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Hyperfine splitting of the ground state of baryonium using a harmonic-oscillator potential
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The hyperfine splitting of the ground state of baryonium is calculated using parameters derived solely

from baryon data. The model used employs a harmonic-oscillator potential suitably modified to describe an

attractive potential at short range (Coulomb-type piece derived from quantum chromodynamics) and

deviations from the harmonic-oscillator form at large distances. Comparisons with other theoretical
calculations and experimental results are made. The hyperfine levels computed in this paper are in close
agreement with those derived using a linear plus Coulomb potential.

I. INTRODUCTION

Recently an ever increasing number of narrow-
width mesons with large coupling to baryon-anti-
baryon channels has been observed. ' The favored
explanation' is that these states, now frequently
referred to as baryonium, ' are the qqqq states
whose existence is required by dual models. '
Such four-quark states have also been anticipated
in potential models' and several quark models,
such as the MIT bag model' and dynamical group
models. ' Several researchers' "have described
baryonium as a color-magnetic coupling of a di-
quark with an antidiquark. Qf the various pos-
sible theoretical states only the 3-3 and 6-6 are
physically acceptable, since the composite state
must be a color singlet. (This can be seen
as follows. Each quark is a triplet in color SU(3)
[SU(3),j and 3I33= 386. Hence the diquark can
be either in a 3 or 6 representation of SU(3),.)
Chan and Hogassen" note that for high values of
angular momentum the 3-3 composite state which
they call true baryonium (T) has normal hadronic
width into baryon-antibaryons. The 6-6 state,
which they refer to as mock baryonium (M) is not
a geniune BB state at all and decays into BB pairs
only by default of the meson modes.

The color hypothesis was first introduced" to
ensure that the baryon wave functions are anti-
symmetric under the exchange of quark indices.
Up to now this hypothesis has had only three ex-
perimental tests: the decay m'- 2y, the ratio of
the decays of the ~ lepton to leptons and to had-
rons, and the ratio R =o(e'e -hadrons)/o'(e'e
—p'p ). Since M baryonium states exist only by

II. GENERAL PROBLEM

In the ground state there are no spin-orbit or
tensor hyperfine interactions. The Isgur-Karl
Hamiltonian then has the form

m,.+ H, +H„„, (2.1)

where m,.= m is the common constituent quark
mass

H, = QP,.'/2m+ QV,'„, —(QP) ( ~-)
(2.2)

ff„,= -6~2Am Q Q(S. ~ S))A,.Aq6~"(r,.)),
a z&d

(2.3)

virtue of the hidden color, it is of great interest
to establish the mass of these states so as to pro-
vide an additional experimental test of the color hy-
pothesis. Very few calculations of the ground-state
system of baryonium exist at present. Hendry
and Hinchliffe' and Lichtenberg and Johnson" have
considered only the T baryonium system; the
treatments of Jaffe, ' and Barbour and ponting"
have included the 2VI baryonium system.

It is the purpose of this paper to describe split-
ting of the baryonium ground state due to the hy-
perfine interaction using parameters derived ex-
clusively from baryon data. The model used is
the Isgur-Karl quark shell model, "which has been
successfully employed to predict the mixing angles
of the p-wave baryons and violations of SU(6) se-
lection rules.
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where the r,-z are the interparticle distances and

s,. and A,- are the spins and color vectors of the
quarks and antiquarks. The coefficient of Eq.
(2.3) has been chosen for ease of evaluation by
comparison to the baryon states described by
Isgur and Karl. '4

Numerical studies have shown" that the low-ly-
ing states of many potentials (for example, linear
plus Coulomb) can be approximated by harmonic-
oscillator wave functions. Thus,

V,",~ =Z,. A, [-,'A.r, ~'+U. (r, ~)] .
U(r, &) is some unknown potential which incorpor-
ates an attractive potential at short range [a
Coulomb-type piece derived from quantum-chro-
modynamics (QCD)] and deviations from the har-
monic-oscillator form at large distances. U and

Hpyp can be t re ated by first -orde r pe rturbation
theory using the harmonic-oscillator wave func-
tion.

