
PHYSICAL REVIEW D VOLUME 21, NUMBER 1 JAN UAR Y 1980

Analysis of b,S=1 nonleptonic weak decays and the M =1/2 rule
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Current-algebra and quark-model methods are used to investigate hyperon and kaon transition amplitudes
for various contributions to the weak nonleptonic Hamiltonian of the Weinberg-Salam model. Substantial
enhancements are found for matrix elements of certain operators which are induced by quantum-
chromodynamic radiative corrections and contain right-handed currents. These operators improve the
agreement with experiment in most cases, although problems remain in P-wave hyperon amplitudes. In this
approach, the AI = 1/2 rule is understandable in both kaons and baryons under plausible assumptions.

I. INTRODUCTION

Several years ago, the advent of non-Abelian
gauge theories prompted considerable theoretical
activity on the subject of the 4S= 1 nonleptonic
interactions. 'These calculations, as well as
others in weak-interaction physics, were typical-
ly based upon four concepts which can be consider-
ed as likely ingredients in any ultimately success-
ful theory. They are the following:

(i) Current algebra and PCAC (partial conserva-
tion of axial-vector current), which relate a
process involving a pion to one with the pion re-
moved. The chiral structure of the nonleptonic
weak Hamiltonian is the dominant consideration
here. Successful applications of this technique
place meaningful constraints on models of the
weak Hamiltonian. '

(ii) Quantum-chromodynamic (QCD) radiative
corrections [see Figs. 1(a) and 1(b)] to the inter-
actions of the known left-handed weak currents.
Renormalization-group summation of these cor-
rections reveal enhancement of the dd=-,', SU(3)
octet operators and suppression of the bI= 2

SU(3) 27-piet operator. '
(i:ii) The existence of hadrons as singlets under

the dynamical gauge group of color SU(3). A
direct consequence of this is the Pati-Woo theor-
em which states'that baryon-to-baryon matrix
elements of the M=2 part of a weak Hamiltonian
constructed from left-handed currents must
vanish. '

(iv) Utilization of quark-model wave functions
to describe hadronic structure. Presumably, the
ability to produce realistic wave functions will
improve with time. An especially useful method

which yields reasonable results for a variety of
hadronic properties is the MIT bag model. ' In
addition, quark diagrams can provide useful in-
sights as to which dynamical mechanisms can
contribute to a given transition. '

At first it appeared that taken together, the
above concepts might lead to a successful ex=
planation of the M=-,' rule. Unfortunately, sub-
sequent calculations indicated such optimism to
be premature. ' However, the work' of Shifman,
Vainshtein, and Zakharov (SVZ), which empha. —

sizes the role of mass scales defined by the set
of light and heavy quarks, has renewed hopes
among workers in the field. '

Perhaps the main implication of the SVZ analysis
is that the effective AS= 1 nonleptonic operators
contain right-handed currents as well as their
traditional left-handed counterparts. Two kinds
of current-current operators thus appear, "left-
left" and "left-right. " It is contended in Ref. 7
that the latter have substantially enhanced
hadronic matrix elements relative to the former,
and as a result these new "left-right" operators
play a dominant role in the hyperon and kaon de-
cays. In light of its importance, the claim deser-
ves careful study.

Our primary task in this paper is to present a
comprehensive evaluation of nonleptonic operator
matrix elements. We shall generally employ the
soft-pion method in order to reduce the matrix
elements to those between single-particle states.
These are then simple enough to permit analysis
of many properties and also allow for stra'. ght-
forward numerical evaluation where necessary in
terms of the relatively trustworthy bag model.

Employment of the operator-product expansion
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(a)

(b)

(c)
FIG. 1. &$=1 transitions. The solid, vravy, and

dashed lines represent quarks, 5' bosons, and gluons,
respectively.
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82 XA+ XB+2' + 2XD

83 XA+ XB+2Xc 3XD ~

XA+ XB ~ XQ

with

XA.= dI LQQTLp s y

B = u~~Lud ~L„S,

XC = d FLdd FLv S,

XD = S~LSdI L~S P

and

(2)

and the renormalization-group techniques allows
the effective weak Hamiltonian to be expressed
in terms of local operators involving quark fields
(and in some models, gluons as well). In par-
ticular, the SVZ AS= 1 nonl:eptonic Hamiltonian
can be written

GpK = coseosine~ gc,8,+H. t:. ,

where [all the operators appearing in Eqs. (2)-(4)
are understood to be normal-ordered and color
indices are suppressed]'

In Eqs. (3) and (4) we have r~=-y" (I+y, ), rs
—= y" (1 —y, ), and Tr(t"ts) =25"s. The operator g
in Eq. (4) is summed over the three light-quark
flavors u, d, s. 8» 8» 8„and 8, all transform
like SU(3) octets and carry isospin of one half.
6, and 6, are 27-piete under SU(3) and I= —,', ~,
respectively.

