Charm-changing decays of $1/2^+$ and $3/2^+$ baryons in SU(3) dynamical scheme

Kusum Sharma,* Ramesh C. Verma, and M. P. Khanna Department of Physics, Panjab University, Chandigarh-160014, India (Received 27 July 1979)

We discuss here the two-body weak decays of charmed baryons in a simple SU(3) dynamical scheme. Considering the decays $B \rightarrow B' + P$ in s, t, and u channels and assuming the dominance of nonexotic intermediate states, several decay amplitudes are obtained. We find that the the parity-violating decays in $B(3) \rightarrow B(8) + P(3^*)$, $B(3) \rightarrow D(10) + P(3^*)$, and $B(3^*) \rightarrow D(10) + P(8)$ channels are forbidden independent of the nature of the weak current. We obtain null asymmetries for the weak decays of singlet charmed isobar Ω_3^{*++} .

I. INTRODUCTION

Weak hadronic decays of charmed baryons have been studied in the framework of SU(4) and SU(8)symmetries.¹ Keeping in mind that SU(4) is badly broken, such studies have also been made in the framework of SU(3).² In the current \otimes current picture of weak interactions, the SU(3) weak Hamiltonian can belong to the $3+6^*+15$ representations, but no useful information can be obtained because of too many parameters. In the uncharmed sector, while leptonic and semileptonic decays are described successfully,³ the weak nonleptonic decays are not well explained even at the phenomenological level. The lack of simple understanding of the $\Delta I = \frac{1}{2}$ enhancement has made its generalization unclear. Its simple extension to SU(4), i.e., to the 20'' dominance in the Glashow-Iliopoulos-Maiani (GIM) model leads to many unsatisfactory features.⁴ Even at the SU(3) level, 6* dominance suppresses⁵ $D^* \rightarrow \overline{K}^0 \pi^*$, while experimentally, its branching fraction is found to be comparable to $D^0 \rightarrow K^- \pi^+$, the GIM-allowed decay.⁶ Therefore, substantial contributions from other parts of the SU(3) weak Hamiltonian, such as 3 and 15, seem to be present. But in the presence of these components, the predictive power of SU(3) is further decreased. Recently, we⁷ have deduced most of the observed features of nonleptonic decays of ordinary hyperons in a simple dynamical consideration. Taking the decay $B \rightarrow B' + P$ as an $S + B \rightarrow B' + P$ scattering process, the decay amplitudes are expressed in terms of eigenamplitudes in different channels corresponding to each intermediate state.⁸ By assuming that the nonexotic intermediate states⁹ contribute dominantly, the hypothesis of octet dominance for the parity-violating (PV) weak Hamiltonian is obtained. Further, the assumption of the identity of s- and u-channel reduced matrix elements leads to well-satisfied relations such as $\Sigma_{+}^{*}=0$ for the PV mode and the Lee-Sugawara sum rule for

the parity-conserving (PC) mode, etc. In the case of Ω^- decays, such considerations allow a $\Delta I = \frac{3}{2}$ contribution which was observed to be about 20-25% in a recent CERN experiment.¹⁰ In this analysis, PV decays are found to arise mainly through the t channel and PC decays obtain dominant contributions from s and u channels. These results are in accordance with the results of current-algebra and duality arguments. Using duality arguments, Nussinov and Rosner¹¹ have shown that for s-wave decays, the low-energy pole contribution is relatively small and the Regge contribution dominates. In the currentalgebra framework,¹² PV decays get a contribution through the equal-time commutator (ETC) term which in our analysis corresponds to tchannel contributions. For PC decays, small t-channel contributions are understandable since, here, unnatural-parity states appear which have low Regge intercepts. Similar structures for PV and PC decays have also been obtained in the constitutent-rearrangement quark model.¹³

In this paper, we employ similar dynamical assumptions in order to study the weak Hamiltonian structure for charm-changing decays in the SU(3)-symmetry framework, where the current \otimes current weak Hamiltonian transforms like $3 + 6^* + 15$ representations of SU(3). Constraints on the reduced matrix elements for the process $S+B \rightarrow B'+P$ are obtained by assuming the non-exoticity of the intermediate states. The identity of *s*- and *u*-channel reduced matrix elements cannot be applied here, since the initial and the final baryons belong to different representations. In the GIM model H^3_W is suppressed as a result of the cancellation of the adjoint representation at the SU(4) level.

We discuss the weak hadronic decays of $\frac{1}{2}^{*}$ and $\frac{3}{2}^{*}$ baryons. Because of the heavy mass of the charm quark, new channels open up for the charm-changing decays of $\frac{1}{2}^{*}$ baryons. In addition to $B(\frac{1}{2}^{*}) \rightarrow B(\frac{1}{2}^{*}) + P(0^{\circ})$ channels, $\frac{1}{2}^{*}$ baryons can de-

21

cay like $B(\frac{1}{2}^{+}) \rightarrow D(\frac{3}{2}^{+}) + P(0^{-}), B(\frac{1}{2}^{+}) \rightarrow B(\frac{1}{2}^{+}) + V(1^{-}),$ $B(\frac{1}{2}) \rightarrow D(\frac{3}{2}) + V(1)$ also. We obtain decay amplitudes for these channels for $\Delta C = \Delta S$ as well as the $\Delta C = -1$, $\Delta S = 0$ mode. Of the $\frac{3}{2}$ charmed isobars, Ω_3^{***} (C = 3) is expected to decay through weak interactions only. Weak decays of Ω_3^{***} are also discussed. Since recent data¹⁴ on charm mesonic decays do not favor 6^* dominance in the GIM weak Hamiltonian, this may indicate the presence of higher representations other than 20" at the SU(4) level. Moreover, it has been argued by Ellis, Gaillard, and Nanopoulos¹⁵ that shortdistance enhancement for the sextet component is not as effective for charmed-particle decays as for ordinary decays due to the heavy charmedquark mass. Therefore, we start with the general weak Hamiltonian $(6^* + 15)$. In our analysis, we do not get dominance of any of these representations. However, we discuss the implications of 6* dominance on weak decays.

1892

In Sec. II, we discuss the details of the method and in Sec. III, the decay amplitudes are derived for $\Delta C = \Delta S$ as well as $\Delta C = -1$, $\Delta S = 0$ mode. In the last section, we discuss the results.

II. PRELIMINARIES

The GIM left-handed weak current¹⁶ belongs to the $\underline{15}$ representation of SU(4) and has the following $\underline{SU}(3)$ components:

$$J_{L}^{3} = \overline{u}\gamma_{\mu}(1+\gamma_{5})d\cos\theta_{C} + \overline{u}\gamma_{\mu}(1+\gamma_{5})s\sin\theta_{C}, \quad (2.1)$$
$$J_{L}^{3} = -\overline{c}\gamma_{\mu}(1+\gamma_{5})d\sin\theta_{C} + \overline{c}\gamma_{\mu}(1+\gamma_{5})s\cos\theta_{C}. \quad (2.2)$$

The superscript denotes the SU(3) representation and θ_C is the Cabibbo angle. The weak Hamiltonian $H_W \sim \{J, J^{\dagger}\}$ then has the following SU(3) parts:

$$H_{W} \sim \left[\{\underline{8}, \underline{8}\}, \{\underline{3}, \underline{3}^{*}\}\right]_{\Delta C=0} + \{\underline{3}, \underline{8}\}_{\Delta C=-1} + \{\underline{8}, \underline{3}^{*}\}_{\Delta C=+1}.$$
(2.3)

We are interested in the charm-changing $(\Delta C = -1)$ piece of the weak Hamiltonian belonging to the SU(3) representations present in the direct product

$$3 \otimes 8 = 3 \oplus 6^* \oplus 15 . \tag{2.4}$$

 H_W^3 is suppressed as a result of cancellation of H_W^{15} in SU(4).¹⁷ Tensor structure of the Hamiltonian (6* + 15) corresponding to the three modes ($\Delta S = -1, 0, +1$) of charm-changing decays is given by

$$H_{W}^{\Delta C^{z-1}} \sim (T_{[13]}^{2} + T_{(13)}^{2}) \cos^{2}\theta_{C}, \text{ for } \Delta S = -1,$$

$$\sim (T_{[12]}^{3} + T_{(12)}^{3}) \sin^{2}\theta_{C}, \text{ for } \Delta S = +1, (2.5)$$

$$\sim (T_{[12]}^{2} - T_{[13]}^{3} + T_{(12)}^{2} - T_{(13)}^{3}) \cos\theta_{C} \sin\theta_{C},$$

 for $\Delta S = 0,$

where $T^a_{[bc]}$ and $T^a_{(bc)}$ are tensors representing <u>6</u>* and <u>15</u> representations of SU(3), respectively. In order to obtain constraints on the reduced matrix elements, we consider the hyperon decay $A \rightarrow B + P$ as $S + A \rightarrow B + P$ scattering process⁷ in all the three s, t, and u channels, where the weak spurion S has the same tensor structure as the weak Hamiltonian so that all the strong quantum numbers in the above reaction are conserved. The transition amplitudes are expressed in terms of reduced amplitudes

$$\langle B' || P || m \rangle \langle m || S || B \rangle$$

for s channel
$$(S+B \rightarrow m \rightarrow B' + P)$$
, (2.6)

 $\langle P \| \overline{S} \| m \rangle \langle m \| \overline{B}' \| B \rangle$

for t channel $(B + \overline{B}' \rightarrow m \rightarrow P + \overline{S})$, (2.7)

 $\langle B' \| \overline{S} \| m \rangle \langle m \| \overline{P} \| B \rangle$

for *u* channel
$$(B + \overline{P} \rightarrow m - B' + \overline{S})$$
 (2.8)

The baryon intermediate states then appear in the s and u channels and meson states are exchanged in the t channel. We assume that the effective contribution to the decays comes mainly from the single-particle nonexotic intermediate states.⁹ It has earlier been noticed⁷ that this assumption leads to most of the observed features of the nonleptonic decays of ordinary baryons B(8) - B(8)+ P(8) and those of Ω^- . Here, we consider the nonleptonic weak decays of $B(3^*)$ and B(3) multiplets only since the present mass spectroscopy¹⁸ of hadrons allows all the particles except Ω_1^0 of the B(6) multiplet to decay to $B(3^*)$ baryons¹⁹ through the strong and/or the electromagnetic interaction. Among $\frac{3}{2}$ charmed isobars, Ω_3^{***} is stable against strong and electromagnetic interactions. In the next section, we consider the two-body weak hadronic decays of $B(3^*)$, B(3)multiplets, and charmed isobar Ω_3^{***} .

III. DECAY AMPLITUDES

Contributions in s, t, and u channels coming from different components of weak Hamiltonians for the various decay modes are given in the corresponding tables. In writing the amplitudes, we choose positive phases for all the $\frac{1}{2}$ baryons. It has been observed⁷ that for the ordinary hadrons the PV weak decays arise through t channels only and PC weak decays acquire dominant contributions from s and u channels. Assuming that the same is true also for the charmed baryons²⁰ we obtain the following relations.

A. $\Delta C = \Delta S$ decay mode

(a) $B(\frac{1^+}{2}) \to B(\frac{1^+}{2}) + P(0^-)$. $H_W^{6^{*+15}}$ leads to (i) $B(3^*) \to B(8) + P(8)$ (Table I).

