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We embed the SU(5) unified theory of Georgi and Glashow in a U(5) theory. This may result from the
breaking of an SU(N), N&5, theory or of a GL(5,c) theory. At low energy this leads to an

SU(2) X U(1) X U(1) electroweak theory. We show that, with a suitable choice of Higgs representations, the
predictions of this theory for neutral-current experiments are characterized by three parameters. For
appropriate values of these parameters, the predictions are practically indistinguishable from the standard

SU(2) &( U(1) theory. Certain theorems on the analysis of neutral-current interactions are proved. (Section V
is independent for readers who are interested only in the theorems. ) More accurate neutral-current
measurement might answer the question of whether SU(5) )& U(1) is relevant. Possible verification of the

present electroweak theory can result from (roughly) an order suppression relative to the standard
prediction on the asymmetries in e+e ~p;+p, and discovery of two Z bosons around 90-100 GeV.
GL(n,c) gauge theories are formulated in the Appendix.

I. INTRODUCTION

Much of modern physics is concerned with the
search for ever larger symmetries. In the last
decade or so we have learned that even badly
broken symmetries are still useful provided that
the breaking is soft. Thus, for instance, electro-
magnetism has been found to be part of an SU(2)
&& U(1) electroweak theory' which in turn may be
only part of an SU(5) unified theory' of strong,
weak, and electromagnetic interactions. However,
it would surprise us if the SU(5) theory, in fact,
describes the real world in spite of its numerous
successes. There are indications that SU(5) may
not be the whole story. 'There may be a larger
theory which breaks down to SU(5) && G. If G is not
trivial on the known elementary fermions, there
is hoye of probing the factor group Q. In this
spirit, we would like to consider the simplest ex-
tension of SU(5) theory to SU(5)& U(1). We list two
motivations which lead us to consider SU(5) && U(l)
and which fix the U(1) quantum numbers of ordinary
fermions.

(A) SU(N) gauge theory. Suppose the true super-
grand unified theory is an SU(N) gauge theory and
it is spontaneously broken to the SU(5) gauge the-
ory. An adjoint representation of Higgs can break
SU(N) symmetry down to SU(5) && SU(N 5) ~ U(1)-
where SU(N- 5) is neutral to ordinary fermions.
Since SU(5) x U(1) descended from an SU(N) theory,
their coupling constants are equal at the grand uni-
fied mass scale. We suppose the 5 and 10 of fer-
mions come from the tP and g &

of SU(N), respec-
tively. We adopt the heavy-color philosophy'.
Identifying SU(N 5) as heavy -color we postulate
that fields carrying heavy color indices-(a, P =6,
7, . . . , N) are confined. Then U(1) counts -2 and

+1 as SU(5) indices for 10 and 5, respectively.
Since we might have started from an appropriate
set of fermion representations in the original
SU(N) to avoid the Adler-Bell-Zackiw anomaly,
renormalizability and freedom from anomalies
should be maintained in the broken SU(5) && U(1}
&&''' theory also. .

(B) GL(5, c) theory. Instead of considering ever
larger simple unitary groups, we wish to examine
theories based on general linear groups. ' The
usual restriction to simple unitary groups comes
about because the usual kinetic energy terms are
invariant only under unitary transformations. For .

example, the kinetic energy term for an g-compon-
ent complex scalar field p, B„gts"p, is invariant
under transformation p-gp only if g is an n&& n
unitary matrix. Let us relax the restriction to uni-
tary transformation by requiring the theory be in-
variant under the transformation

where z is an arbitrary g & n complex matrix
whose inverse z ' exists. The set of such matrices
clearly forms a group over the complex numbers
GL(n, e). The theory~ of GL(n, c) is spelled out in
more detail in the Appendix. Here we wish to ex-
amine the possibility of embedding the SU(5) theory
of Georgi and Glashow in GL(n, c). The gauge
fields &„contain 50 real fields and can be written
as A„=B„+iC„. The gauge fields &„are associ-
ated with the unitary subgroup U(5} of GL(5, c). We
assign the known fermions in exactly the same way
as Georgi and Glashow. 'The left-handed d, v„e
are fitted into the five-dimensional 5 of GL(5, c),
which transforms as

(1.2a)
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where e, P = 1, . . . , 5 and z denotes a complex 5 & 5
matrix whose inverse exists. The left-handed N,

N, d, and e' are fitted into the ten-dimensional
representation 10, which transforms as

g4 0'ys4C86
y

where g 8=-P& is antisymmetric. (Here the as-
terisk denotes complex conjugation. ) As in the
SU(5) theory the observed sequential families of
fermions are simply incorporated by repeating the
5+10 structure. Introducing a, metric field P
transforming as

&-z Pz (1.3)

we can construct kinetic-energy terms

3p& 3(zy"D&p)8+H. c.
and

(1.4)

gW 'T +g'B —+gB—
~

2 2'
'The first two terms are familiar from the standard
theory. B is the gauge field coupling to the quintic-
ity with coupling constant g.

SU(2) & U(1) && U(1) electroweak theories have
been discussed previously in the literature. How-
ever, 'in these dicussions, typically the "hyper-
charge" Y/2 is assigned various values not fixed
from any general principle. In contrast, in our

—.'y. ,I + rJ *"(3y"B„y)„+H.c. (1.5)

As explained in the Appendix, after the "metric"
field P associated with GL(5, c) has been gauged
away and the gauge fields C„become massive [at
a mass scale which we imagine to be larger than
the unification scale of -10' GeV obtained' for
SU(5)], we are left with an effective U(5) =SU(5)
& U(1) theory. The coupling constants are in prin-
ciple different, but the "hypercharge" Y associ-
ated with U(l) is definitely fixed. Indeed, Y simply
counts the number of SU(5) indices assigning the
value +1 to each covariant index and —1 to each
contravariant index. Thus, g=+1 on 5, and 1'=-2
on 10. . %'e would like to refer to this quantum num-
ber as quinticity, in analogy to the well-known tri-
ality of SU(3). It is noteworthy that the U(1) quan-
tum numbers in this case are the same as in case
(A ).

he preceding remarks motivate us to undertake
a phenomenological analysis of a U(5) =SU(5) & U(1)
theory.