The coefficients c,. are calculated by studying
the QCD renormalization behavior, as will be
discussed in more detail in Sec. II. A representa-
tive set of coefficients suggested by SVZ is cy
= 2.5, c, = 0.08, c, = 0.08, c~ = 0.4, c, = (-0.06)-
(-0.14}, and c,= (—0.01)- (-0.05}. Of these, c,-c,
appear reasonably secure. However, doubts can
be raised about the values of c, and c,. For ex-
ample, they were calculated using free-field
propagators for the quarks and gluons in a diagram
where the whole effect arises at momentum below
the charm mass. Bound-state effects could easily
alter the numbers. For example, a calculation' with-
in the MIT bag model of the diagram which generates
8, yields larger effects than would be predicted
with c, and c, of SVZ. However, the form of 8,
and 8, is more general. Wise and Witten' have
recently shown that the only effects which are gen-
erated in perturbation theory have the form of the
set of local operators considered by SVZ. 'Thus
is what follows we shall discuss matrix elements
of the operators 8„.. .8,, and will not feel con-
strained to use the SVZ evaluation of c, and c,.
One of the consequences of our calculations will
be to provide estimates for the kind of c, which
are needed phenomenologica. lly.

In Sec. II we present a qualitative discussion of
the "box" and "penguin" QCD radiative corrections
which will hopefully clarify the issues being rais-
ed. Section III includes analyses of 8-wave hyper-
on decay while Sec. IV treats the P waves. This
is followed in Sec. V by a treatment of kaon non-
leptonic decays. Our results are summarized in
Sec. VI and some details regarding wave-function
overlap integrals are presented in the Appendix.

II. BACKGROUND

Before presenting details of our calculation,
we wish to review aspects of the application of
renormalization-group methods to the calculation
of effective nonleptonic Hamiltonians as well as
outline the specific proposal of SVZ. The intent
here is in part pedagogical. It has become clear
to us in discussions with nonexperts, who are
nonetheless interested in keeping up with recent
progress in the field, that the physical nature of
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renormalization-group- induced effects is still
arcane to many.

Although the operator-product expansion general-
ly provides the most convenient framework for
discussing QCD corrections to nonleptonic opera-
tors, for simplicity let us start by considering
the W-boson —mediated graph of Fig. 1(a). One

type of gluon radiative correction to this process
is the box diagram of Fig. 1(b) (there are three
1'elated graphs as well). To see liow slglllf leant
such corrections are as a function of some scale
mass p, , we must evaluate the associated dynam-
ical integral (quark masses are assumed negli-
gible):

d'k I
(211)' k'(k' —11 ')

K
ln

8v211 2 (112~ 11 2)1/2

The mass M~ provides a cutoff; that is, for p, &M~
we find I(lj) = Owhere—as for p, &M ~, I(p, ) is pro-
portional to the logarithmic factor ln(M~/p). For
energies which lie above quark masses, this
should be the only class of radiative correction
which contributes significantly. In other words,
if we associate Fig. 1(a) with the nonleptonic op-
erator which in -the operator-product expansion
reduces in lowest order to X„[seeEq. (3)], then
associated with Fig. 1(b) is a radiative correction
to X„whj.ch begins to contribute for p=—M~ and
then grows for decreasing 11 as ln(M~/p. ).

Another noteworthy feature of these corrections
is that a Nese nonleptonic operator is thereby gen-
erated. In particular, the box process of Fig.
1(b) (and related processes) induces the modifica-
tion

the diagonalization procedure implied by Eq. (7).
The M= —,

' operator c 6 is thus enhanced whereas
the operator c,e„which causes both M= 2 and
AE= 2 trans'itions, is suppressed. Observe how

sensitive the quantities c, are to the value of the
coupling g /1611'. For example, if for definiteness
we choose M~/p, =-80, and employ the not totally
unreasonable value g'/411= 0.72, then c,=0 and
we obtain the long sought-after suppression of
M = —, nonleptonic transitions. Of course, this line
of reasoning is specious. If the second-order cor-
rection is large enough to totally cancel the zero-
th-order term, then what must be the effect of
even higher orders'?

The renormalization-group (RG) analysis pro-
vides an answer to this question by taking into
account the sum of all leading-logarithm terms
[g' ln(M~/p, )]". The dependence of the coefficient
functions is modified from that of Eq. (8) to

c, = [Z(g, M~, 11,)]"~

with

(9)

K(g, M, 11)= 1+,b ln(M'/ p')

second order RG

for arbitrary mass M & p, . The exponent in Eq. (9)
is given by y, = d, /b where b = (33 —2n)/3 for three
quark colors, n being the number of quark flavors.
Before discussing the physical significance of
K(g, p, ), it is worthwhile to estimate the magni-
tudes of c, as computed first to second order as
in Eq. (8) and then to all leading-logarithm orders
as in Eq. (9). A reasonable set of parameters to
employ is n = 3 (i.e., quark flavors u, d, s), M

11 /p
=80, and g'/411=—1 at 1 GeV. We then find

(6)
C

C+

3.8
-0.39

2.42

O.64

where g is the quark-gt. uon coupling constant. and
we assume the number of quark colors to be
three throughout this paper. Thus the effect of
renormalization on K~ must be considered as
well. As explained in Ref. 2, it turns out that the
linear combinations

remain form-invariant under renormalization of
the type under discussion. To second order ing,
the coefficient functions which accompany the op-
erators 6, are given by

C~=1+d~ 21n(M~ /p )~ (8)

where d, = —2 and d =4. The quantities d„essen-
tially the anomalous dimensions of 8„arise in

Thus numerically the effect of the renormalization
group is to moderate the excesses of the second-
order contributions (which for our seemingly in-
nocent choice of parameters has driven c down
through zero and into negative values).