TABLE I. $\Delta C = \Delta S$ decays of $B(3^*)$. The contributions to the decay amplitudes are proportional to the tabulated numbers times $\cos^2 \theta_C$.

	t chan	nel	0	k	s channe	15			u cha	annel	15	
$B(3^*) \rightarrow B(8) + P(8)$	$a_{3}^{t}*$	$^{15}_{A_{3*}^t}$	$a_{8_1}^{s}$	a_{82}^{s}	$A_{8_1}^{\ s}$	A_{82}^{s}	$A_{10}^{\ s}$	a_{3*}^{u}	a_6^u	A_{3*}^{u}	A_6^u	
$\Lambda_{1}^{\prime +} \rightarrow p \overline{K}^{0}$ $\Lambda \pi^{+}$ $\Sigma^{+} \pi^{0}$ $\Sigma^{+} \pi^{0}$	$\frac{1}{2/\sqrt{6}}$ - 0	$\frac{1}{-2/\sqrt{6}}$	-1 $-2/\sqrt{6}$ 0 $2/\sqrt{6}$	$-1 \\ 0 \\ -\sqrt{2} \\ 0$	$ \begin{array}{c} 1\\ 2/\sqrt{6}\\ 0\\ 2/\sqrt{6} \end{array} $	$ \begin{array}{c} 1\\ 0\\ -\sqrt{2}\\ 0 \end{array} $	$-\frac{2}{3}$ 2/ $\sqrt{6}$ $-\sqrt{2}/3$ $-2/\sqrt{6}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2 / \sqrt{6} \end{array} $	$0 \\ 1/\sqrt{6} \\ 1/\sqrt{2} \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2 / \sqrt{6} \end{array} $	0 $1/\sqrt{6}$ $1/\sqrt{2}$ $2/\sqrt{6}$	
$\Sigma^{0} \eta^{+}$ $\Sigma^{0} \pi^{+}$ $\Xi^{0} K^{+}$	0	0	$-2/\sqrt{6}$ 0 -1	$-\sqrt{2}$ 1	2/ v 6 0 1	$\sqrt{2}$ -1	$\frac{-2}{\sqrt{2}}$	-2/ vo 0 -1	$-1/\sqrt{2}$	-2/ v 0 0 1	$-\frac{1}{\sqrt{2}}$	
$\Xi_{1}^{\prime 0} \rightarrow \Lambda \overline{K}^{0}$ $\Sigma^{*}K^{-}$ $\Sigma^{0}\overline{K}^{0}$ $\Xi^{0}\pi^{0}$ $\Xi^{0}\eta$ $\Xi^{-}\pi^{+}$	$1/\sqrt{6}$ 0 $1/\sqrt{2}$ 0 0 1	$1/\sqrt{6}$ 0 $1/\sqrt{2}$ 0 0 -1	$ \begin{array}{r} -1/\sqrt{6} \\ 1 \\ -1/\sqrt{2} \\ -1/\sqrt{2} \\ -1/\sqrt{6} \\ -1 \\ \end{array} $	$-3/\sqrt{6} \\ -1 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \\ 3/\sqrt{6} \\ -1$	$ \begin{array}{r} -3/\sqrt{6} \\ 1 \\ -1/\sqrt{2} \\ -1/\sqrt{2} \\ -1/\sqrt{6} \\ -1 \\ \end{array} $	$-1/\sqrt{6}$ 1 $1/\sqrt{2}$ $-1/\sqrt{2}$ $3/\sqrt{6}$ -1	$ \begin{array}{r} -4/3\sqrt{6} \\ \frac{2}{3} \\ -\sqrt{2}/3 \\ \sqrt{2}/3 \\ \frac{2}{\sqrt{6}} \\ \frac{2}{3} \end{array} $	$0 \\ 1 \\ 0 \\ -1/\sqrt{2} \\ -1/\sqrt{6} \\ 0$	$ \begin{array}{c} -1/\sqrt{6} \\ -\frac{1}{2} \\ 1/\sqrt{2} \\ -1/2\sqrt{2} \\ -3/2\sqrt{6} \\ 0 \end{array} $	$\begin{array}{c} 0\\ 1\\ 0\\ 1/\sqrt{2}\\ 1/\sqrt{6}\\ 0 \end{array}$	$-\frac{1}{\sqrt{6}} \\ \frac{\frac{1}{2}}{-1/\sqrt{2}} \\ -\frac{1}{2}\sqrt{2} \\ -\frac{5}{2}\sqrt{6} \\ 0$	
$\Xi_1^{\prime +} \xrightarrow{\Sigma^*} \overline{K}^0 \\ \Xi_{\pi^*}^{0}$	1 _1	1 1	0	0 0	0 0	0 0	0 0	1 _1	$-\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$-\frac{1}{2}$ $-\frac{1}{2}$	
							- <u></u>					
PV mode: $(-+-0) A(+) - (S+m) A$	1+1 - (50-	+ 1 /+				$\langle \Xi_1^{\prime \dagger} \pi^0$	$ \Xi_2^{\bullet}\rangle = \langle \Xi_2^{\bullet}\rangle$	$\mathbb{E}_{1}^{\prime *}\eta \mathbb{E}_{2}^{\ast}\rangle$	=0,			(3.9)
$\langle \Sigma \pi^* \Lambda_1 \rangle = \langle \Sigma \eta \Lambda_1 \rangle$ $= \langle \overline{\Sigma}^0 K^* \Lambda_1 \rangle$	$(1) = (2) \pi$	$ \Lambda_1\rangle$	N			<Ξ ^{**} π*	$ \Xi_2^*\rangle = -$	$-\langle \Xi_1^{\prime 0}\pi^* $	$\Xi_2^{*}\rangle$,			(3.10)
$= \langle \Xi^0 n \Xi'$	$(1) = (\pi^0 \pi^0)$	エ ー 1 リーティ ⁰) :	-0	(3.1)	$\mathbb{A}_1^{\mathcal{H}}$	$ \Omega_2\rangle = -$	$\langle \Lambda_1^* K^\circ $	±2>,			(3.11)
$\langle p\overline{K}^0 \Lambda'^* \rangle = \langle \Sigma^* \overline{K}^0 \overline{Z}^* \rangle$	$\langle -\sqrt{2} \rangle = \sqrt{2} \langle$	$\sum_{i=1}^{n} \overline{K}^{0}$	$\Xi^{(0)}$	(0.1)	PC m	0ue:	$\bar{D}/\pi' + \pi^0$	\	ਦਾ/+ π +[ਦ	·++\	(2.12)
$= \sqrt{6} \langle \Lambda \overline{K}^0 \rangle$	-1/ ·-:		-17	. (3.2)	$\sqrt{6} (\pi)$	$ -2/ + v_{2}$	$(\pi'_{0}\pi^{+})$	$\overline{\pi}_{2}^{+} = -\langle A \rangle$	-1 -1	2 / ,	(0.14)
$ (\frac{3}{2})^{1/2} \langle \Lambda \pi^+ \Lambda'^+ \rangle = -\langle$	$\Xi^0 \pi^+ \Xi'_+$	$\rangle = \langle \Xi^{-} \rangle$	$\pi^+ = \langle 0 \rangle$	(3.3)	10 141	· 1 H 2/ ·	<u>√</u> →1 ″	-2/ -4/1	$= (\Xi'^{+}\pi)$	// (*) 三 ; *) 。	(3.13)
PC mode:						Ξ‡ ar	nd Ω; deo	cays do	not aris	e throu	igh the s	chan-
$\langle \Sigma^{+} \pi^{0} \Lambda_{1}^{\prime +} \rangle = -\langle \Sigma^{0} \pi^{+}$	$\left \Lambda_{1}^{\prime +} \right\rangle$,	(- (1)	(3.4)	nel. (iv)	$B(3) \rightarrow B$	(6) + P(8	8) (Table	<i>II</i>).		
$\sqrt{2} \left\langle \Xi^0 \pi^0 \left \Xi_1^0 \right\rangle - \left\langle \Xi \pi \right\rangle$	$ \Xi_1^{\prime 0}\rangle = \langle$	$\Xi^{\circ}\pi^{*}$	$\Xi_1^{\uparrow}\rangle$,	(3.5)	PV m						
$\langle \Sigma^* K^\circ \Xi_1^* \rangle = \langle \Xi^\circ \pi^* ,$	=1		(SOF0 -	0\1 ((2.6)	$\langle \mathcal{L}_1 \rangle \mathbf{K}$	「二 ₂) /一+			/⊶+.0	(D	0 = = = + >
$= 2 [\zeta_{2}]$	$\Delta \mathbf{n} \mid \Xi_1$	$\gamma \pm \sqrt{2}$	$\Delta \mathbf{n} \mid \Xi_1$	[]]• (1	(3.0)		$=\langle \Xi_1 \eta$	$ \pm_2\rangle = \langle$	$\exists_1\eta \mid \exists_2\rangle$	= \± ₁ π°	$ \Xi_2\rangle = \langle SZ \rangle$	1K (= 14)
(<i>ii</i>) $B(3) \rightarrow B(8) + F$ PV mode:	$P(3^*)$ (Ta	ble II)				$\langle \Sigma_1^{**}\overline{K}$	$= 0,$ $\left \Xi_{2}^{++} \right\rangle = -$	$\sqrt{2}\langle \Sigma_1^*\overline{K}^0$	$ \Xi_2^+\rangle = \sqrt{2}$	$\overline{2}\langle \Xi_1^*\overline{K}^0 $	$\Omega_2^{\scriptscriptstyleullet} angle$,	(3.14) (3.15)
$\langle \Sigma^* D^* \Xi_2^{**} \rangle = \langle \Sigma^* D^0 $	$\Xi_2^*\rangle = \langle \Lambda I$	ひ* 三か				$\sqrt{2}\langle\Xi_1$	$ \pi^+ \Xi_2^{*+}\rangle =$	$=\sqrt{2}\langle \Xi_1^0 \rangle$	$\tau^* \left \Xi_2^* \right\rangle = \langle$	$\left(\Omega_{1}^{0}\pi^{*} \right \Omega_{1}^{0}$	$_{2}^{*}\rangle$,	(3.16)
$=\langle \Sigma^0 D^* ;$	$ \Xi_2^+\rangle = \langle \Xi^0 \rangle$	$F^* \Xi_2^* \rangle$				PC m	ode:					
$=\langle \Xi^0 D^* s$	$\left \Omega_{2}^{\star}\right\rangle = 0$,	1 .		(3.7)	$\langle \Sigma_1^{**}\overline{K}$	$\left \Xi_{2}^{++}\right\rangle = 0$	$\left(\Omega_{1}^{0}\pi^{*}\right) \Omega$	$_{2}^{*}\rangle = 0$,			(3.17)
PC mode:	-					$\langle \Xi_1^* \pi^*$	$ \Xi_2^{++}\rangle = \langle \Xi_2^{++}\rangle$	$E_1^0 \pi^* \Xi_2^* \rangle$	$-\sqrt{2}\langle \Xi_1^*$	$\pi^0 \left \Xi_2^* \right\rangle$		
$\langle \Sigma^{+}D^{+} \Xi_{2}^{++} \rangle + \langle \Sigma^{+}D^{0} $	$\Xi_2^+\rangle + \sqrt{2}$	$\langle \Sigma^0 D^* $	$\Xi_2^*\rangle = 0$.	· (3.8)		=(Ξ	$L_1^*\overline{K}^0 \left \Omega_2^* \right\rangle$	۰,			(3.18)
Since all the decay	amplitu	des va	unish in	the PV	· ·	$\sqrt{2}\langle \Xi_1^0$	$\pi^* \Xi_2^*\rangle =$	$ig \Omega_1^0 K^* ig $ 2	$\Xi_2^*\rangle$,			(3.19)
mode, null asymmetric also that Ξ_{*}^{**} and Ω	etries ar t decay o	e indi	cated. ²¹	Notic he <i>u</i>	e	$\langle \Sigma_1^{**}K$	$ \Xi_2^+\rangle = $	$\overline{2}\langle \Sigma_1^*\overline{K}^0$	$ \Xi_2^* angle$.			(3.20)
channel. (<i>iii</i>) $B(3) \rightarrow B(3^*) + C(3^*)$	-P(8) (To	able II).		ж	Here Ξ²+ ai	, also, thn Ω_2^* bat	nere is ryons in	null cont n the s c	tributio hannel.	n to dec <u>6</u> * dor	ays of ninanco