The U(5) gauge theory may be broken by the
Higgs mechanism into an SU(3), & SU(2)~ && U(1)
& U(1) theory. Thus, we end up not with the stand-
ard SU(2)~ &U(l) electroweak theory, ' but with an
SU(2) && U(1) x U(1) electroweak theory with the
gauge coupling'

2 2

Furthermore, in the discussions in the literature
the coupling constant g is totally unknown while
here we have some information about g (see be-
low).

Because the theory descended from an SU(5)
&& U(1), the electric charge operator Q has to be
identified in the usual way: Q=T3+ Y/2.

II. NEUTRAL-CURRENT ANALYSIS

In order to confront theory with the experimental.
data on neutral currents, we have to work out how
SU(2) x U(1) x U(1) is broken down into U(1), . As
usual, the experimental predictions of the theory
depend on the pattern of symmetry breaking. We
will assume that dynamical symmetry breaking in
GL(5, c) or in U(5) produces two effective Higgs
fields, one transforming as P and the other trans-
forming as the totally antisymmetric tensor p e&~'

under GL(5, c) and U(5). The field g transforms
under SU(2) as a doublet. The second field g 3&3' is
needed in order to leave only the photon massless.
Our choice to have it transform as a singlet under
the usual SU(2) & U(1) is motivated by the consider-
ation that the standard normalization of neutral-
current data relative to charged-current data be
maintained (see below).

The relevant mass term in the Lagrangian then
reads

—,
' [v'g'(W, '+ IY,')

+v3(ggY3 g'B+gB)'+1v'(gB)'—j. (2.1)

The ratio 3v/v is related to the effective vacuum
expectation values by' "

5 (y12345)

v ( (f)') (2.2}

Diagonalizing Eq. (2.1), we find that the masses of
the two Z bosons Z, and Z, are given by

Mx ' =-,' (g'+g")v'(1+x, r'),
where

(2.3)

x,. = 2, Opr'- I)+ [(pr' —I)'+4r'j' 'j,1

p = 1+ u '/ v',

(2.4}

(2 5)

theory, Y/2 for a given fermion is fixed according
to what SU(5) representation it belongs to. Thus,
for the electron-up-down family the quinticity as-
signment reads

( v) (u) "s ~

(dj
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g +g
(2.6)

neutral-current data involving neutrino scattering
could be fit.

[In Eq. (2.4) we will choose the conventions that x,
and g, corresporid to the —and + sign, respective-
ly. ]

We note from Eqs. (2.1) and (2.4) tliat one of the
Z bosons, namely Z„ is always lighter than the
mass of the g boson in the standard SU(2) & U(1)
model for the same value of g'/g.

Proceeding in a straightforward fashion, we de-
termine that Z,. couples to

IV. ELECTRON SCATTERING

The parity-violating part of electron-quark scat-
tering is usually parametrized as"

~ [ey„y 2e( C,
" uy" u+Cl2dy" d)

+ey„e(C2uy"y, u+C2dy"y, d)] . (4.1)

Using Eq. (2.7), we easily obtain

g T3 —g +x)g
Y 2 Y

(g2 +gg2 + 2 2)l/2

The photon, of course, couples to

2,2}./2 Q = eQ.

(2.7)

(2.8) Cu

—'+ & sin'g
(=2'+& sin'e )

(1+x'r')
2 ~ 2 3 2q

(=,'+2 sin2g~+2 x, r')(1 —4»,.r )
(1+x,'r')(1+ x,.r')

(4 2)

III. NEUTRINO SCATTERING

(3.2)

Remarkably enough, the following two identities
can be readily verified which is a consequence of
i'&.'- ax, —1=p,

s

—11+x v
(3i.3)

The available neutral-current data can be clas-
sified as v, v-hadron, v, v-electron, and electron-
hadron. Let us first examine neutrino scattering.
According to Eq. (2.7) and the quinticity assignment
of the neutrino given in Eq. (1.7}, the relevant La-
grangian for neutrino scattering reads

1 2+ '2+
( 2+ g2+ 2 2}1/2 Ly Lg g x(g
1 ' g2T, —.g"Y/2+x;g'Y/2

2 (g2 +gg2 + 2g2)l/2

(3.1)

where the current [ ]„ is interpreted to be summed
over electron and quark representations. An ex-
amination of Eq. (2.3) shows that this expression
can be simplified to read

C4=g (-,' —2sin'9 --,'x, r'), ,
( )

(1 2 2)
—

2 — sin g~ .

Again, remarkably enough, by using the identities
(3.3), and (3.4), we see that C,", C2l, and C22 have
exactly the same form as in the standard SU(2)
x U(1) model. Thus, the present theory differs
from the standard one in only one neutral-current
parameter: C,".

We remark that the parameter C," does not con-
tribute to the dominant parity-violating effects in
heavy atoms (Bi and Tl). Thus, the present theory
can be distinguished from the standard SU(2) && U(1)
theory only by the polarized-electron-deuterium
scattering experiment" and by the observation of
parity violation in hydrogen atoms.