At present, it is hard to assign precise values
to coefficient functions like c,, depending as they
do on both the number of quark flavors n and the
coupling constant g'(p, )/411 at mass scales ap-
propriate to decays of light hadrons. However,
all estimates that we are aware of for these quan-
tities give substantial enhancements (c =—2 to 4)
and suppressions (c,= 0.7 to 0.5) relative to the
free-field limit c =c,=1. This is in marked con-
trast to the familiar correction in electrodynamics
wherein the magnetic moment of a point charge
is shifted upward by about only 0.1%. What. makes
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the QCD radiative corrections to the nonleptonic
operators so larger Evidently, there are two
dominant considerations: (i) ln(M~/g) represents
the fact that two vastly different mass scales are
present, and (ii) g'/4v(p, ) inevitably gets large
at the mass scales considered here if prevailing
ideas regarding quark confinement are correct;
thus, instead of e'/4m=— 1/137, we encounter a
rather larger value for g'/4v. Another question
related to the iarge size of the @CD radiative cor-
rections is whether we can really neglect terms
which lie outside the'renormalization-group sum-
mation. Our tendency is to answer this in the af-
firmative because at least on an individual basis,
terms such as [g' In(M~'/p, ')]", etc. , really are
small compared to those taken into account.

Up to this point, we have considered only two
.mass scales, M~ and p, which enter the physics
of nonleptonic transitions. However, others are
expected to occur as well. Kitten has shown that
masses of heavy quarks also provide important
scales, and that effective local operators can be
generated to account for the effects of heavy
quarks. " The papers of SVZ explore the role of
heavy-quark masses in the theory, particularly
eniphasizing the effect of the process in Fig. 1(c)
on the renormalization of the nonleptonic opera-
tors.

Before addressing Fig. 1(c), we first describe
the effect of heavy-quark masses on the "box"
coefficient functions c, considered so far. For
simplicity we assume like SVZ that the orally ef-
fect of the heavy-quark masses is to produce a
decoupling of a given quark flavor from the quan-
tity b(n) as p, is lowered through the associated
mass threshold. " Thus in a six-quark model
(u, d, s, c, b, f with m, =l.55 GeV, m~=4. 6 GeV,
and m, = 13.8 GeV) the value of b(n) increases as
we descend through the t-quark, b-quark, and
c-quark thresholds down to p. =—1 GeV. In be-
tween any two heavy-quark mass thresholds, c,
vary as in Eqs. (9) and (10). The quantity
K(g, M, p, ) in these equations physically represents
the variation in coupling strength over the energy
range M&E& p. ,

K(g, M, p, ) =g'(p)/g'(M)

which can be directly inferred from

dx P~'(x) = ln(M/m),
~ g(N)

where P is the function denoting the coupling-con-
stant dependence in the renormalization-group
equation. As a specific example, in the six-quark
model mentioned above, the choice of scale mass
p, =-1 GeV implies for the coefficients c, the form
(we suppress the notation for coupling constant

I

in the argument of K)

c (p ) = K(M ~, m t) 'K(m ~, m ~)
'

&& K(m ~, m, )""K(m„p,)o'"
(12)

where we have employed the appropriate values
for b(n) in the exponents. It is sufficient to ex-
amine c (p) numerically. Assuming g (p)/4m=1
at p=1 GeV, we have c (p, =l GeV)=2.50 overa, ll,
with the specific contributions being

K(M m ) '"=1.239, K(m~, m )' '=1.356,

K(m„m~)""=1.207, K(m„p)~'9=1.233.

Thus, as we proceed from energy M~ down to
energy p=—1 GeV, the coefficient c (g) derives
its largest growth from the interval m~ & E & m„
where evidently g'/4v has grown to a sufficiently
large value which together with the length of the
interval provides the numerical dominance. In-
cidentally, the sensitivity to changing g'(p)/4v
is not extreme [e.g., for g'/4m=3 at p, =1 GeV
we have c (p) = 2.38] so that our qualitative find-
ings may be considered stable.

A related issue is the problem of which value
of p, is most appropriate. for evaluating matrix.
elements. The matrix elements of the operators
also depend on the mass scale p. , and changing
p, would move part of the matrix elements to the
coefficients or vice versa. ' However, we only
know how to evaluate the matrix elements at a
particular phenomenologically determined value
of p. . The scale in the coefficients must be chosen
to match this. Unfortunately, we have no clear
way for determining the best p. , although we feel
that in the bag model most scales are set by
(1-2)/R-0.2-0.4 GeV. The coefficients c„c„
c„and c4 do not depend strongly on the choice
of p. . However, c, and c, do, and this increases
the uncertainty in these coefficients.

