre-
sponding to the s-channel term D„has poles in ~
at the masses of the fermions, and the necessary
condition for Reggeization is that f,„(J—2

-Xf ) 'Xf should have the same structure at
J= —,'. Therefore, a necessary condition for Reg-
geization is that in this limit we should have

(4%8 Ten/v 'T„S'X),,

=lim [4XSTT(TWT —c/) 'TTQX]z, „, (3.11)
~~o

for every initial and final vector meson 4, B and
every initial and final fermion i,j. We have de-
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fined, for the above equation

(3.12)

Then in this representation,

II

W -m

(3.13)

since the phase-space integral X is nonsingular.
Thus, since the kinematical factors on both sides
of (3.11) are identical, we must investigate under
what conditions the following equation holds:

T~ 'T= lim TT(TWT —a) 'TT.

&-m F

p tR
Tf TI

tL p

0

tR p

(3.22)

[(TvvT —~)X]s,. „,. = &s„b„ (3.14)

Multiplying on the left by T~ and on the right by
T„, and summing over all the vector-meson
states, we have

The relation (3.13) is immediately satisfied in
those cases where the inverse exists in the a-0
limit. Since W is not singular for arbitrary values
of the energy (which are not eigenvalues. of +m),
the existence of the inversion is determined by
the singular nature of the matrices T, T. Even
when these matrices are singular, (3.13}may be
satisfied if the kernel of T&T is annihilated by T
and/or T. We proceed to investigate this situation
in more detail. We defirie X to be the inverse of
(TWT —n) (which exists for naO) so that

CRW —& -CRm
C"N' —n= (3.23)

(c,w- n)-' ——(c w- ~) 'c,m-
(c'~' —a) '=

as can be easily verified. The factorization con-
dition is immediately satisfied in case I: C is
nonsingular, det(chic„) oO, i.e. , both the left- and
right-handed fermions belong to nonsinglet rep-
resentations. In this case all fermions lie on
Regge traj ectories.

We now discuss case II, when CL—= 0, i.e. , t„
= 0 for all A,- detCR 0, i.e. , all fermions are
right-handed and belong to nonsinglet representa-
tions:

(TTW —u)TXT= TT.

We denote

C TATA TT
A

(3.15)

(3.16) and

p 0

(3.24)

so that the condition (3.13) becomes a relation be
tsoeen matrices in fermion space,

T (c'~ ' —n)-'c'T'= .o t"(c„w- n) 'c„ts. -

Tsv7 'T„= lim Ts(CN —n) ' CT
O~P A' (3.17)

while

(3.25)

The significance of C is that it is a matrix of the
Casimir operators of the fermion representation

TIW I-j.T r
0

. o ts(w w' m')-'p. - (3.26)

CR+ CL -CR+ CL

~ -CR+ CL CR+ CL
(3.16)

where

Cs= gt"„t„,
A

(3.19)

ci-Z t~tx ~

A
(3.20)

The condition (3.17) must hold for all meson states
A, B if all fermions are to Reggeize. It is con-
venient to go to a representation (in parity space)
where C is diagonal:

In the limit n-0 the factorization condition can
hold only if t~m'tRA= 0, or multiplying by t ~ on
the left and t R on the right and summing, CRm'CR
= 0. Since CR is nonsingular we conclude that m'
= 0. Therefore for case II: If all fermions belong
to (nonsinglet} purely right-handed (or purely left-
handed) representations of the gauge group, they
will all Reggeize only if they are all massless.

We consider next the general case, without spe-
cial restrictions on CR or CL. By direct compu-
tation, using (3.21) and (3.22), we find that

r
tL tL tL tR

@72 m2 gf 2 m2
T'Ã T=

C'=
0

0 CLi
(3.21)

tL tR tR
+72 m2 @72 m2

(3.27)
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Ti(Cs~ i &)-leery
tL~C tL tL~C tR

tRyC t I tR@C tR

(3.28}

C mP, =O,

or equivalently

(3.40)

A A

Since PL'=PL and CR, m, and PL are Hermitian,
this simplifies to

where the matrices in (3.28} are

a= [(c,w- n) —c„m(c,w- n)-'c,m]-',

F= [(c,w a)-'c,m]