It is useful to rewrite C,", by repeated use of the
identities (3.3) and (3.4), in the form

C2 ——
p +2 slQ g~

—ig(i'- sin'gs) g. . . —i) .
(1+x,'r' (1+x,r'

(4.5)

We recognize the expression (--,'+2 sin'g~) as the
value of C2 in the standard SU(2) & U(1) model. Re-
markably, we find the deviation of C," from its val-
ue in the standard model

~

~
Xf p2~2

i Xf
(3.4)

2 1—)0(i —sing ) P (i,)(i )
—i)

Thus, Eq. (3.2} reduces to exactly the same ex-
pression as in the standard SU(2) & U(l) model:

-10(1—sin28~)

p —1

4G g'T, —g"Y/2
LY2 L 2+ g2

With the choice g"/( g2 +g"}= sin28~ -0.23, all

(3.5)
to be independent of r2 =g2/(g2+g'2). Thus, the
neutral-current predictions at zero momentum
transfer in this model are independet of the cou-
pling constant g'.
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c',

V. TYPO THEOREMS ON NEUTRAL-CURRENT ANALYSIS

The remarkable identities (3.3), (3.4), and (4.V)

which we just encountered caIl for some theorems.
'The appropriate theorems turn out not to be too
difficult to prove. First of all, we need a general
formula for neutral-current interactions. Such a
formula has in fact been given by Georgi and

Weinberg. '4 Vfe briefly review their analysis here
for the sake of completeness.

For a general gauge theory, let the electrically
neutral gauge bosons A& couple to g„T . 7.' are
electrically neutral generators and the electric
charge operator is Q=g„c T . The photon field
is given by A„=Q p A~, where p„ is the normal-
ized eigenvector of the mass matrix g' z with
eigenvalue zero, i.e.,

V—=0
V

FIG. 1. C2 vs C~ with two Higgs bosoms p" and
p~&& 6 fop several values of sin 8& and v/8= )(P")/
/Ps "6') [ . For given sin28~, C~2 does not depend on

e/8.

Q P as Ps = 0 ~ Q Pn = 1 ~

8

It is easy to see that p„=Nc„/g„ in order that 2„
couple to the electric charge. %e check that A„
couples to

gP g T„=Npc„T =NQ.

Thus the unit of charge e is equal to N which is
fixed by the normalization of p„, yielding the rela-
tion

The deviation of C," from that of the SV(2) & U(1)
theory calls for a plot of C,"vs Q,", which is given
in Fig. 1. This single figure is sufficient to con-
front the neutral-current data, since other con-
frontations are identical to those of the SU(2) && U(1)
theory. In Fig. 1, the experimentally allowed re-
gion (1o) is shown as a band within two solid lines
and the 20 limit is shown as dotted lines. The line
v/v = 0 corresponds to the limit to the Weinberg-
Salam model. 4 From Fig. 1, we read off a reason-
able limit (lo) on v/v

The massive Z-bosons are given by Z", =g„u, A",
where uj are normalized eigenvectors of p,

'
8..

+cf8 ~8~8 P ~ (5.2)

2 = 2
p. ~gQe=sz Q ~ ~

8

The boson Z",. couples to Q u, gT and so .the ef-
fective neutral-current Hamiltonian at zero mo-
mentum transfer is given by

8—x 0.6,
V

where

(4.8)
where

~jn~je

j i.

8:5' (4.9)

and sin'g~=0. 23. For a 2o allowance, the limit on
., v/v is not very restrictive. For other values of

sinme~, v/v can be varied to a wide range, but then
the other neutral-current data are not well fitted.
The mass of the neutral boson g, is lower than that
of the standard g boson, but is close to it:

and [ ]" is interpreted as a sum over the fermion
currents. Now let us pick out one generator con-
tributing to the charge operator Q out of the set T„,
call it T„and refer to the rest as Tj's. Denote
the inverse of the submatrix p'j, of the mass ma-
trix g' s by (p '), , and introduce the photon annihi-
lation operator g &=5 8- p p&. It can be shown"
easily that

m, ~0.99M„
1

for sin2g~ =0.23.

(4.10)
& s=Qrn;(u ');pm ~

jj
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Inserting this identity into Eq. (5.2), one finds that
the neutral-current interaction Hamiltonian at zero
momentum transfer is given by

+g=2 Ply p j Sj p ) (5.3)

with

2 Cr@l ~

g; i
(5.4)

2 ~ 28jg j~ ~a ~fa~ja ~
(5.5)

It is then clear that the (ij)th entry of the inverse
matrix (g '),.~ has the form g,. 'g,. ' (factor inde-
pendent of coupling constants). Now notice from
Eq. (5.4) that c2= 0 implies s2 =g2 T2. Referring to
Eq. (5.3) we, see that the theorem as stated is
proved.

We next restrict ourselves to theories with gauge
groups of the form G, x G2 x U(1) and ask under
what circumstances the neutral-current interaction
is the same as if the gauge group mere of the form
G, x U(1). To avoid being inundated by indices, we
content ourselves first with the case in which Q,
and G, each has only one neutral generator (de-
noted as T, and T2). Thus, for practical purposes,

Starting with Eq. (5.3), which is quite general,
Georgi and Weinberg'4 were able to prove a theo-
rem" stating that, for a G, x G, x U(1) theory, if
(a) all Higgs fields are either singlet under G, or
singlet under G„and if (b) the neutrino is neutral
under G„ then the neutral current interaction of
the neutrino will be precisely the same as if the
gauge group were just G, x U(1).

However, -our result in Sec. Dj: that the neutral-
current interaction of the neutrino in the SU(2) x
U(1) x U(l) theory is precisely the same as in the
standard SU(2) x U(1) theory, is nod covered by this
theorem. Neither the 5 Higgs field nor the neutrino
is a singlet under U(1)&. Thus, we must prove a
generalization of this theorem. But first, we will
prove the following theorem.

Theo~em 1. Suppose that, among the c,'s, c~=0.
In other words, the electric-charge operator Q
does not depend on T&. 'Then, the neutral-current
interaction (at zero momentum transfer) does not
depend on the coupling constant g~.