PV mode:

$$\sqrt{2} \langle \Xi_1^* \pi^* | \Xi_2^{**} \rangle = \sqrt{2} \langle \Xi_1^0 \pi^* | \Xi_2^* \rangle = \langle \Omega_1^0 \pi^* | \Omega_2^* \rangle , \qquad (3.16)$$

$$\langle \Sigma_1^{\star\star} \overline{K}^0 | \Xi_2^{\star\star} \rangle = \langle \Omega_1^0 \pi^\star | \Omega_2^\star \rangle = 0 , \qquad (3.17)$$

$$= \langle \Xi_1^* \overline{K}^0 \, \big| \, \Omega_2^* \rangle \,, \tag{3.18}$$

$$\sqrt{2}\langle \Xi_1^0 \pi^* | \Xi_2^* \rangle = \langle \Omega_1^0 K^* | \Xi_2^* \rangle, \qquad (3.19)$$

$$\left\langle \Sigma_1^{++} K^- \middle| \Xi_2^* \right\rangle = \sqrt{2} \left\langle \Sigma_1^+ \overline{K}^0 \middle| \Xi_2^* \right\rangle. \tag{3.20}$$

e of the weak Hamiltonian leads to the following addi-

	t channel 6* 1	.5	s 6*	channel 15		<i>u</i> chan 6*	nel 15
$\mathbf{B}(3) \rightarrow B(8) + P(3^*)$	(no nonexot state)	ic	b ^s 3*	B_6^s	b ^u _{3*}	<i>b</i> ^{<i>u</i>} ₆	B_3^u B_6^u
$\Xi \stackrel{*+}{2} \rightarrow \Sigma \stackrel{*}{D} \stackrel{*}{}$	0)	0	0	-1	-1	1 -1
$\Xi \frac{1}{2} \rightarrow \Lambda D^+$	0	0	$-2/\sqrt{6}$	$-3/\sqrt{6}$	0	$-2/\sqrt{6}$	$\sqrt{6}$
ΣD^{0}	0	0	2	. 1	1	-1	-1 -1
$\Sigma^{0}D^{+}$	0)	$-\sqrt{2}$	$-1/\sqrt{2}$	0	$\sqrt{2}$	$0 \sqrt{2}$
$\Xi {}^{0}F^{+}$	0	0	2	-1	0	-1	1 1
$\Omega_2^+ \rightarrow \Xi^0 D^+$	0	0	0	0	-1	-1	-1 1
$B(3) \rightarrow B(3^*) + P(8)$	c ^t _{3*}	C_{3*}^{t}		c ^s _{3*}	C_6^s	c_3^u	(no nonexotic state)
$\Xi_{2}^{++} \rightarrow \Xi_{1}^{\prime+}\pi^{+}$	1	1		0	0	2	0
$\Xi_2^+ \rightarrow \Lambda_1^{\prime +} \overline{K}^0$	-1	1		2	1	0	0
$\Xi_{1}^{\prime +}\pi^{0}$	0	0		$-\sqrt{2}$	$1/\sqrt{2}$	$-\sqrt{2}$	0
Ξ '+η	0	0		$2/\sqrt{6}$	$3/\sqrt{6}$	$2/\sqrt{6}$	0
Ξ· ⁰ π +	-1	-1		2	-1	0	0
$\Omega_2^+ \rightarrow \Xi_1^{\prime+} \overline{K}^0$	1	-1		0	0	2	0
$B(3) \rightarrow B(6) + P(8)$	d_{3*}^t	D_{3*}^{t}		d_{3*}^{s}	D ^s ₆	no nonexo state	tic D_3^u
$\Xi \stackrel{**}{2} \Sigma \stackrel{**}{1} \overline{K}^0$	-1	1		0	0	0	0
$\Xi_{1}^{*}\pi^{*}$	$1/\sqrt{2}$	$1/\sqrt{2}$	2	0	0	0	$\sqrt{2}$
$\Xi \stackrel{\text{\tiny \ddagger}}{2} \to \Sigma \stackrel{\text{\tiny \ddagger}}{1} \overline{K}^0$	0	0		1	1	0	0
$\Sigma \frac{1}{4}\overline{K}^0$	$-1/\sqrt{2}$	$1/\sqrt{2}$	2	$1/\sqrt{2}$	$1/\sqrt{2}$	0	0
Ξ 1 π^0	0	0		$-\frac{1}{2}$	$\frac{1}{2}$	0	-1
三 in	0	0		$-\sqrt{3}/2$	$-1/\sqrt{3}$	0	$1/\sqrt{3}$
Ξ ⁰ ₁ π +	$1/\sqrt{2}$	$1/\sqrt{2}$	2	$-1/\sqrt{2}$	$1/\sqrt{2}$	0	0
$\Omega {}^0_1 K^+$	0	0		-1	1	. 0	0
$\Omega_2^+ \rightarrow \Xi_1^+ \overline{K}^0$	$-1/\sqrt{2}$	$1/\sqrt{2}$	2	0	0	. 0	$\sqrt{2}$
$\Omega_1^0 \pi^+$	1	1		0	0	0	0

tional relations:		$(\frac{2}{3})^{1/2} \langle \Sigma^* \overline{K}^0 \big \Xi_1^{\prime *} \rangle$	
$\sqrt{3} \langle \Lambda \pi^{+} \Lambda_{1}^{\prime +} \rangle = \sqrt{2} \langle p \overline{K}^{0} \Lambda_{1}^{\prime +} \rangle,$	(3.21)	$=2\langle\Lambda\overline{K}^{0}\left \Xi_{1}^{\prime0} ight angle+\sqrt{3}\left\langle\Sigma^{\star}\pi^{0}\left \Lambda_{1}^{\prime\star} ight angle-\left\langle\Sigma^{\star}\eta\left \Lambda_{1}^{\prime\star} ight angle$,	(3.26)
$egin{array}{c c c c c c c c c c c c c c c c c c c $	(3.22)	$\left\langle \Sigma^{\star}D^{\star}\left \left.\Xi_{2}^{\star\star} ight angle =\left\langle \Xi^{0}D^{\star}\left \left.\Omega_{2}^{\star} ight angle ight angle ,$	(3.27)
$\langle \Sigma_1^* \overline{K}^0 \left \Xi_2^* ight angle = - \langle \Xi_1^0 \pi^* \left \Xi_2^* ight angle ;$	(3.23)	$\sqrt{3} \left< \Lambda D^{\star} \left \Xi_2^{\star} \right> + \left< \Sigma^0 D^{\star} \left \Xi_2^{\star} \right> = 0 ight.$	(3.28)
for the PC mode:		$ig\langle \Xi_1^{\prime *} \pi^0 ig \Xi_2^{*} ig angle = -\sqrt{3} ig\langle \Xi_1^{\prime *} \eta ig \Xi_2^{*} ig angle$,	(3.29)
$\langle p \overline{K}^0 \Lambda_1^{\prime *} \rangle = \langle \Xi^- \pi^* \Xi_1^{\prime 0} \rangle$,	(3.24)	$egin{array}{c} \left\langle \Xi_1^{\prime 0} \pi^\star \left \; \Xi_2^\star ight angle = \left\langle \Lambda_1^{\prime \star} \overline{K}^0 \left \; \Xi_2^\star ight angle \; , \end{array} ight.$	(3.30)
$\left\langle \Xi^{0}K^{\star}\left \Lambda_{1}^{\prime \star} \right\rangle = -\left\langle \Sigma^{\star}K^{-} \right \Xi_{1}^{\prime 0} ight angle$,	(3.25)	$ig\langle \Xi_1^{\prime \star} \pi^{\star} ig \Xi_2^{\prime \star} ig angle = ig\langle \Xi_1^{\prime \star} \overline{K}^0 ig \Omega_2^{\star} ig angle ,$	(3.31)

	t char	nel		s channel			u channe	el	
	6*	15	6*	15	5	6*		15	
	no none	xotic			-	no nonexo	tic		
$B(3^*) \rightarrow D(10) + P(8)$	stat	e	e_8^s	E_8^s	E_{10}^{s}	state	• .	E_{3*}^{u}	$E_6^{\prime\prime}$
$\Lambda'_1^+ \rightarrow \Delta^{++}K^-$	0	0	-1	1	23	0	0		0
$\Delta + \overline{K}^0$	0	0	$-1/\sqrt{3}$	$1/\sqrt{3}$	$2/3\sqrt{3}$	0	0		0
$\Sigma^{*}\pi^{0}$	0	0	$1/\sqrt{6}$	$-1./\sqrt{6}$	$4/3\sqrt{6}$	0	0	·	$2/\sqrt{6}$
$\Sigma^{*}\eta$	0	0	$1/\sqrt{2}$	$-1/\sqrt{2}$	0	0	-2	$\sqrt{2}/3$	$-\sqrt{2}/3$
$\Sigma * {}^{0}\pi^{+}$	0	0	$1/\sqrt{6}$	$-1/\sqrt{6}$	$4/3\sqrt{6}$	0	0		$2/\sqrt{6}$
$\Xi^{*0}K^+$	0	0	$1/\sqrt{3}$	$-1/\sqrt{3}$	$4/3\sqrt{3}$	0	-2	$\sqrt{3}$	0
$\Xi_1^{\prime +} \rightarrow \Sigma^{*+} \overline{K}^0$	0	0	0	0	0	0	2	$\sqrt{3}$	$2/\sqrt{3}$
-Ξ* ⁰ π ⁺	0	0	0	0	0	0	-2	/√3	$-2/\sqrt{3}$
$\Xi_1^{\prime 0} \rightarrow \Sigma^{**}K^-$	0	0	$1/\sqrt{3}$	$1/\sqrt{3}$	$-4/3\sqrt{3}$	0	2	$\sqrt{3}$	0
$\Sigma *^{0}\overline{K}^{0}$	0	0	$1/\sqrt{6}$	$1/\sqrt{6}$	$-4/3\sqrt{6}$. 0	0		$-2/\sqrt{6}$
$\Xi *^{0} \pi^{0}$	0	0	$-1/\sqrt{6}$	$-1/\sqrt{6}$	$-2/3\sqrt{6}$	0	-2	$\sqrt{6}$	$-2/\sqrt{6}$
$\Xi^{*0}\eta$	0	0	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$\sqrt{2}/3$	0		$\overline{2}/3$	$\sqrt{2}/3$
Ξ*-π+	0	0	$-1/\sqrt{3}$	$-1/\sqrt{3}$	$-2/3\sqrt{3}$	0	0		0
Ω-Κ+	0	0	-1	1	$-\frac{2}{3}$	0	0	L · · ·	0
	not	n	o nonexotic	not		not			
$B(3) \rightarrow D(10) + P(3^*)$	allowed	l	state	allowed	F_6^s	allowed	F_{3*}^{u}	F_6^{μ}	
$\Xi \stackrel{**}{2} \rightarrow \Sigma *^{*}D^{*}$	0		0	0	0	0	$2/\sqrt{3}$	$2/\sqrt{3}$	
$\Xi \stackrel{*}{\to} \Sigma^{*+}D^0$	0		0	0	$2/\sqrt{3}$	0	$-2/\sqrt{3}$	$2/\sqrt{3}$	
$\Sigma^{*0}D^{+}$	0		0	0	$2/\sqrt{6}$	0	0	$4/\sqrt{6}$	
Ξ * ⁰ <i>F</i> ⁺	0		0	0	$2/\sqrt{3}$	0	$-2/\sqrt{3}$	$2/\sqrt{3}$	
$\Omega \xrightarrow{*}{2} \rightarrow \Xi^{*0}D^{+}$	• 0		0	0	0	0	$2/\sqrt{3}$	$2/\sqrt{3}$	