(3.29)

x [ C~~-(C~W —o')-'C~m+ (C~w ~)]-~ (3 30)

u= [(c,w- ~) —c,m(c„w- n)-'c, ]-',
and

z= [(c,w- u)-'c, m]

(3.31)

WtR tR'W -m'
= Iimtg[(C, W n}

~~p

—c,m(c, w- n)-'c,~] 'c, t~ (s.ssa}

= lim thew Cs(w' —m') —o!
~~p

1
—C„m m C„ts„. (3.ssb)

CLW- n

lim n(c~w —n) '= -P~,
(g~p

where P~ (P~) is the projection operator onto the
null space of C~ (C~), so that

P,C, = C,P, =O

(3.34)

and
(3.35)

p C =C P =0.

x [ C,m(C, W- n)-'C, m+(C, W- n)]-', (S.S2)

which gives four conditions to be satisfied if the
factorization constraint (3.17) is to hold. First
consider

t"„mPL= 0, for all vector-meson states A.

t„mPR= 0, for a,ll A. (3.42)

Finally, the off-diagonal elements of (3.27) and
(3.28) automatically satisfy the factorization con-
dition (3.36), once (3.40) and (3.41) are imposed.
In establishing this final result, one must also
make use of (3.37). In summary, we have found
the following criteria: In the general case, nec-
essary conditions for all fermions to lie on a
Regge trajectory are

t ALmPR=O

t„mPL= 0

for all A. (3.43)

Equation (3.42) obviously subsumes the special
cases discussed above. Conditions (3.43) a,re
trivially satisfied if PR = 0 and PL= 0, which can
only occur if there are no right-handed or left-
handed singlet fermion representations of 8. If
singlet representations do occur, the above con-
ditions become constraints on the fermion mass
matrix. In the next section we turn to applications
of our results.

IV. APPLICATIONS

In Sec. III we derived a necessary condition for
the Beggeization of the J= 2 fermions in an arbi-
trary gauge theory. One requires

t„mPR=0

(3.41)

From (3.27), (3.29), and (3.32) we obtain the anal-
ogous result

Thus, we have and for all A (4.1)

tg —,ts~=limt~~ W[cz(w' —m') —nB~2 m2 A B R

+ C,~P,~]-'c,t~. (s.s6)

Since (3.16) and (3.35} imply that

t„RmP, =O

where the projection operators P satisfy

P,C, = C,P, =O

(4.2)
tR tRP 0R (3.37)

(3.38)

the factorization condition (3.36) requires

C,mp, mt„=O, for any A.

Multiplying by t„" on the right and summing on A
gxves C,mp, =o (4.sa)

PRCR = CRPR= 0 ~

From the definition of the fermion Casimir op-
erators, one also obtains slightly weaker condi-
tions

CRmPLmCR =0. (3.39) and
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C,mr", =0 (4.3b) and

and

C~= t~t~.
(4.4)

Similarly, our criteria become

from (4.1). It is sometimes convenient to work in
the representation given by Eqs. (2.4)-(2.7). From
the properties of the set of orthonormal vectors
(C „)given in (I-3.19)-(I-3.20), one can write

A

tRt R tRtR

."(D-„y,D"y) y—(y),
where

(4.13)

(4.14)

(Note that we have chosen identical bare-mass
terms for the fermions for simplicity. ) It is pos-
sible to find a V(P) such that

(e,) = (e.&= 0

t '.mZ, = 0
for all n

t RmI'~= 0

(4.5a}

(4.5b}
That is,

in this basis. We also remark that (4.1}or (4.5)

,need not be evaluated in the basis in which the
fermion mass matrix is diagonal; the choice of
fermion basis is a matter of convenience. By us-
ing (2.11), (2.15), and (2.20) we can rewrite (4.5)
in terms of the Yukawa couplings, i.e. ,

f.'mI „=mf".i, —(&&.r ")I„
= -(~e.r'e)I, = o

By translating the boson field p~= pt+ 6»v, we
obtain the following mass terms in the Lagran-
gian:

g, = 2(8'v')(&~ —&„&„}A'A'„-mo($, $, + II)

iG v[(-e e.) -(P.V] —G v[(0 ~)+(It)' ))

(4.16)

and

iemI, = (~e.re')I, =O.