Our observation [in Eq. (4.7)] that C2 does not
depend on g is a consequence of this theorem,
since Q does not depend on F. To prove the theo-
rem, let us denote the symmetry-breaking vacuum
expectation values by v„where the index g runs
over some set. Also, denote by t„ the eigenvalue
of that Higgs component, which has vacuum expec-
tation value g„under the generator T; of the gauge
group. Then the m@ss submatrix p2, j is given by

the discussion which follows covers the case SU(2)
x SU(2) x V(1) and SU(2) x U(1) x U(1). The genera-
tor To will denote that of U(1)r. Generalizations
will be mentioned later.

Assuming that there are only tmo T, 's, we can
readily write (g 2)U:

~2m ~ EISs&j.a~2

-g,g~ t„t„, g,'t,

where
(5.6)

E~ =-g g;t„,(p 2);~g& (j=not summed) (5.9}

appearing in Eq. (5.8). Inserting Eq. (5.6), we find

1
K, =

d t (g,'g, ') pv, 't„(t»t„- t»f„),det
(5.10}

1
K2 —

d t (—gl g2 ) +va fgN(flvf2a f2 giga) ~
det 0

(5.11)

An effective limit to G, x U(1) can be obtained if
for finite g, and g~,

.

f'. 0'}

Io0)
where x is a nonzero entry. 'This limit can be
achieved in a variety of ways. One way of achiev-
ing this is g, -0. Another formal limit is (t2, (-~
for some a. Then the (11)th element of (p, '),, is

1 Q. V.2f2.2

gl Zl 5 V v2 fl f25(tl f22 f2 f1b)

Further, (g 2),.
~

will be exactly the same as that of
G, x U(1) without consideration of f„(i.e., neglect-
ing the contribution of the group G, ) if f„=O for the
a which makes ( t„(-~. In this case the (11)th
element is

(5.12)

det =detg, .
& ~g, g2 g v, vs (tx, t22 t22ti2)

a&&

gi g2 Qv, v2 (tx~t2o t2~ti2) ~ (5.7)
ab

Now extract from X» in Eq. (5.3) the interaction of
neutrino (or more generally any electrically neu-
tral fermion) with any other fermion [note the fac-
tor of 2 difference between (5.3) and (5.8)],

2

X» =&q y2&q Q g(fq, (g )))[gq(Tq —
2 cd@)]",

Sj

(5.8)

where g, „ is the eigenvalue of the neutri. no field
under T, Let us focus on the quantity
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2 22 2

dpi' gI g2 Vg t2s tZP (5.16)

which is proportional to K, (~ t„[-~, t„=0 for
some a). Note also

et =gl g2 Vx tip Ve t2a

—
~ Q v„ t~„t~„Q v~ t~ tm . (5.17)

Theorem 8. Let the conditions on the vacuum
expectation values be the same as in Theorem 2.
In addition, suppose that t„=t „. Then the neu-
tral-current interaction of the neutrino is precise-
ly the same as if the gauge group were G, & U(1).

To prove this, we note that t, „=t2„ implies t,„
=t„and thus, from Eq. (5.17),

aet=g, *e;,*~ g v,'t„' get„). ,''
Comparing with Eqs. (5.16) and (5.13) we see that

"1
A, = u,'t, „ t„,

=K, ((t~, )-~, t„=O, for some a)

(5.18)

(5.19)

In this limit, the gauge theory effectively becomes
a G, & U(1) theory and the neutrino neutral-current
couplings become

K, -ff, ((t,.~-~, t,.=0, for some a)
e

1

v, t~, 5.13

K, -K,(~t„~-~, t„=O, for some a)=0.
(5.14)

'Thus, the coriditions tha.t the neutral-current in-
teraction of v be the same as if the gauge group
were G, && U(1), with the same set of vacuum ex-
pectation value of course, simply read

K,. =IC, (( t2, [.-~, t„=O, for some a). (5.15)

%e can now state a number of theorems.
Theo~em 2. Suppose that the vacuum expectation

values v, can be divided into two classes: (i) v„'s
which belong to the same representation as the
neutrino, and (ii) v, 's which belong to representa-
tions such that t„=0. (The index set {a) is equal
to {r)+{sj.) Then the neutral-current interaction
of the neutrino is the same as if the gauge group
were G, & U(1) except for an overall normalization.

%'e should remark that here and in what fo1lows
the word neutrino could always be replaced by the
phrase "any electrically neutral fermions (not nec-
essarily neutral under G, )." Noting that the condi-
tion (i) implies that t„t.,„=t,„t,„, we see that the
sum in K2 vanishes term by term and that K, re-
duces to

as desired.
The gauge theory described in Sec. II sahsfies

the condition of Theorem 3. In particular we have
t„=t„=-, , a H iggs p with t„=t, = ~ and another
Higgs p"~&~ with t,„=O, t,„=xs, respectively.

For the sake of completeness let us also state
the theorem'6 in Ref. 14 in our present context.

Theorem 4 (Georgi-Weirlberg). Suppose that t, „
=0 and that all vacuum expectation values are such
that t„t„=0, then the neutral-current interaction
of the neutrino is precisely the same as if the
gauge group were G, & U(1).

The proof is obvious by referring to Eqs. (5.9)
and (5.10).

Clearly the conditions K,. =If',.([ t,.~- ~t,.=0,
for some a) can be satisfied because of an endless
variety of restrictions on v„ t„, t,„, t„, and t„.
For instance, one could imagine cancel1.ation be
tween the various terms in Eq. (5.10) because some
vacuum expectation values are equal. 'The real
utility of Eqs. (5.9) through (5.15) is that the reader
can readily check whether any given model will
have the same neutral-current interaction as the
standard SU(2) && U(1) theory If w. e remove the re-
striction that t"2 contains only one generator, the
analogs of Eqs. (5.9), (5.10), and (5.15) could still
be derived but the resulting expressions would be
rather unwieldy and we would not present them
here.