It should be noted that in the bag model' (H,& is
the same for both T and M baryonium. Chan and
Hggassen» also made this assumption for their
calculation of these systems. Although our cal-
culations (see Secs IV. and V) show (Hgr —- (Hg„,
there is a definite (though small) difference in en-
ergy which affects the diagonalization of the total
Hamiltonian. Furthermore, in the bag model,
C = 8 v 2Aw(6~' (r»)) and C' = 8v 2Aw(5(r»)) are
equal. Again Chan and Hgfgassen make the as-
sumption that "C'=C where L =0, but depends
on the angular momentum L in general. " Our
results (see Sec. VI) show that even for I, =0,
there is a large difference between the value of
C' and C.

In the following sections we separately examine
the various factors entering into the total Ham-
iltonian. The final results for the masses of all
the states appear in Sec. VI and a discussion of
the results is given in Sec. VII.

III. COLOR FACTORS

In this section the computation of potentials for the T and I baryoniums will be considered. The term
in Eq. (2.2) to be reduced is

(3.1)

«,.& =(V..&(= V.)

and

(v„)=(v„)=(v„)=(v„)(=v, ) .

Thus

H=gv" =gv A
i&9 g&g

where V,.&= V(r, &); r,.&
is the distance between i and j particles (quark or antiquark). We first note that the

symmetry of the baryonium system dictates that the spatial expectatipn values (V,.z&
are such that

(H. &= v.(X, .Z, +Z, Z, )+v, (A, A, +Z, Z, +A, .A, +A, A, )

=-,'(v. -v, )[(Z,+ Z, )'-(Z, '+ A, ')+ (A, + A,)' —(Z, '+ Z, ')]

+ i2 V~ [(Z,+ Z, + A, + A, )' —(A, '+ A, '+ A, '+ A,')] . (3.2)

and

(A, A, ), = ='. , (A, ~ A, )„=-.',
(A, ~ A, )r = —s,

(Ai As)u=-6 ~

(3.3)

These results are identical with those obtained
by Anderson and Joshi. " The spatial expectation

We next note the following. Since the composite
state must be a color singlet, (i) A, +Z, +A, + A, .

=0, (ii) A,.'=3~(i=1, 2, 3,4), (iii) (Z, +Z,)'=(Z,
+ A, )'= ~ for T baryonium, e and (iv) (Z, +A, )'
= (Z, + A,)'= ~~0 for M baryonium, ' one obtains from
Eq. (3.2)

I

values (H,) are as follows:

T baryonium: (H,&r = --,'V, —~V~,

M baryonium: (H,)„=—, V, ——', V~ .
(3.4)

(3.5)

IV. THE HARMONIC-OSCILLATOR STATES

If we label the four particles (qqqq), each of
mass m, by (1234), respectively, and let r,&

The values given by Eqs. (3.4) and (3.5) will
now be used to compute the harmonic-oscillator
energies for T and M baryonium states in Sec. IV
below. These resulting values will, in turn, be
used to compute the spectra for the various states
in Sec. VI.
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=
~

r,. —r/ ~, then the harmonic-oscillator part
HHQ of the Hamiltonian H may be written1, 1 /''

2 2so=2 p -8 I p~ +2f1&( 1. +r24)2m, ,- ' 8m I. . .-
1+ ~f8(r13'+ r14'+ r23'+ r24'» (4.1)

&„o= (3h(c2+-,' hId, ) = —,'her(2s, + s,) .

From (4.2) and (4.8) we find

T: (s„s,) = (1,(-', )' '),

(4.10)

(4.11)

where the color factors (f„f,) have the following
values [see Eq. (3.3). The factors and those of
Eq. (3.3) differ by an overall constant which has
been absorbed into Z of Eq. (4.1). This has been
done for ease of comparison with the baryon-data
calculations of Isgur and Karl"]:

(s s ) ((2 )1/2 (5 )1/2) (4.12)

and, by using the value + = 250 Me7 from the
ba, ryon fit of Isgur and Karl, "we have from
(4.10)

p2 I/v 2 -I/v 2

T baryonium: (f„f,) = (1,& ),
M baryonium: (f„f,) = (=2 „-') .