Our final comments regard the impact of the
so-called "penguin diagram, " Fig. 1(c), on the
calculation of X~ in the context of a four-quark
model (u, d, s, c). The latter restriction keeps us
within the SVZ model and minimizes the number
of unknown parameters (i.e., mixing angles,
thought to be small, "associated with the heavier
b, f quarks). The main effect of this diagram is to
introduce the "left-right" operators 8„8,which
to order g' are proportional to ln(m, /p, '), the fac-
tor of M~ previously in the logarithm being re-
moved by the Glasow-Iliopoulos-Maiani cancella-
tion" between intermediate I quarks and c quarks.
It is shown in Ref. V how operators 8, and 8, mix
with 8, and 8, to produce a 4 x 4 renormalization
matrix, and ultimately the form of X~ as given in



DONOGHUE, GO LO%ICH, PONCE, AND HOLSTEIN 21

Eq. (1). As stated previously we shall calculate
in this paper the matrix elements of the 8, because
of their importance to the SVZ conclusion and also
because there linger some questions as to the val-
ues of the coefficient functions.

dered two-quark operator

ee" = 3(olddlo&: d(1+y,)s:.
Similarly, we find

[z'„e,]= [z„e,]+ e& &,

(18)

(19)

III. HYPERON DECAY: S-WAVE AMPLITUDES

We shall consider only the parity-violating weak
Hamiltonian X in this section. The S-wave hy-
peron decay amplitudes are obtained by means of
the familiar current algebra formula

itm &a ~0(q) Ix'„via&=—'&a I[z'„x„"]la&
ff

= '
&a lx„"la&.

(13a)

(13b)

Equation (13b) is correct only if

[E,', x„v]= [E„x ], (14)

a point we shall return to shortly. If so, then
an estimate of the S-wave amplitudes is obtain-
able in terms of the single-baryon matrix element
of XPc as in Eq. (13b). We have neglected possible
baryon pole diagrams which involve single-baryon
matrix elements X of X . 'This is done since
SU(3) predicts that (B'IX via) vanishes. "

'The experimental S-wave amplitudes for the de-
cays B-B'm are given by the following dimension-
less quantities":

A(An) = (237+4) x 10 ',
A(Z'p) = ( 328 + 11)x 10-',

A(='A) = ( 343 y 7) x 10 '.
(15)

Although these numbers are of individual inter-
est in any calculation which takes symmetry
breaking into account, it is also worthwhil, e to
fit them in terms of SU(3) octet para, meters f and

d (Ref. 16):

A (An) = d+ 3f,

A(Z'p)=W6(d-f),

A (:-'A) = d —3f .
(16)

With f= —2d, we predict A(&n) =5f/2, A(Z'p)
= —3M6f/2, and A(='A) = —7f/2 with f= 96 x 10 '.
The overall fit is quite reasonable.

The relation between commutators in Eq. (14)
is obeyed by the "left-left" operators 8] 82 83,
and e, of Eq. (2). However, because of normal-
ordering and the presence of right-handed currents
this is not true of the operators 8, and 8,. For
example, explicit calculation yields

&B' lx~+xs la) =0 (20)

which has been proved elsewhere. ' Two additional
null statements are also derivable,

&a lx, la&=o, (21a)

a&=o. (21b)

To prove Eq. (21b), we note that after performing
a Fierz transformation and realizing that the spin
labels on the field operators appearing in XD
[see Eq. (37)] are summed over and thus are dum-
my indices, we can write the normal-ordered
creation and annihilation operators in XD as

—,
' bt(d, X )b&t(s, X,)

x [b,(s, X,)b, (s, 4,)+ b, (s, A.,)b, (s, A.,)]. (22)

The initial baryon state is antisymmetric in color
indices whereas the bracketed quantity is sym-
metric, and so Eq. (21b) follows immediately.
Equation (21a) is a consequence of similar rea-
soning. We can write X~ as

,'[bt(d, X, )—bt(d,X,)+ b,' (d, X,)bt(d. ,X,)]
x b,.(d, 4 )b, (s, x,), (23)

and applying this operator' to the final state 8',
the ensuing contraction of symmetric and antisym-
metric quantities gives zero. The results (20) and
(21) when cast in terms of the operators of Eq.
(2) imply

&a'Ie. la& = &B'Ie. la)= &B'Ie. la) =0 (24)

Finally, we claim for baryons in the valence mo-
del considered here that

where 8,"=~8,"', the familiar numerical factor
of —", arising from color matrices. Let us postpone
numerical evaluation of the quantities 8,",until
after we study the structure of the single-baryon
matrix elements of the operators 8„ i=1, . . . , 6.

Hereafter we assume that baryons are color
singlets of three quarks whose dynamics is gov-
erned by the SU(3) color gauge symmetry. Within
this framework, some of our results will be mo-
del dependent whereas ot;hers are exact conse-
quences of the approach described thus far. We
shall consider the latter first. To begin with
there is the relation

[z,', e,]= [z„e,]+e,"', (17) &a'le, la&= —',&a'le, la&. (25)

where 8,"' can be cast in the form of a normal-or- To prove this we use the SU(3) identity
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tl jtkl 2~ii ~kf 3 ~ ' j~kl
A A

to write
O. I 2

5
——-3 66+ 205, (26a)

where 0.08

85 =: diF jsiQiFRiiQi ~

But from arguments like those used for the null
theorems just proved, we have (8'I6,'IB)
=-(B'IG 6IB), from which Eq. (25) directly fol-
lows.