V][. DEVIATIONS FROM THE STANDARD SU{2) X U{1)
THEORY

One rather attractive feature of the SU(5) theory
is the relative economy of Higgs fields. A 24 with

huge vacuum expectation value is needed to break
SU(5) into SU(3),x SU(2) & U(1). The electroweak
SU(2) & U(1) is then broken to U(1), by a 5 of
Higgs fields. 'Thd 5 couples the fermion 5 to the
fermion 16 and also the fermion K to itself. 'The

first coupling leads to masses for the electron and
the down quark, while the second makes the up
quark massive.

When we generalize the theory of GL(5, c) or U(5)
this coupling of the fermion 10 to itself via the 5
of Higgs fields is no longer allowed, since it in-
volves the e""&~ symbol which is only invariant un-
der SU(5). Instead, we are forced to introduce in
addition to the 5 and 24 of Higgs fields a totally
antisymmetric tensor field p"'~~ with four indices.
This Higgs field g""&~, which couples the fermion
10 to itself, transforms as an irreducible five-di-
mensional representation of GL(5, c) or U(5).
Within the SU(5) subgroup g""&'& is equivalent to 5,
ttI, but under GL(5, c) or U(5) it behaves quite dif-
ferently. In particular, it has quinticity I'/2 =2.

Referring to the theorems in sec. V, we see that
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the inclusion of g""&~ implies that the neutrino
neutral-current interaction is no longer precisely
the same as in the standard SU(2) && U(1) theory . In
fact, using Eq. (5.9) and (5.10) we can readily read
off the deviations from the stands. rd SU(2) & U(1)
theory. We obtain the deviation as

0.3—

eL (u)

2
sin 8 =0&

(6.1)

(6 2)
f v2 v I2/v 2 (v2 + vI 2)]

(6.3)I+ [vv /v '(v +v )]

In order for the deviations to be small we have to
demand that the vacuum expectation value v' of
-' p"'~~ be small compared with that of P". Neg-
lecting the second-order terms in v", we note that
the chiral structure change in neutrino scattering
is q [T, —sin'g~Q- F/2] which can be negligible for
small v', since g is further suppressed by a factor
of —,

' . Full expressions for the e~ „(u,d) param-
eters are

eR (d)

eR (u)-0.2

eL(d}

I
I

~gee

0 =——

V/V= 0-5

5 irl 8)N
= O. 25

2

~, (~) =a [(2 —'- sin'g, )(1+5 h) —
5 h],

~, (d) = ~ [(--'+ -3»n'g )(I+ 5 h) - k h l

e„(u) = a [--', sin'g~(1+-,' t') + -', (],
e„(d)=~ [-,' sin'g~(1+5 ])—

+, (],

+ $3

1+5'+a'b' '

(6 4)

(6.5)

(6.6)

(6.8)

eL (u)

6R(d)0f R

|f 0
V

V

( = v, '5',
2 v2/v2

5' = v "/v' .

(6.9)

(6.10}

v'/v s 0.5,

v/v s 0.5,
with sin'g~ = 0.20 -0.25.

'The v v-electron scattering is characterized by
two parameters g~ and g„' which are

gv =g [(-—,
' +2 sin'g~)(1+5 ()+~0)'], (6.12)

In Fig. 2, we show this chiral structure dependence
on v'/v and v/v for sin'g~ =0.2 and 0.25. The solid
straight lines correspond to the Weinberg-Salam
limit. Experimental error bars are also shown on

the vertical axis. From Fig. 2, we notice that both
v'/v and v/v should be small to agree with the ex-
periments

eL (d)-0 Q"-

-0.5 ~-

0
V/V = Q5

-0.6—

~' = [--'(I.—:-~}--,'. &].
In Fig. 3, we show the g~ -g„' plane with lines
given by the above expressions. Also shown are

(6.13)

FIG. 2. (a) el, &(u, d) for several values of v/6 and
v'/v for sin28&=0. 2. Both v/8=0 and v'/v =0 are the
%einber -Salaam limit. Experimental errors deter-
mined by Bef. 9 are shown on the vertical axis. (b)
Same as (a) but sin 0&=0,25.~ 2
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FIG. 3. gz vs gv plot compared to the experimentally
aHowed region (9 C.L. ) by v~e, 'P~e, and 'P~ e scat-
te rings.

the two regions which are allowed (90//o C.L.) by
v, v-electron scattering. " The theory chooses the
g„dominant region, which will be reproduced in
the present model with sin'8~ =0.2—0.25, v'/v
s0.5, v/v ~0.5.

The electron-hadron interaction parameters C,',
are given as

C,"= g(=,'+ & sin'e~)(I +-,' t),
C,'=g[(-,' ——,'sin'8 )(1+-', ])+~(],
C,"= x f(=,'+2 sin'e~)(1+ a'/5) —~M a'],
C,' = x [(-,' —2 sin'es, )(I + -,

' t) -
~~o t'] .

(6.14)

(6.15)

(6.16)

(6.17)

Comparisons with the SLAC" polarized-electron-
deuterium scattering are given in Figs. 4(a), 4(b),
5(a), and 5(b).