The Hamiltonian H«separates in terms of a
natural set of orthogonal relative coordinates
given by

(4.2)
E, = 1056 MeV and E,"=1014 Me&. (4.13)

V. THE CONTRIBUTION OF U IN FIRST-ORDER
PERTURBATION

The Hamiltonian, excluding the hyperfine inter-
actions, is given by (Hso+U), where

U =f,[U(r»)+ U(r„)]+f,[U(r»)+ U(r„)+ U(r»)

+ U(r„)], (5.1)
0 I/2) 2 -Iv 2

p4

and the corresponding conjugate momenta

w~=-iM;, j= 2, 3,4,j
for we have (Hali" )

a„,= (I/2m)(f;+ s;+7;)
+ 2' [2(f,+f.)(p.'+ p.')+ 4f.p, '].

r4

(4.3)

(4.4)

and (f„f,) are the color factors (4.2). In first-
order perturbation the contribution of U to the
energy is just (U) = ($„U(j),), where (j), is the
ground state (4.9) of H». The central potential
U(r) itself is unknown, but from the baryon model
of Isgur and Karl' we do have values for the in-
tegrals a(1), b(1), and c(1) of U(r), where

a!s)=(3a's' '/s' ')f d' (/ p!!)e 2pp(- x' )s,a(3pl)

3(s)=(2a's'S'/s"') f d p!J(W2p)p 'exp(-sa'p''),
(5.3)

Since H« is now diagonal, we may immediately
write down the energies and corresponding eigen-
states. For convenience we. relate all the para-
meters arising in the present four-body problem
to the parameters n and ~ used by Isgur and Karl'4
for the baryons. Thus we define

and

c(s)=(3n's' '/71' ')

x d'pU 2p p'exp -8&'p' . (5.4)

and

n'= (3mK/h')' ', 4J = (3K/m)' ',
Q =Q g, 4) =(dg

Q 2 n g2 p (d2 (su/2

(4.5)

(4.6)

(4.7)

Thus, for the baryons, Isgur and Karl" obtain

(5.5)L = 0, E(S)= 3m+ 3&v+ a(1),
L = 1, E(I2)= 3m+ 4~+ a(1)/2+ b(1)/3, (5.6)

L = 2, E(S') = 3m+ 5(c+ 5a(l)/4 —b(1)+ c(1)/3,

where

s = [2(f +f )/3]' ' and s = (4f /3)' ' (4.8)

(5.7)

and, using &@=250 Me& and m=m„=m„=350 MeV
(Isgur and ICarl24), one obtains

The ground state (j), and the ground-state energy
EH Q of HHQ are consequently given by

(p 2 02 P3 3 P4)

~ 3~ 3/2
exp[=,'(n, 'p, '+ n, 'p, '+ n, 'p, ')) (4.9)

a(1)= -650 MeV, b(1)= -405 MeV,

c(1)= -908 MeV . (5.8)

By constructing quadratic approximations about
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and

a(s}=A+ Bs+Cs',

b(s)=(3A+Bs -Cs )/2,

(5.9)

(5.10)

s = 1 for a(s), b(s), and c(s) we find from (5.5),
(5.6), (5.7), and (5.8) that

VI. THE HYPERFINE INTERACTION

The two quarks and two antiquarks also interact
via gluon exchange giving rise to a color-magnetic
force between diquark and antidiquark. For the
I.= 0 states, there i.s no spin-orbit or tensor term
and the only contribution is the Fermi contact
term which has the form'

c(s) = (15A+ Ms —Cs')/4, (5.11)

where

(5.12)

(5.13)

and from (5.2) we have

&U(r „)&= a(s, )/3.
In order to evaluate (U(r»)) we choose a new set
of relative coordinates (a„a„o,) and then ap-
proximate g,' in such a way that (U(r»)) can be
related to the integral a(s) for some s. Thus,

(5.14)

A=-170, a=-390, C=-90MeV.

We are now able to evaluate (U) for the four-body
problem.

From the permutation symmetry of the ground
state g, we have from (5.1)

(0& = 2A(U(r„)&+ 4f,(U(r»)&

(6.1)

(6.2)

(5(r„))=(5(r„))=(5(r„)&=(5(r„)&.
Hence Eq. (6.1) takes the form

a„„,= -4Aw[2M2(5(r„)&]g p S, S,W, .