TABLE III. $\Delta C = \Delta S$ decays $(\frac{1}{2}^* \rightarrow \frac{3}{2}^* + 0^-)$. The contributions to the decay amplitudes are proportional to the tabulated numbers times $\cos^2\theta_C$.

$$\begin{split} \langle \Sigma_1^{**} K_1^- \big| \Xi_2^* \rangle &= -\langle \Omega_1^0 K^* \big| \Xi_2^* \rangle = -2/\sqrt{3} \langle \Xi_1^* \eta \big| \Xi_2^* \rangle \\ &= -2 \langle \Xi_1^* \pi^0 \big| \Xi_2^* \rangle \,. \end{split} \tag{3.32}$$

(b)
$$B(\frac{1^{+}}{2}) \rightarrow D(\frac{3^{+}}{2}) + P(0^{-})$$
 (Table III).

 $B(3) \rightarrow B(6) + P(8)$ decays are forbidden in the *u* channel.

(i) $B(3^*) \rightarrow D(10) + P(8)$. Since the *t*-channel contributions vanish here, we expect the PV mode to be forbidden, indicating vanishing asymmetries. If 6* dominance is assumed, these decays occur

TABLE IV. $\Delta C = \Delta S$ decays of Ω_{3}^{*+} . The contributions to the decay amplitudes are proportional to the tabulated numbers times $\cos^2\theta_{C}$.

	t cha	annel	s ch	annel	u cha	annel
	6*	15	6*	15	6*	15
$D(1) \rightarrow B(3^*) + P(3^*)$	no nonexotic state	not allowed	no nonexotic state	not allowed	h_3^u	not allowed
$\Omega^{*}_{3}^{*+} \xrightarrow{\rightarrow} \Xi_{1}^{\prime+} D^{+}$	0	0	0	0	2	0
$D(1) \rightarrow B(6) + P(3^*)$	not allowed	no nonexotic state	not allowed	no nonexotic state	not allowed	I_3^u
$\Omega^{*}_{3}^{*+} \rightarrow \Xi^{+}_{1}D^{+}$	0	0	0	0	0	$\sqrt{2}$
$D(1) \rightarrow B(3) + P(8)$	j_{3*}^t	J_{3*}^{t}	no nonexotic state	no nonexotic state	no nonexotic state	no nonexotic state
$\Omega *^{++}_3 \rightarrow \Xi {}^{++}_2 K^0$	1	1	0	0	0	0
$\Omega_2^*\pi^+$	-1	1	0	0	0	0

through the s channel only.

(ii) $B(3) \rightarrow D(10) + P(3*)$ (Table III). Due to the vanishing t-channel contributions, the PV mode is suppressed. Therefore, null asymmetries are indicated. Notice that these decays can occur through the H_W^{15} component only. Therefore, sextet dominance forbids these decays totally.²²

(*iii*) $B(3) \rightarrow D(6) + P(8)$. These decays can be obtained from the corresponding decays $B(3) \rightarrow B(6) + P(8)$ in Table (II) simply by replacing d and D by g and G, respectively.

(c) $D(\frac{3^+}{2}) \rightarrow B(\frac{1^+}{2}) + P(07)$.

(i) $D(1) \rightarrow B(\frac{1}{2}^{+}) + P(0^{-})$ (Table IV). Ω_{3}^{*+*} can decay to $B(3^{*})$ and B(6) baryons through 6^{*} and $\frac{15}{16}$ spurions, respectively. Our analysis allows the only possible decays $\Omega_{3}^{*+*} \rightarrow \Xi_{1}^{**}D^{*}/\Xi_{1}^{*}D^{*}$ to occur through the *u* channel. The PV mode is suppressed. Sextet dominance forbids $\Omega_{3}^{**+} \rightarrow \Xi_{1}^{*}D^{*}$ decay in the PC mode too.

(*ii*) $D(1) \rightarrow B(3) + P(8)$ (*Table IV*). This mode is allowed in the *t* channel alone thus indicating vanishing asymmetries.

(d) $D(\frac{3^*}{2}) \rightarrow D(\frac{3^*}{2}) + P(0^{-})$. The decay amplitudes for the channels $D(1) \rightarrow D(6) + P(3^*)$ and $D(1) \rightarrow D(3)$ + P(8) can be obtained from corresponding decay amplitudes in $D(1) \rightarrow B(6) + P(3^*)$ and $D(1) \rightarrow B(3)$ + P(8). Thus the results obtained for $D(\frac{3}{2}^*) \rightarrow B(\frac{1}{2}^*)$ $+ P(0^{-})$ are regained.

B. $\Delta C = -1$, $\Delta S = 0$ decay mode

(a) $B(\frac{1^+}{2}) \to B(\frac{1^+}{2}) + P(0^-)$.

(i) $B(3^*) \rightarrow B(8) + P(8)$ (Table V). Here the PV decays $\Lambda_1^{\prime*} \rightarrow \Sigma^* K^0 | \Sigma^0 K^*, \Xi_1^{\prime*} \rightarrow p K^0, \Xi_1^{\prime 0}$

 $\rightarrow \Sigma^* \pi^- | pK^- | n\overline{K}^0 | \Xi^0 K^0$ are forbidden.

(*ii*) $B(3) \rightarrow B(8) + P(3^*)$ (*Table VI*). The *t*-channel contributions vanish and so the asymmetries are zero.

(*iii*) $B(3) \rightarrow B(3^*)/B(6) + P(8)$ (Table VI). Ξ_2^{**} decays are forbidden in the s channel. <u>6*</u> dominance forbids PC decays of Ξ_2^{**} in the $B(3) \rightarrow B(6)$ + P(8) mode.

(b) $B(\frac{1^+}{2}) \rightarrow D(\frac{3^+}{2}) + P(0^-)$

(i) $B(3^*) \rightarrow D(10) + P(8)$ (Table VII). Similar to the $\Delta C = \Delta S$ mode, here also, vanishing *t*-channel contributions forbid the decays in the PV mode. Sextet dominance allows the decays to occur through the *s* channel only.

(*ii*) $B(3) \rightarrow D(10) + P(3^*)$ (*Table VIII*). PV decays do not occur due to null *t*-channel contribution. Sextet dominance forbids these decays totally.²¹

(*iii*) $B(3) \rightarrow D(6) + P(8)$. Decay amplitudes for this mode can be obtained from $B(3) \rightarrow B(6) + P(8)$ (Table II) by using appropriate reduced matrix elements and $\Sigma_1 \rightarrow \Sigma_1^*$, $\Xi_1 \rightarrow \Xi_1^*$, and $\Omega_1 \rightarrow \Omega_1^*$.

(c) $D(\frac{3^{+}}{2}) \rightarrow B(\frac{1^{+}}{2}) + P(0^{-}).$ (i) $D(1) \rightarrow B(3^{*})/B(6) + P(3^{*})$ (Table IX). $\Omega_{3^{+}}^{*++}$ decays arise only through the *u* channel. 6^* dominance forbids all the decays in the $D(\overline{1}) \rightarrow B(6) + P(3^*)$ mode.

(ii) $D(1) \rightarrow B(3) + P(8)$ (Table IX). PC decays of Ω_3^{***} in this mode are suppressed as the decays in this mode are allowed only through the *t* channel.

(d) $D(\frac{3^{+}}{2}) \rightarrow D(\frac{3^{+}}{2}) + P(0^{-})$. Decay amplitudes for this channel are obtainable from those in $D(\frac{3^{+}}{2})$ $\rightarrow B(\frac{1}{2}) + P(0^{-})$ (Table IX) by using the appropriate reduced matrix elements. The results remain unchanged.

Finally, we summarize that all the PV decays of B(3) and $B(3^*)$ multiplets in the modes B(3) $-B(8) + P(3^*)$, $B(3) - D(10) + P(3^*)$, and $B(3^*)$ -D(10) + P(8) are forbidden in our considerations. We obtain null asymmetries for all the Ω_3^{***} decays since $D(1) - B(3^*) + P(3^*)$, $D(1) - B(6) + P(3^*)$, and $D(1) \rightarrow D(6) + P(3^*)$ are forbidden in the PV mode and $D(1) \rightarrow B(3) + P(8)$ and $D(1) \rightarrow D(3) + P(8)$ are forbidden in the PC mode. We have not discussed the weak decays of D(3) and D(6) charmed multiplets as these are expected to be swamped by stronger interactions. However, decay amplitudes for the D(3) multiplet can be obtained from those of B(3) baryons straightforwardly. Similarly, vector-meson channels $B(\frac{1}{2}) \rightarrow B(\frac{1}{2}) + V(1)$, $B(\frac{1}{2}^{+}) \rightarrow D(\frac{3}{2}^{+}) + V(1^{-}), \ D(\frac{3}{2}^{+}) \rightarrow D(\frac{3}{2}^{+}) + V(1^{-}), \ D(\frac{3}{2}^{+})$ $-B(\frac{1}{2}) + V(1)$ can be obtained from the corresponding pseudoscalar-meson channels by following the replacement $P \rightarrow V$ as

 $\pi \rightarrow \rho, K \rightarrow K^*, D \rightarrow D^*, F \rightarrow F^*, \eta \rightarrow V_8, \text{ and } \eta' \rightarrow V_{15}.$

IV. DISCUSSION

At present, the structure of the charm-changing weak Hamiltonian is not clear. The conventional GIM model fails to describe the weak hadronic decays successfully. Even at the SU(3) level, sextet dominance does not seem to be a good assumption. Since SU(4) is expected to be badly broken, we here employ SU(3) symmetry to study the weak nonleptonic decays of charmed baryons and isobars. In SU(3), the general Hamiltonian belonging to 6* + 15 representations does not yield useful information, due to a large number of parameters. In order to obtain constraints on the reduced matrix elements, we work in a dynamical model where we consider the weak decay $B \rightarrow B' + P$ arising as an $S + B \rightarrow B' + P$ scattering process which is assumed to be dominated by the nonexotic single-particle intermediate states. The weak nonleptonic decays of baryons including Ω^{-} have been explained successfully in such considerations.⁷ In particular, this model simultaneously explains octet dominance for $\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+} + 0^{-}$ and $\Delta I = \frac{1}{2}$ violation (25%) for $\Omega^{-} \rightarrow \Xi \pi$