In Fig. 4(a), C," vs C~s are plotted for v'/v =0.5.
The solid line corresponds to the steinberg-Salam
limit. The variation over v/v is so negligible that
only dots are shown in the figure. In Fig. 4(b), we
show C," vs C', plotted for a larger value of v'/v =1.
In this case deviations from the. %'einberg-Salam
model are expected for an appreciable value of v/
v. For the range of vacuum expectation values al-
lowed by neutrino experiments, v'/v s 0.5 and v/v
s0.5, the present model is practically indisting-
uishable from the standard theory in the param-
eters Cx and C

In Fig. 5(a), we show C," vs Cf plots for v'/v

W

V
V

FIG. 4. (a) C~~ and C~~ curves for e'/e = 0.& for four
different values of v/8=0, 0.5, 0.7, 1. The Weinberg-
Salam limit is v/S= 0. The shaded region is lo limit.
(4) Same as above but with e'/v = l.

sin 6(~ =—0.23,
v'/v ~ 0.5,
v/v s 0.5,

(6.18)

(6.19)

(6.20)

whe re v'/ v = ((~u""&/& ~u) ( and v/v = ((
(~aspic) (

This theory will also predict quite different be-

=0.5. Comparing this with Fig. I, we note that the
change of parameters, sin'8~ and v/Fi, going from
v'/v =0 to v'/v= 0.5 is very mild in the region al-
lowed by the experiment. In Fig. 5(b), we plot C,"
vs CS2for v'/v = 1. From Figs. 1 and 5, we note
that the increase of v'/v allows a slightly better
fit to C2 —C," for fixed sin 8~ =0.23, but then neu-
trino scattering is not very well fit for too large
value of v'/v.

From the above considerations, we note that the
currently available neutral-current data can be
fitted in the present model as successfully as the
standard model with the parameters
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(6.21)

responds to v'/v =0 and the upper (lower) limit of
M~ (M~ ) corresponds to v'/v=0. 5. We note that

M~, =M~, =M~ for v'/v = 0.5. Explicit expressions
of Mz, and M~, are, for v'/v x-,',

Mz, =Ms
~
I+y,.r , 1 —4f2

1+g'

=C2

where

1+ 2
— 2+b2 16—

2 + ~A
25 I 2 1
a' r'

2(1 —4b')

P —
2 + 2 +2, 16

(6.22)

+2& 16 —
2 + 4 +$ 16+ (6.23)

V—=0
V

{b) C2

~ ~O7 &=V/V

0
with the definitions given in Eqs. (2.5), (2.6),
(6.10), and (6.11). A remarkable fact of this theory
allowed by Eqs. (6.18)-(6.20) is that the resonance
of Z, is practically indistinguishable from the
standard Z, 0.99 & M~, /M~ ~ 1, while the possibil-
ity of Z, resonance is quite open, 1 ~M~ /Ms
~ 6.3. A verification of two narrowly separated-
neutral gauge bosons around 90-95 GeV imply the
saturation of the relation (6.19). Experimentally,
it may be difficult to separate a few-GeV mass dif-
ference of neutral Z bosons by a mass hunt since
their decay width is expected to be a few GeV.
Other observations, such as the integrated cross
section f dsg„„should be considered to disting-
uish the single-Z-boson or two-Z-boson hypotheses
around 90 GeV. If Mz turned out to be much larger
than Ms, i.e., M~ =6M~, we wouM have a mys-

2 1
tery as to why nature breaks the gauge symmetry
so unnaturally, v'/v=0.

The parity-violati:ng electron- muon interaction
is for Q' =0,

0.5~o 7 &=V/V

1.0

G~ (2 —2 Sill g~) + $(lo —
ii Sill g~)

int ~ . 1+~/(1+52)

l' (er ear r~u+er~r~eer" V) (6.24)

FIG. 5. (a) and (b) C 2 vs C 2 with the same conven-
tions as in FiL. 4.

havior for the production of neutral gauge bosons
and for the interference effect between the electro-
magnetic and weak interactions in the process"
e'e -p'p . In particular, resonance will occur
at ~z -~z —93.9 GeV, Mz ~z %590 QeV given
by (6.21) rather than at M~ =94.4 GeV for sinmg~

=0.23. The lower (upper), limit of M~, (M~, ) cor-

where t' and 52 are defined in (6.9)-(6.11). Re-
markably, for $ =0 the expression reduces to the
Steinberg-Salam case, which can be verified by use
of (3.3) and (3.4). In the standard model with the
allowed value of sin'g~, the asymmetries, such as
average helicity and front-back asymmetry, are
expected to be small due to the fortuitous cancella-
tion by the term (—,

' —2 sin2g~) =0.02 for sin2g~ =0.23.
In the present case, with the allowed limits on v'/v
and v/v, $(,~ ——,

' sin'g~) =-0.017 which almost can-
cels the standard term, we expect an order sup-
pression of the asymmetries compared to the
standard ones. For the range of ~8 & sin'g~ & 4,
where the current determination" of the mixing



1948 A. ZKK AND JIHN E. KIM

angle lies, the suppression of the asymmetries in
e'e - p,

'
p, is a general feature of the present

model. For completeness, the exact expression
for the parity-violating electron-muon interaction
is given for nonzero Q',

—(er"r5eur V+er"cur 1',V), (6 25)

where

N= [-,' —2sin'g +((—,', ——; sin'g~)]

+, , (——,'+2sin'g~+-, 'r'), (6.26)

would be relevant.
If we are allowed to use in effect the lowest-or-

der renormalization- group equation to describe
the change in g, we could calculate the value of g.
We assume that the U(5) theory is effectively cut
off at the unification scale of say 10"GeV. The
behavior of g„„„,, g, and g' as one goes from the
unification scale to ordinary mass scales has been
discussed by Georgi et a).' and is unchanged here.
At the unification scale A the relative normaliza-
tion of I and of Y' imply that g'=(~-)' 'g. At or-
dinary mass scale p, , we have'

1+ —1+16b'+, 1—

(6.2'I)

where the summation is over all fermions, each
helicity state counted separately. With A/p. 10",
we find, for three families of quarks and leptons,

Note the Q'-dependent term in the numerator N.
For

~ Q~ = —,'Mx which is the highest possible energy
range at PETRA and PEP, this Q'-dependent term
is suppressed by -([Q~/Afz)'a'/25 s =.0025.
Therefore, the aforementioned conclusion derived
from Eq. (6.24) is still valid for

~ Q~ s -,
' M~.