-BM2Aw[(5(r„)& -(5(r„)&]

(6.3)

H„= -842Aw Q Q S,. ~ S~A, A~5~(r, ~),

where 5,. and A, are the spin and color vectors
for the ith quark and r,&

is the distance between,
the ith and jth quark. The coefficients have been
chosen for ease of evaluation by comparison to
the baryon states described by Isgur and Karl. '4

The spatial integrals required for the contact
terms are of the form (5(r,&)&, and there are just
two distinct integrals since the symmetry of the
wave function implies

(5.15) x (S, ~ SP, A, +S, ~ S,A, A,). (6.4)

r„=Mao„
and

6~ 3

gol2

Consequently we have

«& = lf,a(s,)+ f.a[l(s, + s.)l,
and by substituting the numerical values [Eq.
(4.2), (4.11), and (4.12)] in (5.2), we find

(U&, = -832 MeV

(5.19)

(5.20)

(5.16)
e now delete the relatively small cross term in
Q 2 0 3 re norma 1iz e, and obtain the app r ox im ation

@6''' exp[-n '(cr '+ a ') —e 'a ']
(5.17)

where

(5.18}

(6.5)(6(r»)&=s,' 'n'/(2w)' '
Meanwhile 5(r»)= 2 'r'5(a, ), where o, is defined
by (4.3) and (5.15), and therefore from (4.9) we
find

2s s(5(r, )) = i- ' ' tw'/(2w)'r'
(s,+ s,

Now Isgur and Karl" show that 4Ao. 3w xt2= & -&~
= 300 MeV. Hence using Eqs. (4.11) and (4.12) in
Eqs. (6.5) and (6.6), we find

(6.6)

2M2Aw(5„&, = 63.93 MeV, (6.7)

2M2Aw(5»&s= 65.51 MeV, (6.8)

2v 2Aw[(6(r„}) -(5(r»)&r] = 11.07 Mev, (6.9)

2V 2Aw f(5(r„)) -(5(r„)& ]= -20.91 Mev.

(6.10)

Furthermore,

Now 5(r»)= 2 'r'5(p, ), where p, is defined by (4.3),
and consequently we have from (4.9)

a,nd

&U)„= -919 MeV. (5.21)

(Z, A, )r = (As. A, )r = -3,
(A, ~ Z~)s= (X, .A~)s= 3,

(6.11}

(6.12)
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84- g kox Sg —l
3 for Sg = 0.

(6.13)

(6.14)

(-', )"'s', &=1,2, s

A, n=1, 2, . . . , 6

$kgo'

(6.15)

The labels Q.Q refer, respectively, to the di-
quark made up of quarks 1 and 2 Rnd the antidi-
quRx'k mRde up of antlquarks 3 Rnd 4. Finally,
following Jaffe' we note that the products S~A

are among the generators of SU(6)„. Specifically
the generators of SU(6)„can be defined as fol-
lows

sentations. Antidiquarks are in corrugate repre-
sentations. The ground state of the diquark and
antidiquark must be antisymmetric in color-spin
isospin. Since the u and d quarks form an iso-
spin 2 doublet, the diquark can be in either an
isospin 0 or 1 state. For both SU{6)„and
SU(2)I, the smaller value of n„and I represents
a symmetric state. 'The appropriate anti-sym-
metrized states are then [n„,IJ= [15,1],[21,0].
To form the baryonium system we must then look
for color singlets contained in the four possible
combinations [n„]8[n&„], n„= 15,21, n„= 15,21.

The resulting states are given in 'Table I. Note
thatI and E and also J and I are identical as far
as A Qyy and

H tot Rre conce rned . States with iden
tical spin values and originating from the same
[n, ']8 [n'„J combination such as A and B are not
eigenvalues of II„„,and are therefore mixed by
the total Hamiltonian. The eigenstates of H„„
are as follows

The Casimir operators of SU(6)„, SU(3)„and
SU(2), are then given by

(6.16)

(6.17)

s(s+ t) = g (ps', .')'. (6.16)

Q &; SgA; A~ = 2N+ 2C,(tot) -S„,(S„,+ 1)/3
of

+ c,(q)+ 2s, (s, + 1)/3 -4C,(q)

+ C,(g)+ 28@(F@+1)/3 —4C,(g) .