(4.6}
Let us concentrate on the fermion mass matrix.
In this basis the mass matrices are

(0,) (4.)
We now consider specific models, with emphasis
on models where some fermions fail to Reggeize.

We begin with a model which has no parity vio-
lation in order to demonstrate that a central issue
of fermion Reggeization is whether fermions be-
long to singlet representations or not, with parity
violation not directly relevant. Consider the gauge
group 9=SU(2), with fermions transforming as

P-3
and -dimensional representations of 9 (4.7)

mo $ Gg5

-zG~v mo

with eigenvalues mo+ G,g, and

(g.) (I)

mo G2v

M2= t, G2v mo i

(4.17a)

(4.17b)

and scalars transforming

P~-3-dimensional representation of 9; p=1, 2, 3.
(4.8)

with eigenvalues mo+ G,g. The fermion mass ma-
trix is diagonal in the basis defined by

(4i+i4,},1
2

The Lagrangian of this model is given by

where

ps= &gAv ~vAg+ g&ooeAvAv

2„, „,=igy"D„g-gm, g+ily" s I -m, ll

—G,i «„,(g, t/i, )P,
—G.[(4J)e.+ (&Ve.]

(4.9)

(4.10)

(4.11)

E,= (y, +I,},1
2

1
e,==(P, —l ),g2

leading to

,= -(mo+ G,v)E,E, —(mo —G,v)E E

-(m, + G,v)E,EO —(mo —G,v)e e, .

(4.18)

(4.19)

(4.12)

Consider vector-fermion scattering in this mod-
el. The relevant interaction term in the Lagran-
gian is
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A~=&~,

(A'„+is'„)= W; .
2

(4.21)

g'=-g(E, y"E.-E y"E)Z.
X —[(E y0E + e y"E0 - 0

—E, y "E0—E, y"80)W'„+ H. c.],
(4.20)

where we have defined

A direct study of f„„would now require extraction
of the eigenvalues of a 3 x 3 matrix. Therefore,
the complexity of the brute force analysis of f„„
increases rapidly with the number of coupled
channels. For these more difficult situations,
our general criteria (4.1)—(4.6) then become a
powerful tool. %e now turn to these techniques.

Since parity is conserved in this example, the
left and right representations are isomorphic, and
we may write our criteria as

%'e now show that the singlet-triplet mixing of
fermions spoils the Beggeization of the E' and e'
fermions, a result which we establish in two dif-
ferent ways. Consider the coupled processes

t mP=O, for all a

with

SC=O

(4.28)

W'+ E W'+ E

(E0 e0)

WE' W+E'
(4.22}

for the model described above in the representa-
tion D~ given by (4.9)-(4.18). Then,

*

(q) (I)

1 1'
(f„„)s,~, = —g (W M0) (4.23)

which are the only channels which can contribute
to the Beggeization of the E and e fermions, as
can be seen from (4.20). By direct computation
it is easy to show that the nonsense-nonsense ma-
trix for the process (4.22) is

where (t,)„,=i@a„,,

2g5 0~
g, &=1,2, 3,

(t,)„o '
a, b, c=1,2, 3,

0 0
(4.29)

(4.30)

rank f„„=1, (4.24)

in the basis in which both the vector-meson and
fermion mass matrices are diagonal. Since

0 0)
g0 1

(4.31)

there can be at most one Begge trajectory in the
(E', e'} sector; ' not enough to Reggeize both fer-
mions. Further,

f„„(W=I,)=0, (4.25)

so that this trajectory does not pass through either
fermion. By comparison, the sense-sense matrix
for (4.22) behaves as

in this basis. It should be emphasized that Eqs.
(4.29)-(4.31) are 4 x 4 matrices in D~, due to the
reducible representation content of the fermions.
Finally, combining (4.17) with (4.18) we have

g „g.'
sa 8'-m~o 8' —m, o

' (4.26)
(4.32)

Z+E, ~ Z+E,
W'+ E0 = E„W'+E0.
W'+ e0~ ~W'+ e0

(4.2'7)

where obvious coupling matrices have been omitted
for simplicity. Thus in (4.22) neither E' or e' lies
on a Regge trajectory. If there had been no mixing
between the singlet and triplet fermions, then it is
straightforward to verify that g, would lie on a
Begge trajectory, but ) would not.