LE V. $\Delta C = -$.1 ∆S=0 deca	ys of B(3*).	The contrib	outions to t	he decay a	mplitudes	are proport	ional to the t	abulated numh	oers times si	$n\theta_{c}\cos^{\theta}c.$
	t c	hannel			s channe	1			u ch	annel	
(8)	6* 6* 6*	A_{3*}^{t}	a ₈₁ 6	$a_{8_2}^{s}$	$A_{6_1}^s$	$A_{8_2}^s$ $A_{8_2}^s$	A_{10}^{s}	a3*	6* a ⁶	A_{3*}^{u}	15 A_6^u
	-1/12	$-1/\sqrt{2}$	$1/\sqrt{2}$	-1/12	-1/~2	$1/\sqrt{2}$	$4/3\sqrt{2}$	0	$-1/\sqrt{2}$	0	$-1/\sqrt{2}$
	$3/\sqrt{6}$	$3/\sqrt{6}$	$-1/\sqrt{6}$	$-3/\sqrt{6}$	$1/\sqrt{6}$	$3/\sqrt{6}$	0	$2/\sqrt{6}$	0	$2/\sqrt{6}$	$-2/\sqrt{6}$
+	-1		1		1	1	1	0	1-1-1	0	-1-
K +	$-2/\sqrt{6}$	$2/\sqrt{6}$	$-1/\sqrt{6}$	$3/\sqrt{6}$	$1/\sqrt{6}$	<u>-</u> 3/√6	0 8	-3/√6	$\frac{1/2\sqrt{6}}{1}$	$3/\sqrt{6}$	$\frac{1/2\sqrt{6}}{1}$
K ⁺	0 0	00	$\frac{1}{1/\sqrt{2}}$	$\frac{1}{1/\sqrt{2}}$	-1 -1/√∑	-1 $-1/\sqrt{2}$	$\frac{3}{-4/3\sqrt{2}}$	$\frac{1}{1/\sqrt{2}}$	$\frac{2}{1/2\sqrt{2}}$	$\frac{1}{-1/\sqrt{2}}$	$-\overline{2}$ $1/2\sqrt{2}$
9	0	0	٦	T	- Peri	-	010 I	T	ارد ا	T) c
+	$-1/\sqrt{6}$	$1/\sqrt{6}$	$-2/\sqrt{6}$	0	$\frac{2}{\sqrt{6}}$	0	$\frac{3}{2}/\sqrt{6}$	$-3/\sqrt{6}$	$-1/2\sqrt{6}$	$3/\sqrt{6}$	$-1/2\sqrt{6}$
+ ^π 0	$-1/\sqrt{2}$	$-1/\sqrt{2}$	0	<2 2	0	$-\sqrt{2}$	$-\sqrt{2}/3$	$-1/\sqrt{2}$	$1/2\sqrt{2}$	$-1/\sqrt{2}$	$3/2\sqrt{2}$
μ,	$3/\sqrt{6}$	$3/\sqrt{6}$	$-2/\sqrt{6}$	0	$2/\sqrt{6}$	0	$-2/\sqrt{6}$	$1/\sqrt{6}$	$3/2\sqrt{6}$	$1/\sqrt{6}$	$1/2\sqrt{6}$
0 _π +	$1/\sqrt{2}$	$-1/\sqrt{2}$	0	ا گ	0	$\sqrt{2}$	$\sqrt{2}/3$	$1/\sqrt{2}$	$-1/2\sqrt{2}$	$-1/\sqrt{2}$	$-1/2\sqrt{2}$
K^+	1	1	7		1	T.	01 00	0	1	0	1
- X	0	0	-1	1	-1	1	01100 	1	-10		
K 10	0	0	0	5	0	73	CN 07	0	-1	0	-1
۳0	$-1/2\sqrt{3}$	$-1/2\sqrt{3}$	-1/13	0	<u>-1/√3</u>	0	$2/\sqrt{3}$	$-\sqrt{3}/2$	-1/4/3	$\sqrt{3}/2$	-5/4 <u>√3</u>
5	- 03	40	7	0	7	0	0	5	-14	-403	1 4
+ π	0	0	Н	-1	1		$2/\sqrt{3}$	1	-102 		0
0,100	-167 1	1	1	0	1	0	0	103	1 4	-1 1 1	ω 4₁
h	$\sqrt{3}/2$	$\sqrt{3}/2$	$-1/\sqrt{3}$	0	$-1/\sqrt{3}$	0	-2/\3	$1/2\sqrt{3}$	$\sqrt{-3}/4$	$-1/2\sqrt{3}$	$-1/4\sqrt{3}$
* *	1	1	1	1	1	1	01 10 10	0	0	0	0
K^0	0	0	0	-2	0	-2	0100 1	0	-1	0	T
-K*	-1	1	1	1		Ţ	20100	0	0	0	0

The contributions to the decay amplitudes are proportional to the tabulated numbers times $\sin\theta_{c}\cos\theta_{c}$.

<u>21</u>

TABLE VI. $\Delta C = -1$, $\Delta S = 0$ decays of $B(3)$.	The	contributions to	the	decay	amplitudes	are pro	oportional t	o the ta	bu-
lated numbers times $\sin\theta_C \cos\theta_C$.				· .					

	t cha	nnel 15	e chan	nel		<i>u</i> cha	nnel	
$B(3) \rightarrow B(8) + P(3^*)$	no nonexotic state	no nonexotic state	6^* b_{3*}^s	$15 B_6^s$	b_{3*}^{u}	b_6^u	B_3^u	B_6^u
$\Xi \xrightarrow{**}{2} pD^+$ ΣF^+	0	0	0	0	1	1	1 1	1 1
$\Xi_2^+ \rightarrow pD^0$	0	0	-2	-1	-1	1	1	1
nD^+	0	0	-2	1 ′	0	2	0	2
ΛF^+	0	0	$-4/\sqrt{6}$	0	$3/\sqrt{6}$	$-1/\sqrt{6}$	$3/\sqrt{6}$	$-3/\sqrt{6}$
$\Sigma^0 F^+$	0	0	0	$\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$-3/\sqrt{2}$
$\Omega_2^+ \rightarrow \Lambda D^+$	0	0	$-2/\sqrt{6}$	3/√6	$-3/\sqrt{6}$	$-1/\sqrt{6}$	-3/\6	$-3/\sqrt{6}$
$\Sigma^+ D^0$	0	0	-2	-1	1	1	1/5	1
$\Sigma^{\circ}D^{+}$	0	0	√2	1/√2 1	$+1/\sqrt{2}$	$-1/\sqrt{2}$	1/ \2	-\12
$\Xi^{\circ}F^{+}$	0	0	-2	T	0	Z	0	-2
$B(3) \rightarrow B(3^*) + P(8)$	c_{3*}^{t}	C_{3*}^{t}	c _{3*}	C	s 6	c_3^u	no none sta	exotic te
$\Xi \stackrel{++}{2} \rightarrow \Lambda'_{1}^{+} \pi^{+}$ $\Xi'_{1}^{+} K^{+}$	-1 -1	_1 _1	0 0	0 0		$-2 \\ -2$	0	
$\Xi_{2}^{+} \rightarrow \Lambda_{1}^{\prime +} \pi^{0}$ $\Lambda_{1}^{\prime +} \eta$ $\Xi_{1}^{\prime +} K^{0}$ $\Xi_{1}^{\prime 0} K^{+}$	$1/\sqrt{2}$ -3/ $\sqrt{6}$ 0 1	$-1/\sqrt{2}$ $3/\sqrt{6}$ 0 1	$0 \\ 4/\sqrt{6} \\ -2 \\ -2 \\ -2$	√ 0 1 1	2	$\sqrt{2}$ -2/ $\sqrt{6}$ -2 0	0 0 0 0	
$\Omega_{2}^{*} \rightarrow \Lambda_{1}^{\prime} \overline{K}^{0}$ $\Xi_{1}^{\prime} \pi^{0}$ $\Xi_{1}^{\prime} \eta$ $\Xi_{1}^{\prime} \eta$ $\Xi_{1}^{\prime} \eta$	$0 \\ -1/\sqrt{2} \\ 3/\sqrt{6} \\ 1$	$0 \\ 1/\sqrt{2} \\ -3/\sqrt{6} \\ 1$	-2 $\sqrt{2}$ $-2/\sqrt{6}$ -2	-1 -1/ -3/ 1	$\sqrt{2}$ $\sqrt{6}$	-1 0 $4/\sqrt{6}$ 0	0 0 0 0	
$B(3) \rightarrow B(6) + P(8)$	$d_{3}^{t}*$	D_{3*}^t	d_{3*}^{s}		D_6^s	no non sta	exotic ite	D_3^s
	1/.5	1 / / 9	0		0)	0
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2/16	3/16	0		0	, (,)	0
$\Sigma + \pi^+$	$\frac{-3}{\sqrt{2}}$	$1/\sqrt{2}$	0		0	. ()	$\sqrt{2}$
Ξ_1^{n}	$-1/\sqrt{2}$	$-1/\sqrt{2}$	ő		Ő	())	$-\sqrt{2}$
$\Xi_2^+ \rightarrow \Sigma_1^+ \pi^-$	0	0	1		1	())	0
$\Sigma_{1}^{\dagger}\pi^{0}$	$\frac{1}{2}$	$-\frac{1}{2}$	-1		0	()	-1
$\Sigma_{1}^{\dagger}\eta$	$-\sqrt{3}/2$	$\sqrt{3}/2$	0		$1/\sqrt{3}$. ()	$1/\sqrt{3}$
$\Sigma_1^0 \pi^+$	1	1	-1		1	()	0
$\Xi_1^+K^0$	0	0	$1/\sqrt{2}$		$1/\sqrt{2}$	()	$-\sqrt{2}$
$\Xi_1^0 K^+$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$		1/√2	. (J	U
$\Omega_{2}^{+} \rightarrow \Sigma_{1}^{+}\overline{K}^{-}$ $\Sigma_{1}^{+}\overline{K}^{0}$ $\Xi_{1}^{+}\pi^{0}$ $\Xi_{1}^{+}\eta$ $\Xi_{2}^{+}\pi^{+}$	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ -\sqrt{3}/2 \\ 1/\sqrt{2} \end{array} $	$0 \\ 0 \\ -\frac{1}{2} \\ -\sqrt{3}/2 \\ 1/\sqrt{2}$	$-1 \\ -1/\sqrt{2} \\ \frac{1}{2} \\ \sqrt{3}/2 \\ 1/\sqrt{2} \end{bmatrix}$		$-1 \\ -1/\sqrt{2} \\ -\frac{1}{2} \\ 0 \\ -1/\sqrt{2}$)))	$\begin{array}{c} 0 \\ \sqrt{2} \\ 0 \\ 2/\sqrt{3} \\ 0 \end{array}$
$\Omega_1^{0}K^+$	-1	-1	1		-1	()	0

decays. On extending these considerations to the charm sector, we notice that the sextet dominance of the weak Hamiltonian does not follow as might be expected in the GIM model. The most general Hamiltonian forbids $B(3) \rightarrow B(8) + P(3^*)$, $B(3) \rightarrow D(10) + P(3^*)$, and $B(3^*) \rightarrow D(10) + P(8)$ channels in the PV mode independent of the nature of the weak current. Corresponding channel emitting vector mesons are also forbidden. For Ω_3^{***} decays we obtain null asymmetry parameters for