(6.19)

'lhe label tot refers to the entire baryonium sys-
tem.

Prom (6.19), we see that to find the eigenvalues
of II„„,we must construct wave functions which
are in definite SU(6)„representations. Our con-
struction is essentially thatof Jaffe. ' Quarks are
[6] in SU(6)„„ thus the representations for a di-
quark Rre gxven by

[6]8[6]=[&5]~[»] (6.20)

= [(0, 1)e {3,3)]e [(6,s)e (3, 1)]. (6.21)

~a') = o.64o4[(6, 3)8 {6,3)]

+ 0.5419[(3,1)8 (3, 1)],

~

&') = 0.5330[(6,3)8 (6, 3)]
—0.6462[(3, 1)8 (s, 1)],

~C) = (6, 3)8 (6, 3),
~D&=(e, s)8(6, 3),
iz') = 0.7262[(3, s)8 (s, s)]

+ o.6654[(6, 1)8 (e, 1)],
il') = 0.6944[(5, s)8 {3,3)]

-o.v19v[(6, 1)8(6, 1)],
iG) =(3,3)8(S,S),
iII) = (3, 3)8 (3,3),
~I') = 0.7119[(3,1)8 (3,3)]

—0.7023[(6, 3)8 (6, 1)],

~

J ) = 0.7105[(3,1)8 (3, 3)]

+ 0.7037[(6,3)8 (6.1)],
its') = 0.7119[(3,3)8 (3, 1)]

—0.7023[(6,1)8 (6, s)],
~I.') = 0.7105[(5,3)8 (3, 1)]

+ 0.7037[(6, 1)8 (6,3)] .

(6.23)

(6.24)

(6.27)

(6.28)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
The second line gives the decomposition of the
SU(6),, representation [n„] into SU(3),$ SU(2),
representations (n„n, ):

(6.22)[n.,]= [(s;,».)e {~„n,)J,
where n„, n.„and n, are, respectively, the di-
rnension of the SU(6)„, SU(3)„and SU(2), repre-

Corresponding energy eigenvalues of the total
Harniltonian are given in Table II.

VII. DISCUSSION

The masses coresponding to the hyperfine
splitting of baryonium as computed using the mo-



HYPKRFINK SPLITTING OF THK GROUND STATE OF. . .

TABLE I. Diquark-antidiquark combinations formed into color-spin SU(6)~ representa-
tions. n„, n„and n, are the dimensions of the SU(6)„, SU(3)„and SU(2),, representations.

Origin
[~„]8 [~,', ]

[21]8[21]
[21]8 [21]

[2&] g [&&j

[21]g [21]

[15]8 [15]

[15] [15]

[15] [15]

[15]8[15]

[»][15]
[21].8 [15]

[15]8 [21]

[15]8 [21]

0, 1,2

0, 1,2

0, 1,2

0, 1,2

[405]

[1]

[189]

[280]

Origin as a combination of
(+„n,) (n, ,w, ) factors

(-,)'"«6, 3) 8«, 3)]+ (-',)'"[(3,1)(3. »]
(-,)'"[«,3) (6, 3)j- (-,)'"[(3,1)(3, 1)]

(6, 3) 8(6, 3)

(6, 3) 8(6, 3)

(-,)~i'[(3, 3) (3, 3)]+ (-,)~» [(6, 1)8(6, 1)]

( ) / [($3)8(3 3)] ( ) l [(6 1)(6 1)j

(3, 3) (3, 3)

(,'3, 3)(3, 3)

(-)~~ [(3,1)8 (3,3) j- (-',,)~~' [(6, 3) (6, 1)j

(-)'"[(3 1)(3 3)j+ (-)"'[(6,3) ((6, 1)j

(-)'"[(»)(») j- (-)'"[(6 1)+(6 3)]

(-)~ j(3, 3) 8(3 1)j+ (-) [(6 1)8(6 3)]

del proposed in this paper are listed in Table II.
For comparison, this table also contains the
masses computed theoretically by Jaffe„' Bar-
bour et a/. „"Hendry et al. ,