The Beggeization of the E, fermions requires
study of the coupled processes

0

0 mo G2v

0 G2z m, ~

Returning to the Reggeization of the E, fermions,
we observe that (4.28) is trivially satisfied, since
P= 0 on the subspace defined by (4.27). There-
fore, the factorization condition (I-2.15) is satis-

fiedd

for the coupled-channel problem (4.27), and
. the E, lie on a Regge trajectory. The ease with

which we obtained this conclusion should be com-
pared with a direct analysis of the 3 x 3 matrix
f„„for the amplitudes (4.27}.

It is also trivial to analyze (4.22) by these meth-
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ods. Let us consider the condition

(4.33)

Therefore,

(v,) (e,)
on the subspace defined by (4.22). Then the nec-
essary condition for factorization of (4.22) is

10' m, G2v) 00
0

'

0 1 0 (4.34a)
'1 0

= —,
' g '(3+ tan'e~)

~. 0 1. (4.38)

1.e. ]

'0 Gv»2

. 0 0. ' (4.34b)

Therefore, factorization fails for (4.22) and both
E' and e' fail to Reggeize in this model. The role
of mixing of g, with l is clearly evident in (4.34).
Again„ the efficiency of this method of verifying
factorization is apparent.

The next example we consider is the %einberg-
Salam modeL For simplicity we concentrate on
a single generation of leptons and of quarks. Con-
clusions are easily drawn for more complicated
cases without further computation. The relevant
part of the lepton Lagrangian for our purposes is

z, '= g (I.y~ ,'&.I.)x'„-
g'[(e„r'—e,)+ ''(e,W' e,)-+ z(v g "v,)]&„

(v )(e„)
Q Q» 6 0 0

C = (g')' =g'tan'e~, (4.39). 0 1. . 0 1.
which implies

P, =Q

(4.40)

1 0

, 0 0

Finally, the mass matrix is

(v, ) (e,) (v„) (e„)
0 0 0 Oi

with

FPt(easel + 8g—ea). (4.35) 0 0 0 m,

0 0 0 0
(4.41)

L=
eL

~ 0 m 0 0

where A,; and B„are the gauge fields of the SU(2)
and U(1) gauge subgroups, respectively. It is
more convenient to work in this basis for the vec-
tor bosons, rather than in the representation in
which the vector-meson mass matrix is diagonal.
Therefore we will be interested in examining the
factorization criteria in the form (4.4) and (4.5).
From (4.35) we have

Since

A

mP=

0

m~LP
L

mL~P
R

=—0,

0 mL&» P 0&

, m" 0 ~' I„O P~

(4.42)

1 I
Of 2

1 0
for n= 4

g0 1

while

and

=Qq for cv=1q2~3

0 0
t = -g' for o.=4.

i. 0 1.'

jf =pe ~
for @=1~2'3

(4.36)

(4.37)

Eq; (4.5) is trivially satisfied for all n, and the
electron and neutrino both Heggeize. More gen-
erally, if the lepton sector is described by several
generations of left-handed doublets and right-
handed singlets, with couplings as in (4.35), and
all neutrinos are massless, then all charged lep-
tons and neutrinos Beggeize. For more general
models, one proceeds similarly. The contrast
between the SU(2) model analyzed in (4.7)-(4.34)
and the SU(2) x U(1) model of Weinberg-Salam is
striking. In particular, the presence of the U(1)
subgroup is crucial to the Reggeization of both
the neutrinos and charged leptons, since this
means that C„e0, and P„e1. The additional
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fermion-boson channels provided by the B boson
increases the rank of f„„soas to alIow the Reg-
geization. The benefits of coupling additional
channels in the Reggeization program has been
noted in earlier work. '

Let us now turn to the quark sector of the Wein-
berg-Salam model, with just one generation of
quarks for simplicity. Then the important part
of the interaction Lagrangian is

unless m„=0, which is not the case. Therefore
the quarks do not Reggeize in the Weinberg-Salam
theory.