$B(3^*) \rightarrow D(10) + P(8)$ no nonexol $B(3^*) \rightarrow D(10) + P(8)$ state $\Delta_1^{**} \rightarrow \Delta_{+\pi}^{**} - 0$ $\Delta_1^{*} \rightarrow \Delta_{+\pi}^{*0} - 0$ $\Delta_1^{**} - \Delta_{-\pi}^{**} - 0$ $\Sigma^{*0} K^{*} - 0$ $\Sigma^{*0} K^{*0} K^{*0} - 0$ $\Sigma^{*0} K^{*0} K^{*0} K^{*0} - 0$ $\Sigma^{*0} K^{*0} K^$	t channel			s channe	le		u channel		
$B(3^*) \rightarrow D(10) + P(8)$ no nonexol $A_1^{**} \rightarrow \Delta^{*+\pi} - 0$ state $\Delta^{*}\pi_0^{*} \rightarrow 0$ 0 $\Delta^{*}\pi_0^{*} \rightarrow 0$ 0 $\Sigma^{*}\pi K^0 = 0$ 0 $\Sigma^{*}\pi K^0 = 0$ 0 $\Sigma^{*}\pi_0^{*} = 0$ 0 $\Sigma^{*}\pi^{*} = 0$ 0 $\Sigma^{*} = 0$		15	6*		15	.*9		15	
$B(3^*) \rightarrow D(10) + P(8) \qquad \text{state}$ $\Delta^* \pi^0 \rightarrow \Delta^* \pi^0 \rightarrow 0 \qquad 0 \qquad 0 \qquad 0 \qquad \Delta^* \pi^0 \rightarrow 0 \qquad $	otic nc	nonexotic				no nonexotic			
$\begin{array}{c} \Lambda_{1}^{\star} + - \Delta^{\star+\pi} - & 0 \\ \Delta^{\star} \pi^{0} & \Delta^{\star} \pi^{0} \\ \Delta^{\bullet} \pi^{+} & \Delta^{\bullet} \pi^{0} \\ \Delta^{0} \pi^{+} & 0 \\ \Sigma^{\star} K R^{0} & 0 \\ \Sigma^{\star} K R^{0} & 0 \\ \Sigma^{\star} R^{0} & 0 \\ \Sigma^{\star}$		state	8 8 8	E ^s	E_{10}^s	state	E_{3*}^{u}	E_6^u	
$ \Delta_{+\pi^{0}}^{+\pi^{0}} $ $ \Delta_{0}^{+\pi^{0}} $ $ \Delta_{0}^{+\pi^{0}} $ $ \Delta_{0}^{+\pi^{0}} $ $ \Sigma_{*}K^{0} $	-	0	-	ч	ଧାଳ	0	0	0	
$ \begin{array}{c} \Delta^{+} \eta \\ \Delta^{0} \pi^{+} \\ \Sigma^{*} K^{0} \\ \Sigma^{*} K^{0} \\ \Sigma^{*} \pi^{0} \\ \Sigma^{*} \Sigma^{0} \\ \Sigma^$		0	$2/\sqrt{6}$	$-2/\sqrt{6}$	$2/3\sqrt{6}$	0	0	$2/\sqrt{6}$	
$ \begin{array}{c} \Delta^{0}\pi^{+} \\ \Sigma^{*}K^{0} \\ \Sigma^{*}K^{0} \\ \Sigma^{*}K^{0} \\ \Sigma^{*}\pi^{+} \\ \Sigma^{*}\pi^{0} \\ \Sigma^{*}\pi^{+} \\ W^{*} \\ U^{*} \\ \Sigma^{*}\pi^{+} \\ U^{*} \\ U^{$		0	0	0	$2/3\sqrt{2}$	0	$-2\sqrt{2}/3$	- 12/3	
$ \begin{array}{c} \Sigma^{*+}K^{0} \\ \Sigma^{*0}K^{*} \\ \Sigma^{*0}K^{*} \\ \overline{\Sigma}^{*0}K^{*} \\ \overline{\Sigma}^{*+}\pi^{0} \\ \Sigma^{*+}\pi^{0} \\ \overline{\Sigma}^{*+}\pi^{0} \\ \overline{\Sigma}^{*+}\pi^{-} \\ \overline{\Sigma}^{*+}\pi^{-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ \overline{\Sigma}^{*-} \\ $		0	$1/\sqrt{3}$	$-1/\sqrt{3}$	$4/3\sqrt{3}$	0	0	$2/\sqrt{3}$	
$\begin{split} \underline{\nabla}_{*0} \mathbf{K}^{*} & \mathbf{V} \\ \mathbf{K}^{*} & \mathbf{V}^{*} \mathbf{K}^{*} \\ \mathbf{M}^{*} & \mathbf{V}^{*} \mathbf{K}^{*} \\ \mathbf{N}^{*} \mathbf{V}^{*} \mathbf{U}^{*} \\ \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{U}^{*} \\ \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{U}^{*} \\ \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \\ \mathbf{M}^{*0} \mathbf{V}^{*} \mathbf{V}^{*} \\ \mathbf{M}^{*0} \mathbf{V}^{*} \mathbf{V}^{*} \\ \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \\ \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \mathbf{V}^{*} \\ \mathbf{V}^{*} \\ \mathbf{V}^{*} $		0	$-1/\sqrt{3}$	$1/\sqrt{3}$	$2/3\sqrt{3}$	0	$2/\sqrt{3}$	$2/\sqrt{3}$	
$\vec{\mathbf{M}}^{\prime,\bullet} \leftarrow \Delta^{+\mathbf{K}} - 0$ $\Delta^{+\mathbf{K}^{0}} = 0$ $\Sigma^{*+} \pi^{0}$ $\Sigma^{*0} \pi^{+}$ $\Sigma^{*0} \pi^{+}$ $\Sigma^{*0} \pi^{+}$ Ω $\vec{\mathbf{M}}^{\prime0} \leftarrow \Delta^{+\mathbf{K}} - 0$ 0 Ω		0	$1/\sqrt{6}$	$-1/\sqrt{6}$	$4/3\sqrt{6}$	0	-4/√6	-2/16	
$\Delta \stackrel{\mathbf{K}^{0}}{\overset{\mathbf{K}^{0}}{\overset{\mathbf{K}^{*}}{\overset{\mathbf{\pi}^{*}}}{\overset{\mathbf{\pi}^{*}}}{\overset{\mathbf{\pi}^{*}}}{\overset{\mathbf{\pi}^{*}}}{\overset{\mathbf{\pi}^{*}}}{\overset{\mathbf{\pi}^{*}}}}}}}}}}}}}}}}}}}}}$		0	-1		ଧାମ	0	0	0	
$\Sigma_{**}^{**}\pi^{0} \qquad 0$ $\Sigma_{*}^{**}\pi^{0} \qquad 0$ $\Sigma_{*}^{*0}\pi^{+} \qquad 0$ $M_{*}^{0}K^{+} \qquad 0$ $M_{*}^{0}+\Delta^{*}K^{-} \qquad 0$ 0		0	$-1/\sqrt{3}$	$-1/\sqrt{3}$	4/3/3	0	$2/\sqrt{3}$	2/ 13	
$\Sigma_{*0}^{*+} \pi^{+} \qquad 0$ $\Sigma_{*0}^{*0} \pi^{+} \qquad 0$ $M_{*0} K^{+} \qquad 0$ $M_{*0} - \Delta^{*} K^{-} \qquad 0$		ں	$1/\sqrt{6}$	$-1/\sqrt{6}$	4/3/6	0	$-2/\sqrt{6}$	0	
Σ* ⁰ π ⁺ № № 0 + Δ ⁺ K - 0 10,0 + Δ ⁺ K - 0		0	$1/\sqrt{2}$	$-1/3\sqrt{2}$		0	$\sqrt{2}/3$	$2\sqrt{2}/3$	
<u>ы</u> *0 <i>K</i> + 0 <u>ы</u> *0+ ∆* <i>K</i> - 0		0	$1/\sqrt{6}$	$-1/\sqrt{6}$	$4/3\sqrt{6}$	0	/16	-2/16	
$\Xi'^0 \to \Delta^+ K^-$		0	$1/\sqrt{3}$	$-1/\sqrt{3}$	$4/3\sqrt{3}$	0	0	2/√3	
		0	$1/\sqrt{3}$	$1/\sqrt{3}$	2/3/3	0	$2/\sqrt{3}$	0	
$\Delta^0 \overline{R}^0$ 0		0,	$1/\sqrt{3}$	$1/\sqrt{3}$	-4/3/5	0	0	-2/ 13	
$\Sigma^{**\pi^{-}}$ 0		0	$1/\sqrt{3}$	$1/\sqrt{3}$	-4/3/3	0	$2/\sqrt{3}$	0	
$\Sigma^{*0}\pi_{0}^{0}$ 0		0	- 13/2	$-\sqrt{3/2}$	0	0	-1/ \3	$-1/\sqrt{3}$	
$\Sigma^{*0}\eta$ 0		0	-⊧∾ I	-6	0	0	cu 00	-Iω	
$\Sigma^{*-\pi}$		0	-2/3	$-2/\sqrt{3}$	-4/3/3	0	0	0	
回来 ⁰ K ⁰ 0		0	$1/\sqrt{3}$	$1/\sqrt{3}$	-4/3/3	0	0	-2/3	
0 + X- *П		0	-2/ \3	$-2/\sqrt{3}$	$-4/3\sqrt{3}$	0	0 Q	0	

CHARM-CHANGING DECAYS OF 1/2⁺ AND 3/2⁺ BARYONS IN...

	to	channel	s, cha	nnel		u channel	
	6* not	15 no nonexotic	6* not	15	6* not	1	5
$B(3) \rightarrow D(10) + P(3^*)$	allowed	state	allowed	F_6^{o}	allowed	F_{3*}^{u}	F_6^{μ}
$\Xi \stackrel{\text{tr}}{\to} \Delta \stackrel{\text{tr}}{\to} D^0$	0	0	0	0	0	0	0
Δ+D+	0	0	0	0	0	$2/\sqrt{3}$	$-2/\sqrt{3}$
$\Sigma^{*+}F^+$	0	0	0	0	0	$-2/\sqrt{3}$	$-2/\sqrt{3}$
$\Xi_{2}^{+} \rightarrow \Delta^{+}D^{0}$	0	0	0	$2/\sqrt{3}$	0	$-2/\sqrt{3}$	$2/\sqrt{3}$
$\Delta^0 D^+$	0	0	0	$2/\sqrt{3}$	0	0	$4/\sqrt{3}$
$\Sigma^{*0}F^+$	0	0	0	$2/\sqrt{6}$	0	$-4/\sqrt{6}$	0
$\Omega^* \rightarrow \Sigma^{**} D^0$	0	0	0	$-2/\sqrt{3}$	0	$2/\sqrt{3}$	$-2/\sqrt{3}$
$\Sigma^{*0}D^{+}$	0	0	0	$-2/\sqrt{6}$	0	$4/\sqrt{6}$	0
Ξ* ⁰ F+	0	0	0	$-2/\sqrt{3}$	0	0	$-4/\sqrt{3}$

all the decays emitting pseudoscalar mesons or vector mesons.