' and I.ichtenberg et
al." The computations of beefs. 8 and 10 were
confined only to T baryonium states, whereas
those of this paper, as well as of Refs. 6 and ll
take into account both the T and 34 baryonium
states. A meaningful comparison of the various
calculations is thus possible only for the state
C which appears as a pure I' baryonium state in
all cases. It is seen that the mass of. the G state
as computed in this paper is clearly consistent
with that predicted by Barbour et al." It is also
consistent with the result of I,ichtenberg et al. '

(taking into account the error quoted by them).
Our model, as well as those of Befs. 10 and 11,
use baryon data for the evaluation of parameters
used in the calculation, while in the calculation
of Hendry et al. ' all input parameters are based
on experimental data, except the 1120-Me& state
(corresponding roughly to the states A', B' of
Table II). As far as those states which are dif-
ferent from C are concerned, the values given
by Barbour et a$."are consistent with those pre-
dicted by the model used in this paper, whereas
the values given by Jaffe' are invariably lower.

A comparison of the values of this paper with
the experimental values will now be made. The
state A' given by the present calculation is close

TABLE II. Mass ofl =0 baryonium states. The quantum numbersk, J, I', and I refer to
orbital angular momentum, total angular momentum, parity, and isospin of the whole sys-
tem.

Flavor
[(U(3) repj

This
calculation Jaffe

Mass (MeV)
Ba1bour Hendry Lichtenberg

and and and
Ponting HincMiff e JOR31son

~l

yes

C
6
J'/ I 1

D
H

0+ 0
0+ 0
0 0, 1,2
0+ 0, 1,2
1+ 0
1+ 0, 1,2
1' 1
1+ 1
2+ Q

2 0, 1,2

9
9g

36
36+

9
36
18
18*

9
36

830
1530
1250
1890
1250
164p
1341
1707
1680
1810

650
1450
1150
1800
12Qp
145p
125Q
1650
165Q
165Q

930
1510
1340
1870

1690
1390

1840

1120

1670

1395

1720
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in energy to the S*(980)state. " If such identifica-
tion is made, it would be consistent with the wide-
ly held view derived from the charmonium system
that for the scalar mesons the four-quark ground
state lies lower in mass than the two-quark
ground state. ' Further possible identification
with experiment can be made as follows. Pava-
poulos et nt."see three discrete lines in the
photon spectrum pp -Xy corresponding to masses
1395, 1646, and 1684 Me&. These states can be
identified with I', G, and D states, respectively,
of Table II.

The main feature of the approach adopted in this
paper is the solution of the explicit four-quark
problem with a pair potential derived solely from
baryon data rather than from baryonium data.
This enhances the reliability of the predictions
of this paper as the baryon data are rich and rel-
atively accurate, whereas the baryonium data are
suspect. ' It is hoped that the present work will
lead to the establishment of a quark-quark pair
potential which would enable one to predict the
spectra of multiquark systems. "

The close agreement of the results of this paper
with those derived by Barbour et aE. ,

"with the
use of a linear plus Couloinb potential builds our
confidence in thy use of Isgur-Karl model for
the calculation of hyperfine splitting. Work is
currently in progress towards the computation
of excited state baryonium spectra, and will be
published in due course.

Note added. After having completed the calcu-
lations reported in this paper, our attention was
drawn to the calculation of Isgur et al."which
indicates that there are internal color transitions
between the T and M baryoniums, where for the
T(M) system the diquark and antiquark are both
in the I= 0 states and for the M(T) system the di-
quark and antidiquark are both in the / = 1 states.
The next step towards. a real. istic calculation ap-
propriate to the baryonium system should take
this into account. It is, nevertheless, hoped that
the present work will serve as a useful basis for
further research.

Noie added in proof. In view of the recent results
from the crystal-ball detector experiment [E. D.
Bloom et a/. , Report No. SLAC-PUB-2425, 1979
(unpublished)] it is no longer justifiable to assume
that for the scalar mesons the four-quark ground
state lies lower in mass than the two-quark ground
state.
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