As our last example consider the "standard
model" with gauge group SU(2) x U(l) x SU(3),
where we will see immediately that the additional
couplings of the SU(3) of color enable all fermions
to Reggeize. The reason is that for the quarks we
now have

Z'= g(Ly~ 2y,L)A;+ g'(ugly u„+ ,d~y "d~-)B„

—m„(usu~+ u~u„) m~(—d„d~+ d~d„), (4.43)

where and

detC~ 4 0,
detC~W 0, (4.50)

~QI ~

L=
P~=P~=0, (4.51)

Now

ti= —'gy for @=1 2 3

0 0
for a=4,

0 1

(4.44)

and

t"=0, for @=1,2, 3,
r 1t~=g', for a=4.
gp 0~

(4.45)

Thus,

0 0
C =4g' 3 +tan'g

0 1,o 1~
(4.46)

C, =g 'tan'e,
,0 0

(4.47)

with

and

P, =O

&0 0
Pz=, for ~wg 0.0 1

(4.48)

t0 0~q
(t~), ='0 for all n,(0 m„.

(4.49)

which cannot be satisfied for any o., given (4.44),

Equations (4.3b) and (4.ab) are trivially satisfied,
while (4.5a) requires

due to the enlargement of the gauge group. This
now allows (4.5) to be satisfied for the quarks
without constraint on the flavor content or mass
spectrum of the quark sector. Furthermore, the
analysis of the lepton sector is identical to that of
(4.35)-(4.42), since the leptons are colored sin-
glets. More generally, we see that if we encoun-
ter a situation in which some fermions do not
Reggeize, if one can enlarge the gauge group so
that P~= P~ = 0 due to the additional gauge cou-
plings„ then Reggeization will be achieved. It
should be remarked that once the massless
colored gluons are considered, then one encoun-
ters possible infrared singularities in the Regge
trajectory functions. ' "We conjectured in I that
these infrared singularities could be removed if
inclusive processes were considered in this pro-
gram.

In a GU theory such as SU(5), where one has
the option of assigning each generation of fermions
to the 5+ 10 representation of the gauge group, all
fermions Heggeize since detC+WO, detC 40, and
P~=P~= 0. Therefore in this version of grand uni-
fied theories, all fermions and all gauge bosons lie
on Begge trajectories. ' Although these conclusions
may not have any immediate practical conse-
quences, they have a great deal of aesthetic ap-
peal. Other GU theories, with their particular
fermion representation content, may also be ana-
lyzed by the methods of this paper.

The most immediate consequence would occur if
perturbation theory breaks down above 1 TeV in
the unified electroweak theory. Then one will ex-
pect to see J= & recurrences of the elementary
leptons in the 2-to-4-TeV region. However, the
widths of these lepton resonances are expected to
be enormous due to the large available phase
space. Therefore, it remains a challenge to find
a way in whi. 'ch the possible lepton and intermedi. -
ate-vector-boson Regge recurrences make their
presence known above 1 TeV.
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APPENDIX A

This Appendix is devoted to an extension, for
the case when I' and CI' conservation is ygot as-
sumed, of the formalism of Gell-Mann, Gold-
berger, Low, Marx, and Zachariasen (GGMLZ}'
for defining signatured, natural- and unnatural-
parity helicity amplitudes free of kinematical
singularities. Vfe follow closely their procedure
and obtain results which reduce to theirs if P and
CP are conserved.

We begin by defining two-body helicity states
~
J, A,.&=—

~

J,M, X„X,& of given total J,J, and particle
helicities X„X,. Under the parity operation we
have

(Al)

where q= q, g,(-1)~ '& '2 and s„s, are the spins of
the two particles. The helicity scattering ampli-
tude is defined by

f„. , = Q(2J+ l)P. ',. ~F~ ~X,.&d~,.(8), (A2)
J

w""' &~IIF'l~~&=&J ~llS-IIJ ~~& K(K') "'"'
initial (final) center-of-mass momentum, and X

=x, -x„)'=),'-x,'.

We define the parity combinations

For example,

F", '= &~',. ~F'(~,&+q&~',. ~F'
(

—X,&
&t ., &t)

+ q'&-X',.
~

F '
~
~,&+ q q'&-~',.