In an earlier work,²³ two of us studied the structure of the SU(4) weak Hamiltonian. Using similar dynamical assumptions, GIM contributions are shown to vanish²⁴ for PV weak decays of baryons. These decays could occur through 15, 45, 45* representations.²⁵ At the SU(3) level, 45*, 45reduce to 6* and 15 representations, respectively, but 15 gives rise to the H_W^3 piece of the weak Hamiltonian. In the presence of these admixtures, decay amplitudes acquire additional terms. We notice that the Cabibbo-enhanced mode ($\Delta C = \Delta S$) does not get disturbed except that in addition to $\cos^2\theta_C$, other factors will be present. Therefore, decay amplitude relations remain unaffected. For the $\Delta C = -1$, $\Delta S = 0$ mode, the PV decays forbidden in the GIM model remain forbidden. (This is a consequence of the fact that these decays require exotic mesons to be exchanged in the *t* channel.) Parity-conserving decays of $\Omega_3^{*++} \rightarrow B(3)$ + P(8) and $\Omega_3^{*++} \rightarrow D(3) + P(8)$, forbidden in the GIM model, are allowed to appear in the s channel through the H_W^3 part of the weak Hamiltonian.

TABLE IX. $\Delta C = -1$, $\Delta S = 0$ decays of $\Omega^{*}_{3}^{**}$. The contributions to the decay amplitudes are proportional to the tabulated numbers times $\sin\theta_{C}\cos\theta_{C}$.

		t ch	annel	s cha	nnel	u ch	annel
		6*	15	6*	15	6*	15
$D(1) \rightarrow B(3^*) + P(3^*)$	no ()	nonexoti state	e not allowed	no nonexotic state	e not allowed	h_3^u	not allowed
$\Omega^{*}_{3}^{*+} \rightarrow \Lambda'_{1}^{+}D^{+}$		0	0	0	0	-2	0
Ξ'+ F +		0	0	0	0	-2	0
$D(1) \rightarrow B(6) + P(3)$	nc allo	ot no wed	nonexotic state	not no allowed	nonexotic state	not allowed	I ^{u} ₃
$\Omega *^{*+}_{3} \rightarrow \Sigma *^{+}_{1} D^{0}$	0		0	0	0	0	0
$\Sigma_{1}^{+}D^{+}$	0		0	0	0	. 0	$\sqrt{2}$
$\Xi_1^+F^+$	0		0	0	0	0	$-\sqrt{2}$
$D(1) \rightarrow B(3) + P(8)$	$j_3^t *$	J_{3*}^{t} .	no nonexotic state	no nonexotic state	no nonexoti state	c nonc s	onexotic tate
$\Omega *^{*+}_{3} \rightarrow \Xi {}^{*+}_{2} \pi^{0}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	0	0	0		0
$\Xi \stackrel{t}{2} \eta$	$3/\sqrt{6}$	$3/\sqrt{6}$	0	0	0		0
Ξ 2 π +	-1	1	0	0	0		0
$\Omega \frac{1}{2}K^+$	1	-1	0	0	0		0

ACKNOWLEDGMENT

R.C.V. and M.P.K. acknowledge financial support from the Council of Scientific and Industrial Research, New Delhi, and University Grants Commission, New Delhi, respectively.

APPENDIX

Reduced matrix elements for different modes are defined as

(a) $B(\frac{1}{2}^+) \rightarrow B(\frac{1}{2}^+) + P(0^-)$ (i) $B(3^*) \rightarrow B(8) + P(8)$ $a_m^s = \langle 8 | 8 | m \rangle \langle m | 6^* | 3^* \rangle, \quad m = 8_1, 8_2, 10^*$ $A_m^s = \langle 8 | 8 | m \rangle \langle m | 15 | 3^* \rangle, \quad m = 8_1, 8_2, 10, 27$ $a_m^t = \langle 8 | 6 | m \rangle \langle m | 8 | 3^* \rangle, \quad m = 3^*, 6, 15^*$ $A_{m}^{t} = \langle 8 | 15^{*} | m \rangle \langle m | 8 | 3^{*} \rangle, m = 3^{*}, 6, 15^{*}, 15^{$ $a_m^u = \langle 8 | 6 | m \rangle \langle m | 8 | 3^* \rangle, \quad m = 3^*, 6, 15^*$ $A_{m}^{u} = \langle 8 | 15^{*} | m \rangle \langle m | 8 | 3^{*} \rangle, \quad m = 3^{*}, 6, 15^{*}, 15^{*}, 15^{*}, .$ (*ii*) $B(3) \rightarrow B(8) + P(3^*)$ $b_m^s = \langle 8 | 3^* | m \rangle \langle m | 6^* | 3 \rangle, \quad m = 3^*, 15^*$ $B_m^s = \langle 8 | 3^* | m \rangle \langle m | 15 | 3 \rangle, \quad m = 6, 15^*$ $b_m^t = \langle 3^* | 6 | m \rangle \langle m | 8 | 3 \rangle, \quad m = 3, 15$ $B_m^t = \langle 3^* | 15^* | m \rangle \langle m | 8 | 3 \rangle, \quad m = 6^*, 15$ $b_m^u = \langle 8 | 6 | m \rangle \langle m | 3 | 3 \rangle, \quad m = 3^*, 6$ $B_m^u = \langle 8 | 15^* | m \rangle \langle m | 3 | 3 \rangle, \quad m = 3^*, 6.$ (iii) $B(3) \rightarrow B(3^*) + P(8)$ $c_{m}^{s} = \langle 3^{*} | 8 | m \rangle \langle m | 6^{*} | 3 \rangle, \quad m = 3^{*}, 15^{*}$ $C_m^s = \langle 3^* | 8 | m \rangle \langle m | 15 | 3 \rangle, \quad m = 6, 15^*$ $c_m^t = \langle 8 | 6 | m \rangle \langle m | 3 | 3 \rangle, \quad m = 3^*, 6$ $C_m^t = \langle 8 | 15^* | m \rangle \langle m | 3 | 3 \rangle, \quad m = 3^*, 6$ $c_m^u = \langle 3^* | 6 | m \rangle \langle m | 8 | 3 \rangle, \quad m = 3, 15$ $C_m^u = \langle 3^* | 15^* | m \rangle \langle m | 8 | 3 \rangle, \quad m = 6^*, 15.$ (*iv*) $B(3) \rightarrow B(6) + P(8)$ $d_m^s = \langle 6 | 8 | m \rangle \langle m | 6^* | 3 \rangle, \quad m = 3^*, 15^*$ $D_m^s = \langle 6 | 8 | m \rangle \langle m | 15 | 3 \rangle, m = 6, 15^*, 24$ $d_m^t = \langle 8 | 6 | m \rangle \langle m | 6^* | 3 \rangle, \quad m = 3^*, 15^*$ $D_m^t = \langle 8 | 15^* | m \rangle \langle m | 6^* | 3 \rangle, \quad m = 3^*, 15^*, 15^*_2$ $d_m^u = \langle 6 | 6 | m \rangle \langle m | 8 | 3 \rangle, m = 6^*.15$ $D_{-}^{u} = \langle 6 | 15^{*} | m \rangle \langle m | 8 | 3 \rangle, \quad m = 3, 6^{*}, 15.$ (b) $B(\frac{1}{2}) \rightarrow D(\frac{3}{2}) + P(0)$ (i) $B(3^*) \rightarrow D(10) + P(8)$ $e_m^s = \langle 10 | 8 | m \rangle \langle m | 6^* | 3^* \rangle, m = 8$

$$\begin{split} E_{m}^{s} &= \langle 10 \, | \, 8 \, | m \rangle \langle m \, | \, 15 \, | \, 3^{*} \rangle, \quad m = 8, 10, 27 \\ e_{m}^{t} &= \langle 8 \, | \, 6 \, | m \rangle \langle m \, | \, 10^{*} \, | \, 3^{*} \rangle, \quad m = 15^{*} \\ E_{m}^{t} &= \langle 8 \, | \, 15^{*} \, | m \rangle \langle m \, | \, 10^{*} \, | \, 3^{*} \rangle, \quad m = 15^{*} \\ e_{m}^{u} &= \langle 10 \, | \, 6 \, | m \rangle \langle m \, | \, 8 \, | \, 3^{*} \rangle, \quad m = 15^{*} \\ E_{m}^{u} &= \langle 10 \, | \, 15^{*} \, | m \rangle \langle m \, | \, 8 \, | \, 3^{*} \rangle, \quad m = 3^{*}, 6, 15^{*}. \end{split}$$
(*ii*) $B(3) \rightarrow D(10) + P(3^{*})$ $f_{m}^{s} &= \langle 10 \, | \, 3^{*} \, | m \rangle \langle m \, | \, 6^{*} \, | \, 3 \rangle, \quad \text{no intermediate state} \\ F_{m}^{s} &= \langle 10 \, | \, 3^{*} \, | m \rangle \langle m \, | \, 15 \, | \, 3 \rangle, \quad m = 6, 24 \end{split}$

 $f_m^t = \langle 3^* | 6 | m \rangle \langle m | 10^* | 3 \rangle$, no intermediate state

 $F_m^t = \langle 3^* | 15^* | m \rangle \langle m | 10^* | 3 \rangle, \quad m = 6^*, 24^*$

 $f_m^u = \langle 10 | 6 | m \rangle \langle m | 3 | 3 \rangle$, no intermediate state

 $F_m^u = \langle 10 | 15^* | m \rangle \langle m | 3 | 3 \rangle, \quad m = 3^*, 6.$

(*iii*) $B(3) \rightarrow D(6) + P(8)$. Reduced amplitudes for this channel can be obtained from the corresponding channel $B(3) \rightarrow B(6) + P(8)$ by replacing d by g and D by G.