Though we do not expect large asymmetries in

either case, a failure to detect the asymmetries at
the level of the standard prediction (sin'g~ =0.25 is
almost certainly ruled out) may shed light on the
scheme of the general linear gauge symmetries.

VII. ANOMALIES

We must mention that the U(5) theory presented
here is afflicted with anomalies due to the extra
U(1), thus rendering the theory nonrenormalizable.
One not entirely satisfactory way of avoiding this
difficulty is to simply introduce appropriate num-
bers of sufficiently massive "mirror" fermions"
transforming according to 5 and 10 of U(5). Mir-
ror fermions are in fact suggested by certain theo-
rectical ideas" on unification. However, this way
out may not appeal to some people. In the case of
SU(N) theory, we may have many more superheavy
fermions in SU(5) & U(1) to cancel the anomaly if we
judiciously started from appropriate representa-
tions in SU(N).' It should be noted here, as is ex-
plained in the Appendix, that GL(n, c) gauge theo-
r'ies are probably nonrenormalizable.

Because of the anomalies generated by the U(1)
of quinticity, we are not, strictly speaking, able
to calculate the value of g using the renormalization
group. However, because of Theorem 1 in Sec. V
the neutral-current interaction at zero momentum
transfer is actually independent of g. Of course,
at nonzero momentum transfer, the value of g

VIII. CONCLUSION

In conclusion, we have examined the neutral-
current phenomenology of an SU(5) x U(1) theory in
some detail. The assignment of U(1) quantum num-
ber was motivated by embedding SU(5) in bigger
groups, SU(N) and GL(5, c). Whether this proposal
that an additional local U(1) is relevant would have
to be decided by experiment. Though the detailed
predictions depend on the Higgs representations
chosen to break the theory, we have shown that for
a suitable choice it is possible to have three-
parameter fit to neutral-current data. The three
parameters correspond to two ratios of vacuum
expectation values and sin2g~. In certain limits of
these parameters, the neutral-current phenomeno-
logy becomes indistinguishable from that of the
standard SU(2)~ x U(1) theory. The small devia-
tions predicted" will be tested, at least heopefully,
by future neutral-current experiments, in particu-
lar e e - g p, , in addition to precision measure-
ments of the usual neutral-current processes. A

direct confirmation of two neutral Z bosons, one
lower than 95 GeV and the other between 95-600
GeV (presumably 100-200 GeV), and only one
charged g ' around 85 GeV will reveal that nature
might choose SU(5) && U(1) gauge symmetry, and
will suggest considerations of bi.gger gauge groups
such as SU(N) or GL(5, c). In the latter case, one
can generalize other successful gauge theories to
GL(n, c) theories. For example, if one would con-
sider a generalization of SU(3), to GL(3, c), after
the symmetry breaking he will have an SU(3), && U(1)
theory where the extra U(1) gauge boson couples
to the number of color indices. " If all the quarks
are color triplets, this extra U(1) gauge boson
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couples to the baryon number. As another exam-
ple, a GL(2, c) & GL(1, c) theory can be considered
as a generalization of the SV(2) && U(1) electroweak
theory.
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APPENDIX: GL{n,c) THEORY

Let us extend a simple unitary gauge theory
SU(n) to a general linear gauge theory GL(n, c).
As mentioned in the text, the usual restriction to
simple unitary groups comes about because the
usual kinetic energy terms are invariant only under
unitary transformations. , For'example, the kine-
tic-energy term for an n-component field P,
8&pts" p, is invariant under transfbrmation p-zp
only if z is an n& e transformation by requiring
the theory to be invariant under the transformation

zP, (A1)

P-z' 'Pz '.
Then the GL(n, c) invariant

I

a„y'pal y

(A2)

(A3)

is a candidate kinetic-energy term. The require-
ment that the kinetic-energy term be positive-
definite implies that P has no negative eigenvalues.
Thus P may be written in the form P =ptp (the
transformation in Eq. (A2) preserves this form).

This global GL(n, c) symmetry could readily be
extended to local symmetry. " We introduce gauge
fields A„which transform under GL(n, c) as

X„-zx„z '+ . (s„z)z '. (A 4)
Zg

Then the covariant derivative D&P, defined as

where z is an arbitrary z& n complex matrix whose
inverse z ' exists. The set of such matrices
clearly forms a group, known as the general linear
group over the complex numbers GL(n, c). In order
for the theory to be invariant under GL(n, c), the
kinetic-energy term clearly has to be modified.
This can be accomplished by introducing a "metric"
field p, which is an pg & yg Hermitian matrix field
transforming under GL(n, c) as

DpP =
BoP +i gPA„—i gA~P ~ (A7)

Then D„P transforms as & and a kinetic-energy
term for p can be introduced, viz. ,

Tr(D„P)P '(D"P)P '.
Under the transformation in Eq. (1.2) the field P
can be transformed to the unit matrix 1. The term
in Eq. (A8) then generates a, mass term for the
anti-Hermitian part of A„, namely the gauge fields
C„ introduced above. We are then left with a gauge
theory based on the group U(n) =SU(n) x U(1) with

gauge fields B„.
In fact, the group GL(n, c) is not simple and fac-

torizes into SL(n, c) & GL(1, c), where SL(n, c) de-
notes the multiplicative group of g&& n complex ma-
trices with determinant 1. The group GL(1, c) fac-
torizes into U(1) & GL(1,8). Thus, we should gauge
the three factors SL(n, c), U(1), and GL(I,B) sep-
arately and each of these factor groups has its own

gauge coupling constant. Fortunately, the pheno-
menological analysis presented in the text does not
depend on this fact.

Gauged general linear symmetries have been dis-
cussed previously in the literature, and most re-
cently, by Cahill. ' However, Cahill does not dis-
cuss the incorporation of fermions and possible ap-
plication to the real world.