~

F'
~

-X,&.

(A5)

Note that if parity is conserved the terms on the
right-hand side of (A5) are pairwise eIIual, and
I ' = I '=0. After some algebra we can express
the scattering amplitude as

f, , = g(2J+1)[F' +F'-
v'KK'

+ F '-'+ F '-]d,'.,(8) .
(A6)

The usual kinematical-singularity-free amplitude
ls

f = (C)-Ix+x' l(S)-IX-x'If
&t']A,

g
y

(AV)

c= icos—'8, s= v 2sin-'8.

It is convenient, however, to define "parity" am-
plitudes similar to those of GGLMZ. They are
given by the following combinations:

/J, ~,.&, = [
/
J, ~, &~@/ J, -x, &],

2

with @=q, q,(-1) ""&"2, v=0 or z if J is integer or
half-integer, and the amplitudes

F,',",'"I=,,&~',. ~F' ~X,&, ,

(A8)

where X„=max( ~X ~, ~X' ~). They can be expressed
as in GGLMZ, as an expansion in terms of the
functions eJ~~, that they introduce:

f';„= (2J'+ 1)[F~ e~'.(z)+ F '"e .(z)],'" v'ZX'

(A9a}

APPENDIX 8

In this Appendix we give details of the calcula-
tion of helicity amplitudes, in Born approxima-
tion, for vector-spinor scattering.

We work in the center of mass, with the defini-
tions

(A 9b)

with an inversion formula exactly as in GGLMZ:

t 1

[ „;,( )f;',„(g)+c„-,(g)f;;,
'-

(g)] .
2 1

(Alo)

If parity is conserved f"=0. In the form of Eq.
(A9), the high-energy behavior of f' ' is deter-
mined by Regge poles in +J''.

k„= (E„,O, O, K„),
ks —(Es, Key, 0,Kzz),

P, =(h, , o, o, -K„),
P, = (h„-K,y, O, -K,z),

for the momenta of vectors and spinors, respec-
tively, with z= cos6, y= sin6I. The total-center-of-

ass ne gy ss W'= h + E~ = &&+ EB
We use the following expressions for the helicity

wave functions:
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e'(KA) = — (0, l, iA, O), y =el, the nonsense-nonsense amplitude. We also have

=—(KA, 0, 0, EA), A. = 0,1

e'(K, ) =—(O, e, iX, -y),
2

(B2)

p d(K )=p ~'(K )=o

Further relations we shall use are

for A. , A. '= pl, and

(B8)

=—(KB,yEB, O, BEB), X'= 0,
1

PB .8,.+m,.
u (p }=[2m.(h ~ +m )] /

0.
-sin~8 t

/'

X+
cos2 8

cos—,'0 '
sin—,'8 .

Our y matrices are such that

r
&o 0

y 0
y50'5 -g 1 0.

We note the following useful relations

y~ ~x~g 0 NPy, ~x4 Q

h,.+ m,. '
u'(P )3= [2m, (h, +m, )] '/' ' y „,,

E -~B
Q

1

(B3a)

(B3b)

(B4)

u" u'= N[(h+ m)(h'+ m') —p, y. 'KK' J)(,,lt, ,

u'y, u'= N[(h+ m)(h'+ m')+ I/, t/. 'KK'] X „,)(, ,

u'y3u'=N((h'+m'} jK —(h+m) p'K']x „,x „,
(B8)u'y, y,u" = N[(h'+ m') t/K+ (h+ m) p. 'K'] y

u" y' q"u~ = &2'[(h '+ m') t/K

+ (h+ m) p, 'K'] y, ,o "y, ,
u~y &"y,u'= v 2&.N((h'+ m')(h+ m)

+ p i/. 'KK'])(,,oiX

for X=+1, with a =0„+i)0., and
N= [4mm'(h+m)(h'+ m')]~/'.