(c) $D(\frac{3}{2}^+) \rightarrow B(\frac{1}{2}^+) + P(0^-)$ (i) $D(1) \rightarrow B(3^*) + P(3^*)$

 $h_m^s = \langle 3^* | 3^* | m \rangle \langle m | 6^* | 1 \rangle, \quad m = 6^*$

 $H_m^s = \langle 3^* | 3^* | m \rangle \langle m | 15 | 1 \rangle$, no intermediate state

 $h_m^t = \langle 3^* | 6 | m \rangle \langle m | 3 | 1 \rangle, \quad m = 3$

 $H_m^t = \langle 3^* | 15^* | m \rangle \langle m | 3 | 1 \rangle, \text{ no intermediate state}$ $h_m^t = \langle 3^* | 6 | m \rangle \langle m | 3 | 1 \rangle, m = 3$

 $H_m^u = \langle 3^* | 15^* | m \rangle \langle m | 3 | 1 \rangle$, no intermediate state. (*ii*) $D(1)-B(6) + P(3^*)$

 $i_m^s = \langle 6 | 3^* | m \rangle \langle m | 6^* | 1 \rangle$, no intermediate state

 $I_m^s = \langle 6 | 3^* | m \rangle \langle m | 15 | 1 \rangle, \quad m = 15$

 $i_{m}^{t} = \langle 3^{*} | 6 | m \rangle \langle m | 6^{*} | 1 \rangle$, no intermediate state

 $I_m^t = \langle 3^* | 15^* | m \rangle \langle m | 6^* | 1 \rangle, \quad m = 6^*$

 $i_m^u = \langle 6 | 6 | m \rangle \langle m | 3 | 1 \rangle$, no intermediate state

 $I_m^u = \langle 6 | 15^* | m \rangle \langle m | 3 | 1 \rangle, \quad m = 3.$

(*iii*) $D(1) \rightarrow B(3) + P(8)$

 $j_m^s = \langle 3 | 8 | m \rangle \langle m | 6^* | 1 \rangle, \quad m = 6^*$

 $J_m^s = \langle 3 | 8 | m \rangle \langle m | 15 | 1 \rangle, \quad m = 15$

 $j_m^t = \langle 8 | 6 | m \rangle \langle m | 3^* | 1 \rangle, \quad m = 3^*$

 $J_m^t = \langle 8 | 15^* | m \rangle \langle m | 3^* | 1 \rangle, \quad m = 3^*$

 $j_m^u = \langle 3 | 6 | m \rangle \langle m | 8 | 1 \rangle, \quad m = 8$

 $J_m^u = \langle 3 | 15^* | m \rangle \langle m | 8 | 1 \rangle, \quad m = 8.$

(d) $D(\frac{3}{2}^+) \rightarrow D(\frac{3}{2}^+) + P(0^-)$. Reduced amplitudes for this mode can be obtained from the corresponding mode $D(\frac{3}{2}^+) \rightarrow B(\frac{1}{2}^+) + P(0^-)$ by the following replacement:

(i) for $D(1) \rightarrow D(6) + P(3^*)$, $i \rightarrow k$, $I \rightarrow K$ and (ii) for $D(1) \rightarrow D(3) + P(8)$, $j \rightarrow 1$, $J \rightarrow L$.

A superscript denotes the channel.

Nonexoticity of the intermediate states gives the following constraints on the reduced matrix elements.

$$\begin{aligned} (a) \frac{t^{2}}{2^{*}} & -\frac{t^{*}}{2^{*}} + 0^{-} \\ (i) \ B(3^{*}) & -B(8) + P(8) \\ a_{10}^{s} &= a_{6}^{t} = a_{15^{*}}^{t} = a_{15^{*}}^{u} = 0, \\ A_{27}^{s} &= A_{6}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{u} = A_{15^{*}}^{u} = a_{15^{*}}^{u} = 0. \\ A_{27}^{s} &= A_{6}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{u} = A_{15^{*}}^{u} = 0. \\ A_{27}^{s} &= A_{6}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{t} = A_{15^{*}}^{u} = A_{15^{*}}^{u} = 0. \\ A_{27}^{s} &= A_{6}^{t} = A_{15^{*}}^{t} = 0, \\ B_{15^{*}}^{s} &= b_{3}^{t} = b_{15}^{t} = 0, \\ B_{15^{*}}^{s} &= b_{3}^{t} = b_{15}^{t} = 0, \\ B_{15^{*}}^{s} &= B_{6}^{t} = B_{15}^{t} = 0. \\ (iii) \ B(3) - B(3^{*}) + P(8) \\ c_{15^{*}}^{s} &= c_{6}^{t} = c_{15}^{u} = 0, \\ C_{15^{*}}^{s} &= c_{6}^{t} = c_{15}^{u} = 0, \\ C_{15^{*}}^{s} &= d_{15^{*}}^{t} = d_{6^{*}}^{u} = d_{15}^{u} = 0, \\ B_{15^{*}}^{s} &= D_{24}^{s} = D_{15^{*}}^{t} = D_{15^{*}}^{t} = D_{6^{*}}^{u} = D_{15}^{u} = 0. \\ (b) \ \frac{t^{2}}{2} - \frac{y}{2^{*}}^{t} + 0^{*} \end{aligned}$$

(i) $B(3^*) \rightarrow D(10) + P(8)$ $e_{15*}^t = e_{15}^u = 0, \quad E_{27}^s = E_{15*}^t = E_{15*}^t = E_{15*}^t = E_{15*}^t$ $=E_{15}^{u} * = 0$. (*ii*) $B(3) - D(10) + P(3^*)$ $F_{24}^s = F_6^t * = F_{24}^t * = 0$. (*iii*) $B(3) \rightarrow D(6) + P(8)$ $g_{15*}^s = g_{15*}^t = g_6^u = g_{15}^u = 0$, $G_{15*}^{s} = G_{24}^{s} = G_{15_{1}}^{t} = G_{15_{2}}^{t} = G_{6*}^{u} = G_{15}^{u} = 0$. $(c) \frac{3}{5}^+ \rightarrow \frac{1}{5}^+ + 0^-$ (i) $D(1) \rightarrow B(3^*) + P(3^*)$ $h_{6}^{s} * = h_{3}^{t} = 0$. (*ii*) $D(1) \rightarrow B(6) + P(3^*)$ $I_{15}^{s} = I_{6}^{t} = 0$. (*iii*) $D(1) \rightarrow B(3) + P(8)$ $j_6^s = j_8^u = 0, \quad J_{15}^s = J_8^u = 0.$ $(d)\frac{3}{2}+\frac{3}{2}++0^{-}$ (i) $D(1) \rightarrow D(6) + P(3^*)$ $K_{15}^{s} = K_{6*}^{t} = 0$. (*ii*) $D(1) \rightarrow D(3) + P(8)$ $l_6^s * = l_8^u = 0$, $L_{15}^s = L_8^u = 0$.

*Permanent address: D. A. V. College for Women, Karnal-132001 India.

- ¹Y. Iwasaki, Phys. Rev. Lett. <u>34</u>, 1407 (1975); Y. Kohara, Prog. Theor. Phys. <u>55</u>, 616 (1976); M. Matsuda, *ibid.* <u>55</u>, 1923 (1976); R. C. Verma and M. P. Khanna, *ibid.* <u>57</u>, 538 (1977); R. C. Verma and M. P. Khanna, Pramana <u>8</u>, 56 (1977).
- ²V. Gupta, Phys. Rev. D <u>15</u>, 129 (1977); V. Gupta, Pramana 7, 277 (1977).
- ³R. E. Marshak, Riazuddin, and C. P. Ryan, *Theory of Weak Interaction in Particle Physics* (Wiley, New York, 1969); S. Wojciki, Report No. SLAC-Pub 2232, 1978 (unpublished).
- ⁴M. Shin-Mura, Nagoyo University Report No. DPNU-32, 1976 (unpublished); R. C. Verma and M. P. Khanna, Pramana <u>9</u>, 643 (1977); S. Kanwar, R. C. Verma, and M. P. Khanna, J. Phys. G <u>5</u>, 219 (1979); Y. Igarashi and M. Shin-Mura, Nucl. Phys. B129, 483 (1977).
- ⁵G. Atarelli, N. Cabibbo, and L. Maiani, Nucl. Phys. B88, 287 (1975).
- ⁶A. Zee, in *Particles and Fields-1977*, Proceedings of the Meeting of the APS Division of Particles and Fields, edited by P. A. Schreiner, G. H. Thomas, and A. B. Wicklund (AIP, New York, 1978).
- ⁷R. C. Verma and M. P. Khanna, J. Phys. G <u>5</u>, 1033 (1979); R. C. Verma, M. P. Khanna, and M. Gupta,

Phys. Rev. D 20, 810 (1979).

- ⁸M. O. Taha, Phys. Rev. <u>169</u>, 1182 (1968); J. K. Bajaj, V. Kaushal, and M. P. Khanna, Phys. Rev. D <u>10</u>, 3076 (1974).
- ⁹J. L. Rosner, Phys. Rev. Lett. <u>21</u>, 950 (1968); D. P. Roy and M. Suzuki, Phys. Lett. <u>28B</u>, 558 (1969); H. J. Lipkin, Nucl. Phys. <u>B9</u>, 349 (1969); J. Mandula *et al.*, Phys. Rev. Lett. <u>22</u>, 1147 (1969); M. Suzuki, *ibid.* <u>22</u>, 1217 (1969); 22, 1413(E) (1969).
- ¹⁰It has been noticed that quantum-chromodynamics (QCD) estimates enhance the $\Delta I = \frac{1}{2}$ piece compared with the $\Delta I = \frac{3}{2}$ piece by a factor of 5. Then, starting with the QCD weak Hamiltonian and applying dynamical considerations (Ref. 7), one can naturally explain the $\Delta I = \frac{1}{2}$ rule in $\frac{1}{2}^{+}$ hyperon decay and $20-25\% \Delta I = \frac{3}{2}$ contribution in Ω^{-} decay [J. Gaillard, results of CERN experiment presented at the Sixth Trieste Conference on Elementary Particle Physics, 1978 (unpublished)].
- ¹¹S. Nussinov and J. L. Rosner, Phys. Rev. Lett. <u>23</u>, 1266 (1969); K. Kawarabayashi and S. Kitakado, *ibid* 23, 440 (1969).
- ¹²V. S. Mathur and L. K. Pandit, in Advances in Particle Physics, edited by R. L. Cool and R. E. Marshak (Interscience, New York, 1968).
- ¹³Y. Igarashi *et al.*, Prog. Theor. Phys. Suppl. <u>63</u>, 177 (1978).

- ¹⁴S. P. Rosen, talk presented at the Seoul Symposium on Elementary Particle Physics, Seoul National University, Korea, 1978 (unpublished).
- ¹⁵J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. <u>B100</u>, 313 (1975).
- ¹⁶S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D <u>2</u>, 1285 (1972).
- ¹⁷Even in the presence of SU(4)-symmetry breaking, 15 cancellation seems to persist for charm-changing (c-u) weak Hamiltonians, since propagators for quarks d and s in the expression $\sin\theta_C \cos\theta_C (\bar{u}d\bar{d}c-\bar{u}s\bar{s}c)$ will remain degenerate.
- ¹⁸A. W. Hendry and D. B. Litchenberg, Phys. Rev. D <u>12</u>, 2756 (1975); R. C. Verma and M. P. Khanna, *ibid*. <u>18</u>, 828 (1978); <u>18</u>, 956 (1978).
- ¹⁹M. Kobayashi, M. Nakagawa, and H. Nitto, Prog. Theor. Phys. 47, 982 (1972).
- ²⁰In SU(4), this result is found to be valid for charmed baryons also. However, in the present framework, we

have to assume it.

- ²¹This result has earlier been obtained by R. C. Verma and M. P. Khanna, Pramana 9, 643 (1977).
- ²²R. C. Verma and M. P. Khanna, Pramana <u>11</u>, 333 (1978).
- ²³R. C. Verma and M. P. Khanna, Phys. Rev. D <u>21</u>, 812 (1980).
- ²⁴However, in the presence of the SU(4)-breaking interaction, which is expected to be quite large, a significant GIM contribution may arise.
- ²⁵These representations may appear in an SU(4) weak Hamiltonian through several ways such as SU(4) breaking, the presence of unconventional currents, i.e., second-class currents or right-handed currents. Though these currents have not been observed experimentally, their inclusion seems to help in the understanding of certain features of the weak nonleptonic processes such as the octet dominance, nonzero asymmetry parameter $\alpha(\Sigma^* \rightarrow p\gamma)$, and $K_S \rightarrow 2\pi$, and *D*-meson decays.