Taken together, the results of the preceding
paragraphs demonstrate that for baryons we need
calculate only matrix elements of the operators
0, and 6, (or

equi).

The importance of this is that
matrix elements of the bI= ~ operator 64 vanish.
Thus the interaction transforms like an SU(3)
octet, and has 4I= 2 and yields the desired 4I
= 2 rule in the hypexons.

In the course of forming matrix elements, we
employ wave functions for quarks confined within
baryons as given by the bag-model fit of Ref. 4.
Our procedure is to compute the matrix elements

0.04

mR
04 0,60.2 0.8 l.2I.O

-0.04

FIG. 2. Dynamical integrals in the SU(3) limit. The
solid, dotted, and dashed curves represent respectively
the integrals X+3, V, and X-3 defined in the text.

Matrix elements of &, (and of 6,) have a
slightly more complicated structure in that both

/

f, and d, are nonzero and their ratio is a func-
tion of the dynamical integrals A,B. We find for
matrix elements of 65,

(2s,') '(B'I 6, IB) (27)
d, =

9
cos8c sin8c [3A(mR) —B(mR)]

P

(29a)
for each relevant set of baryons B, B' thereby
inferring the dimensionless parameters f„d,
(i = 1,5) . For comparison the reader should keep
in mind the phenomenological values f= -2d
= 96x10 discussed earlier. We will first pre-
sent an analysis based on exact SU(3), giving all
quarks a common mass, and later consider the
individual decay modes in the more realistic
situation of unequal quark masses.

It is already known6 tha, t for matrix elements
(B'I6,.

I
B) one finds d, = f, with-

f, =
4

cos8c sin8c [A(mR) + B(mR)],

f, =
27

cos8c sin8c —[3A(mR) + 7B(mR)]
7T

(29b)

so that

[32(mR) —B(mR)]
f, 3A(mR) + 7B(mR)

'—k=3 (30)

The f„d, parameters are roughly comparable in
magnitude to f& and are of the same phase. For
example, for quark mass between 0 and 280 MeV,
f,/f, goes from 0.82 to 0.65. Furthermore, the
matrix elements of 65 tend to be predominantly
f type for small quark mass but less so as the
mass is increased. That is, for quark mass in
the range 0-280 MeV, we find d5/f5 varying be-
tween 0.265 and 1.10. To the extent that this new
contribution is f type, it can be viewed as having
the potential to assist in bringing the model into
agreement with experiment. However, there is
an even more important left-right contribution to
which we now turn our attention.

Perhaps the most striking of our numerical
results involves the new terms arising from the
commutation relations [see Eqs. (16)—(19)]. These
commutator-induced operators are proportional
to:d(1+ y,)s: . As such they are pure LI=-2 and
indeed are pure f type. '8 For the dominant con-

where m is the common quark mass, R is the bag
radius, N is the normalization factor for the
quark field, and A+ B is a dynamical integral.
All of these are discussed in the Appendix. The
dependence of A and B on quark mass m is given
in Fig. 2. For m varyingfrom 0 to 280 MeV, wefindf,
goingfrom 24 &10 'to30 X10 . Remember
that before it can be compared with the phenomeno-
logical parameter f, f, must be multiplied by the
coefficient function c,. With d= -f we have
A(An) = 2f, A(Z'P) = 246f, and A(:"'A) = -4f. This
is clearly unsatisfactory in that it predicts

I
A(&'p)/A(='&)

I
=1 23 and IA(=-'ti)/A «n)

I

= 2.0,
each of which disagrees with experiment [Eq.
(15)]. In order to improve the fit f must be in-
creased relative to d.

ANALYSIS OF AS = 1 NON LEPTONIC %EAK DECAYS AND. . .
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tribution, which arises from 6„we find in the
limiting case of SU(3) invariance that

piece of this operator into a form 8» involving
scalar, pseudoscalar densities then

(&) F c c (Qlddlo)$7~+ (31a)

where the superscript in f,'" stands for "commu-
tator" and C is a scalar density amplitude, de-
fined in the Appendix. From estimates of the
"current-algebra" d-quark mass, " one can infer
that

65= ~s~+'&' &oIddlo&d(1+y, )s

+—' (0
I
ss

I
0)d(1 —y~) s

with

ps ~ = -4Q'(1+ y, )u~ff"(1 —y, )

e'(., „--.', , „).