To construct a local GL(n, c) theory, the covari-
ant field strength is defined as usual as

E„„=s„A„—s,A„—i@[A„,A„] . (A 9)

One easily verifies that [D„,D, ]p = igE„„y and-
thus

E~ zI p„z (A 10)

The transformation law (A4) indicates that A„ is
in general not Hermitian. We decompose it into
Hermitian components

Ap =Bp + iCp . (A 11)

To construct a kinetic-energy term for @ we in-
troduce a Hermitian matrix field P transforming
as

transforms just as Q, namely

D„g-zDqg. (A 6)

For GL(n, c), A& denotes an n & n complex matrix
and corresponds to 2' real gauge fields. It is use-
ful to decompose A„as A.„=B„+iC„,where B„,
Q„are Hermitian matrices. We see that B„cor-
responds to the gauge fields associated with the
unitary subgroup U(n) of GL(n, c).

A covariant derivative can also be introduced for
the "metric" fieM p' as

D~P = 8~(j) —i gAp P (A 5) (A12)
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which we note is Hermitian.
A covariant derivative can also be constructed

from metric field &. One checks readily that

DpP ='dpP+i gPAp —i gApP

is Hermitian and transforms as &. Thus

DuPP 'D"PP

(A 15)

is a suitable kinetic-energy term for P.
Finally, we can introduce a fermion field trans-

forming as P-gP and the covariant derivative D„P
= s„g —igA„g. One must take care to write the
Hermitian form for the fermion kinetic energy

(A 17)

which could also be written upon integration by
parts in the form

gPf y" D„P+ .* yi y" (D„—P)y. (A 18)

Note the second term in Eq. (A18).
A GL(n, c)-invariant Lagrangian can now be con-

structed by various terms (A13), (A14), (A16), and
(A17). Potential terms P(ptPp) and fermion mass
term mpP) can also be included. Note that the co-
efficient of the term (A16) in the Lagrangian cannot
be normalized to unity; we denote it by g. The
Lagrangian is thus characterized by g, g, m, and

any parameters appearing in the scalar potential
V.

We could, of course, construct a more compli-
cated theory with many sets of scalar fields p,. and
fermions p,. transforming differently under GL(n, c).
We could also have g~ and p„ transforming differ-
ently.

We now show that the "metric" field P can actual-
ly be removed entirely from the theory. As a re-
sult the (Hermitian) fields C„(the "anti-Hermitian"
part of A„) become massive.

One way of seeing this is to note that the trans-
formation law P -zt 'Pz ' implies the gauge
equivalence of any fieM configuration for P with
the configuration P =1 =n& pg unit matrix. In other
words, P can always be "gauged away. " More
precisely, note the identity

Z„,(A') =pe„„(~)p ',
where

(A 19)

(A2O)

We can also take P to be of the form P =p~p. Then

D„y PD" y (A 13)

ts GL(n, c) invariant. Similarly, an invariant kin-
etic-energy term for the gauge fields may be writ-
ten

Try f P~PIIP 1

Thus, writing & in the form P =p~p, the gauge-
field kinetic energy becomes

Trz'(A)PP(A)P ' =Tr& "(A')P(A') . (A21)

Also,

PDp(A)/ =DE(A')g',

where g'=pp and thus

yPfy~D„(A) y = y'f y" D„(A ')q'

(A 22)

Similarly, the scalar-field kinetic-energy term
can be rewritten as

[D„(W')y'] '[D„(&')y'] .
Finally, the covariant derivative

D~P =p~i g(A~ —A~ )p =-2gp Cpp (A25)

and the "kinetic-energy" term for P, (A16), be-
comes a mass term for C„'

4g'~ TrC„'C'" . (A26)

Thus, the g' components of P' emerge as the long-
itudinal components of the yg' C„ fields.

For notational simplicity we drop the primes
from now on. It should be stressed that it would
be somewhat misleading to refer to the phenomenon
just described as a spontaneous symmetry break-
down. We have simply rewritten the theory by
gauging P away completely; we are able to do so
because P is always a pure gauge.

An interesting point is that the massive gauge
fields C„do not couple to the fermions as one can
see by inspecting the fermion kinetic energy (A23).

We now turn our attention to the gauge fields.
Note that the field strength can be decomposed into
Hermitian and anti-Hermitian parts as

E~, =BpB„B„Bp+ig[—B~,B„]+ig[C~,C, ], (A27)

P'„, =s„C„—s,C„+g[B„,C.]+g[C„,B„]. (A28)

'Thus, the massive gauge fieMs C„ interact with
the massless fields 'P„.

Gauged GL(1, c) theory provides an amusing
special case in which C„decouples from both fer-
mions and the massless gauge field B„. Thus, the
quantum electrodynamics of fermions actually has
a hidden GL(1,c) gauge symmetry. We do not know
whether this hidden symmetry in an apparent U(1)
gauge symmetric theory is of any relevance. It is
amusing to note that historically'~ Weyl first
sought (in 1918) to construct a theory of electro-
magnetism by gauging GL(1,8). It was only after
the invention of quantum mechanics that Fock and
London inserted the appropriate f and gauged U(1).
Incidentally, the complete decoupling of C„does
not hold if there are charged scalars in the La-
grangian. 'The coupling of A.„ to a scalar field
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reads

i gA„Q 8"Q —i gA„&"$ Q+ g'A„A" Q

=i gh'„(Q 8"Q —8" Q P)+gC„(Q 8"/+8" Q Q)

+g'(&p'+ ~p')4 4 . (A 29)

The decoupling of C„ from fermions strongly
suggests that GL(n, c) theories are not renormaliz-
able. In particular, the equality of various cou-
plings between gauge bosons, such as the BBB and
BCC couplings, would be destroyed by a cutoff-
dependent amount in one-loop order.
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