Because of simplifications in the algebra we
shall compute the helicity amplitudes only for
transverse meson helicity states. We begin with
the nonsense-nonsense amplitudes, A. = +1,
= T-~; A. '=+1, p, '=+~ for which, as mentioned
above, only the first term in Eq. (2.34) contri-
butes. (The term D, in (2.33) contributes only to
the sense-sense amplitudes, since it does not
contain a z ' factor. ) We write

for (A., p) or (X', g') in the nonsense combinations
(l, -3) and (-l, 3). They imply in particular, that
only the first term in Eq. (2.34) contributes to

t = '(I+ r.)-t"+'-(I r, )t ', -
and find that for large z the relevant, part of D in
(2.33) is

7= (uy (p, + 0A) [(tBtBA+ t B~t A~) + y, (t Bt „"—t ~~t A~) Ju+ u [(t Bmt A~+ t B~m t BA) y, (t Bm t A~ ——t ~~mt BA) JuJ2K~KBZ

(Blo)
In the center of mass y (p, +)'3A) = y, W, so that we can read the various matrix elements from Eg. (B8).
We evaluate the expression in Eq. (B9) for the various helicity configurations so as to obtain the quantities

f++=f+Z~-a/3;+i, -Z/3 f+ =f+X, -X/3;-1, +a-/3~ f +=f-j., +1/3;+X, -X/3~-f =f Z, -Z/3;-Z, -X/-3-~-

remove kinematical singularities according to Eg. (AV), and define parity combinations according to (A8).
We find, for the coefficient of z ',

f'/'
/

——N($/+ m/)(h + m) [W(t t + t t ) —(t mt + t mt A)],

f3/2, 3/
= N BKA[ (t BtA+ tBt A) + (t BmtA+ t Bmt A)]

f / /
=NK (h,.+m, )(w(t"tB —t~t~) .—(t "mt~ —t mt"„)],

f',;,„,=N($, +m, )K„(W(t",t"„-.t,'t'„. )+(tBmt„' t,'mt„')], —

where

N = i2W2[2m, .(h, + m, )2m,.(h,. + m,.)] "'(2KAKB) '.

(Bll)

We compute next the sense-nonsense amplitudes for final transverse mesons, A. = +1, p, =+—,'; A. = +1,
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We still have y au=0, but uy e*o0. We decompose t as in (B9) and find that the relevant part
of the amplitude is

T'= T-ii'2 B&u[(tBBtBA+tBBtAB)+y,(tBBtBA —tBBtAB}]y e*u, (B13)

where T is given by Eq. (B10). Using Eq. (B8) and the definitions in Eqs. (A7) and (A8), we find for the
coefficient of z ':

(B14}

f;/, ,/, =N(8, + m, )(8,.+ m,.) [(W —2(h, —m, )](tBB.tB+ t BBf AB) —(tBBmf A'+ i,'mi"„)],

f, /, ,/, = NK K—„[(W-2(h,. +m, ))(tB.tB+tBtB)+(t "m&„+& m&„")],

f, /2 2/, =N(8, +m, ).KB((.W —2(h/+m/)](fBBf~ —tBBtAB) —(fBBmfAB —fBBmtAB)),

f,'/, ,/, = N($-, +m/)KA[IlW 2(h-, -m, ))(fBBtBA.-f BLAB)+(f"mt' f BmtB)].

Finally me need the sense-sense amplitude for A. =+1, p, =+-,';A, '=+1, p, '=+2. Bather than compute the
whole amplitude, we restrict ourselves to the part which actually exhibits the direct (s) channel fermion
pole, as given by D, :

(fB fA+ B iA) y (tB tA tB fA}]ys —m s —m. s-m s —m

We replace y (p+kA} by yBW, and using Eqs. (B8), (A7), and (A8) find

(B15)

Bs m2 A Bs m2 A Bs m2 A Bs m2 A)

m m
fl/21/2 N BKA ~. tB 2 tA+fB 2 tA fB 2 fA+fB 2 fAs —m s —m s —m s-m

R m
fl/2, 1/2 ( i i} B B 2 iA tB 2 fA tB 2 tA. fB 2 fA~s —m s -m' s —m s-m )

(B16)

1
2 t~ —ta—m

can then be

f t, ,t, ——4NK (i', +) tK(tttt.
Equations (Bll), (B14), and (B16)

tL [ tR tL tL tR
m2 A~~ BB m2, A BB m2 A

rewritten in the form of Eqs. (3.2)-(3.7) of the main text.
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