(35)

(35)

+ 2

&olddlo&=2 '(.
& I 'a)- '(I~')- '(')]

d

= -0.007 GeV'. (31b)

The computation of this number is sufficiently
subtle to warrant an explanation. In Ref. 18 a
"renormalized" quark mass nz~ is related to
current-algebra quark mass rn'" by a renormali-
zation constant m* = Zm"'. From SU(3)-sym-
metry breaking it is estimated that m*, = 150 MeV,
and so mf = m,*/20 = 7.5 MeV from a current-
algebra relation. The quantity Z which is defined

by the expectation value (q~~) = ZN» in hadron k,
where N» is the number of 0-flavored quarks in
hadron h, can be directly computed in the bag
model

We can now pick out the factorization contribu-
tion to hyperon decay, wherein f(}=u, d and the

pion is annihilated by the appropriate pseudosca-
lar density, Hy5d or dy5d, while the associated
scalar density, su or sd, connects the two baryons.
Using the divergence relation

-sZB ( )

my+ m( =~'y'~'

we find, e.g.,

(37)

32Z +m 2

B) (38)
7Rg

Aside from the factor of Z, this is the method
employed by SVZ. We wish to compare this with

the soft-pion limit

Z= (d + 2mR((d —1}
2(u((u —1)~mR ' (32) o5IB&,

'
&B'll:&3 o5]IB& (39)

where m is the bag-model quark mass. For the
d quark, rn„ is small, so that we will use m=0
throughout our work. Thus we estimate Z= 0.4S
from which our value for (Old, d; I0) follows. (The
reader should also be careful of the sign conven-
tion in Ref. 19.) This together with analytic
evaluation of the integral C implies that for a
common quark mass in the range 0 - e & 280 MeV,

'

the quantity f,'" goes from -45xlo 9 to -5'2

x10 . That is, f 5('' is about a factor of 2 larger
than either f, or f,"' and carries a phase opposite
to both of them.

The origin of the terms involving 05'6 is not as
mysterious when examined from another point of
view. They are, in fact, the ".vacuum-interme-
diate-state" or "factorization" contributions
originally calculated by 3VZ, as we will now

show. 2' Requiring that only connected pieces of,
e.g., 0, contribute to weak processes, we have

Using the commutation relation

[&35,&51= -5 &5+')' ( I
dd IO&d (1+y,)s,

we find

(40)

I' m
(0

I
d d

I
0) = -z (42)

Thus

(B'v',
I
6,

I B),2
(B

I
6 s~ I

B)„„„(,g

m
+f, Z ' ' (O'Id slB), (43)

&B"o I65IB&-, 2~ I&B'I6-IB&....-
——,

' &olddlo&&B'IdslB&].

Finally, assuming the steinberg mass relations'~
we have

8 = 6»+» (olddlo)d(1+y, )s
+~' (0

I
ssl0)d(1 —y,)s,

I

where "8&" is not normal-ordered,

"65"= d y'(1+ y5) f"sqy„(1 —y5) f"Q,

and as before, Q is summed over flavors u, d, s.
If we make a Fierz transformation of the first

(33)

so we see that the factorization terms are asso-
ciated with the anomalous terms in the PCAC
commutator while the effects of the nonfactoriza-
tion pieces are taken into account by use of the
connected matrix elements of 6». These can be
calculated, for example, in the MIT bag model as
done above.

The evaluation of f,"', of course, also shares
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TABLE I. Structure of single-particle matrix elements. 'The factors X and Y are defined
in Eqs. (45) and (46). The dynamical integrals A, B,A*,B*,C are given in the Appendix.

2v 6X(A +B)

-12X(A +B)

—4&6X(A+B)

3 V 6X(A. +B)

~3X(A —5B/3)

—
3 v 6X(A*+B*/3-A +B)

8(c)
5

8YC
3va+,
16YC

9viZ„
8YC

3v SZ,

with SVZ the dependence- on the values of the
current-algebra light-quark masses. These may
not be well determined as can be seen from the
recent controversy over whether the up-quark
mass vanishes. This dependence appears to be
unavoidable. Qur calculation differs from SPZ
by a more careful treatment of the mass with the
inclusion of the renormalization constant Z. Qur
matrix elements are smaller than SVZ by a factor
of Z', which equals (0.48) =0.23 when Z is
evaluated in the bag model. Adding all the con-
tributions together (for m, -0) we find

f = (24c, —25c, —c,) x 10 9,
(44)

d=-(24c, + 5c5 —2c6) x10 9.

We see that the effect of the new operator 0& is
roughly comparable to that of 6&. Neither 0, nor
6, by itself could adequately describe the SU(3)
structure. However, adding the 65 contribution to
that of o, does help the results (recall that for
SVZ c, (0). Both the magnitude of f and the f/d
ratio are thereby improved.

The SU(3) analysis carried out in the previous
paragraphs gives us a quick but approximate

overview of the hyperon decays. To get a more
precise picture of the individual transitions as
well as to take SU(3)-symmetry breaking into
account, we summarize in Table I formulas rele-
vant to the hyperon decays and in &able II the
associated numerical values. In Table I, each
hyperon matrix element of the four-quark opera-
tors 6& and 6& is given in units of the dimension-
less factor

cos8~sine~ Q~R ' N'N'

2W2 2', 4m
(45)

while each matrix element of the two-quark, com-
mutator-induced operator 65~" is given in units of
the constant 7,

1'=0.007 (GeV )G~cos8c sin8cNN', (46)

where the prime on N signifies strange-quark
kinematics. In the course of our calculations,
we studied the effects of SU(3) several different
ways and found the results to be in qualitative ac-
cord with each other. The particular method dis-
played in Table II involves keeping the non-
strange-quark mass equal to zero as in Ref. 4 and

TABLE II. Numerical study of matrix elements. Nonstrange-quark mass is kept at zero.
We use R =5.0 GeV ~. Entries are in units of 10 . Each entry includes contributions frown

G~sine~cos&~/2v 2 as in Eq. (1).

msR 0.0 0.2 0 4 0.6 0.8 1.0 1.2 1.4

8g

85
8(') -134

48

64

-138

48

64

49

65

49

65

-146 -150 -154 -157
65

-160

8~

85
8(c)

-35
-118

-113

-118

-116

-119 -119 -120 —120

-30 -27
-120 -122 -125 -128

-120

-131

8g

8)
8@) -138

-97
-55

-143 -146

-98
-58

-150 -154 -157

-98

-160
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considering the strange-quark mass over the
range 0 &e, (280 Mev. A scan of the numbers
in Table II provides several immediate insights.
Effects of nondegenerate quark mass are seen to
be typically less than twenty percent. Table II
serves to reinforce the qualitative conclusions
arrived at in our study of the SU(3)-invariance
limit. By and large, the matrix elements of 6,
and of 65 are comparable. In particular, for the
Z'P and ™OAtransitions, 6, has a larger effect
than does 65 while the situation reverses for An.
However, for all of the hyperon transitions the
matrix elements of -6,"are the largest.

To get a feel for the effect of these operators,
we display the three transitions in Table III for
a fixed value of c, (c&

——2.5) and for three values
of c5 (cs = 0,—.5,-1.0).2' It is easy to see that in-
cluding 8, does improve the SU(3) structure of
hy'peron decays, although one needs values of c5
substantially larger than SPZ suggest. With

e, =-0.5--1 one obtains a quite satisfactory
pattern of 9-wave amplitudes.

IV. HYPERON DECAY: P-WAVE AMPLITUDES

The analysis of the hyperon P-wave amplitudes
(parity conserving) is not as secure as that of the
9 waves. We discuss first several contributions
to the parity-conserving matrix elements, and
then borrow results from other sections in order
to give a numerical evaluation. We shall see that
the ingredients which we include are not suffi-
cient to give a satisfactory description of the P-
wave amplitudes. The decay Z'-nm' serves as
a particularly good example.

In the soft-pion lj.mit we encounter a baryon-to-
baryon matrix element analogous to Eg. (13),
but involving the parity-viol&ting Hamiltonian

Hw

B B Hw B

{b)

{c)
FIG. 3. Pole contributions to the parity-conserving

amplitude in B B' m. Baryon poles are shown in (a)
and (b), and the kaon pole is represented in (c).

M~~ ——&B
I
3cw

the baryon pole contributions are

(48)

a(~', } =g(m, + m,},
imp mp 2m'

dMq+~

(mc —m,)(mc+ m~)

we shall assume that Eg. (47) does vanish and so
not include it in our analysis.

The standard treatment of the P waves is to
utilize baryon poles. As illustrated in Figs.
3(a) and 3(b), these consist of a b, S= 1 baryon-to-
baryon transition accompanied by strong pion
emission. The baryon matrix elements are those
considered in the last section. With the notation

TABLE III. Hyperon decay modes with c&=2.5, and a
variety of values of c~. All entries are in units of 10

Mode c5=0 cg=-0.5 Experiment

12
-30

24

17
-35
-30

22
-40

23.7 + 0.4
-32.8 + 1.1
-34.3 + 0.7

SU(3) symmetry forces this matrix element to
vanish (at least when p =p') for a Hamiltonian with
the SU(3) properties of Eg. (1).'4 Quark models
are not yet sophisticated enough to see if in this
context SU(3) is a strong constraint on the ampli-
tude. However, with no evidence to the contrary,

(mc- m, )2m~ (mc —m~)2mc

(49)
P

a(Z;) =&2 g(m, +m, )c „(mc —m, )2m, (mc —m, )2mc

3) (m~ —m„)(mc+ m~)

(d -f)M~0~a(:-',}=-g(m, +m,),(Pl-„—FPl~) 2' „

(2
'"

(3 .(m, —m, )(m, + m~)
~

'

where g is the wNN coupling constant (g'/4v
= 14.6), and f, d describe the SU(3) structure of
the strong coupling (f+d=1)." We will use
d/f = —,'. It has been known for a long time that
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P-wave amplitudes, when derived from experi-
mental S-wave vertices using PCAC and only
baryon poles, as in Eq. (49), are too small by
roughly a factor of 2.

In addition to baryon poles, it is easy to see
that kaon poles must also contribute. Indeed,
kaon poles are needed together with baryon poles
in order to obtain a, vanishing (B'm IHI B) ampli-
tude when H= ds, as required by the Coleman-
Glashow theorem. '6 A typical diagram is shown
in Fig. 3(c). The strength of the kaon poles is
governed by the E-z transition matrix elements
whi. ch are studied in Sec. V. Using the same
notation as Eq. (48), their form is

(B'Idr5slB&=(oldrsslff& ~ ~ (I~B'IB&—PPl K

+K~K
2 RKa amy5N ~

md s K
(52)

As our discussion of these terms in the S-wave
case would suggest, the result obtained in this
manner corresponds to the vacuum-insertion
method proposed by SVZ. The matrix elements
of &&"& can be readily obtained provided we know
(B'I 8y, s

I
B). One way to calculate this matrix

element assumes dominance of the kaon pole:

(d+ 3f) M»0, 0

&3 m '-m' '
K

MK0,0
B(ZO) = -v 2 g(d- f) SlK mif

B(Z,') = 0,
(d —3f) M»0, 0

W3
' —m''

(50)

Another uses the quark equation of motion:

&B'I dr5s
I
B)= +' &B'I dr'r5s

I
B)

gB B B ™B
Ny (53)

A final possible contribution arises from the
anomalous-commutator terms ~,",' which we
identified in Eq. (18). For 65 6, the commutator
of Eq. (47) is replaced by

—'&B'IEF3, ~s, ellB) =,' &B'Io5.6IB)-F—&B'I ol;llB)

(51)

The two evaluations are completely equivalent if
one uses the generalized Qoldberger-Treiman
relation. (Again we note the sensitivity to the
quark masses. ) There is an important subtlety
associated with the commutator terms. If one
evaluates them using the 3VZ method and em-
ployee Eq. (52) one can write the total amplitude
for g emission as

&B'~'le, lB&= ~2» -', 2t",t„",&~'Id, r,d, lo&&o. ld, r,s, lz'&. (54)

This is very similar to the K pole

(B'n'I 6, IB)=, ', 2f",,t~g(w Id,.(1 —y-5)dgd~(1+ y5)sq IE ) .—rri
(55)

In fact, Eq. (54) is just one contribution to Eq. (55).
Indeed, a complete set of intermediate states can
be inserted into the latter between the quark den-
sities, and Eq. (54) is obtained by retaining only
the vacuum intermediate state. The bag evalua-
tion of the K-z matrix element provides one way
of summing over all intermediate states, and
thereby includes Eq. (54). To include both equa-
tions would constitute double counting. We feel
that the bag evaluation of the K pole is the more
complete and that the factorization (or commuta-
tion) term should therefore not be included. This
approach is similar to that taken by Shrock and
Treiman in their discussion of (BOIH IKO).2' The
problem of double counting will surface again in
Sec. V.

In this framework, the AI= —,
' rule is obtained

for the P-wave amplitudes if it is obeyed for
(B' IK„ I

B) and (w I3C„IK). In the former it follows
from the Pati-Woo theorem; In Sec. V we
will argue that the AI= —,

' rule is understandable
in meson matrix elements if c, is large enough.
If this is true, the 4I=~ rule holds for the parity-
conserving hyperon amplitudes also. For this
reason, we leave the discussion of ~I= —,

' domin-
ance for the appropriate other sections, and con-
centrate below on the SU(3) structure.

The matrix elements which are required for our
analysis are evaluated in Secs. III and V. We
list the three contributions by mode in Table IV.
As an indication of the relative size of its effect
the commutator term has been included in the
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TABLE IV. Contributions to the hyperon parity-con-
serving amplitudes. The units are 10 ~ and each of the
theoretical numbers should be multiplied by c& or c& be-
fore comparing with experiment. As discussed in the
text, the "commutator" column and the "kaon pole" col-
umn should not be both included simultaneously as they
are different evaluations of the same effect.

to A(Z'p) while it should not be included in the
baryon matrix element involved in B(Z;). When
calculated directly using the procedure of Sec. II,
we find

B(Z;) ci —0.3cq
A(Z'P)

'
c, —0.9c~

Mode
Baryon pole Kaon pole
8

&
8

&
8

& 85 Commutator

A ~gm'
z+ -p~'
z+ -&~+

2.2
5.0

-8.8
2.3

8.8
1.1
2.6

-4.9

-1.3 -44
-0.4 -12

0 4

-15
4 4

5.9

table, although we have argued above that it is
contained in the kaon pole evaluation and should
not be included in a final analysis. Table V shows
the resulting amplitudes for e&

——2.5 and t.-5

=0, -0.25, and -0.50, along with the experimen-
tal data. Although individual amplitudes can be
reproduced by a judicious choice of c„ there are
no reasonable values of c& and c, which bring the
overall pattern into agreement with experiment.
However, the effect of t, is on the whole benefi-
cial.

The decay Z'-nm' is a case with reduced theo-
retical uncertainty, and therefore it is useful to
examine its failure a little closer. The reason
for our theoretical confidence in case of this
mode is the lack of kaon pole or commutator
terms, leaving only baryon matrix elements. One

way to demonstrate the problem in Z'-np' is to
form the ratio of it to an S-wave quantity, such as
B(Z;)/A(Z'P). If there were not the anomalous-
com~utator contribution to A(Z'p), this could be
written in terms of experimental quantities

B(Z;) 11A(Z'p) + 9 (An)
A(Z'P) A(Z'P)

or

B(Z;)
A(Z'p)

for values of c, and c5 which appear reasonable
in the S waves. There appears to be no reason-
able way to change this within our framework.

The failure to explain the P-wave data may not
be the fault of the weak Hamiltonian which we are
using. Indeed, it is hard to see how the Hamil-
tonian could be changed to improve the agreement.
Rather, it appears that the fault lies in the cal-
culational framework. Comparing S and P waves
using PCAC and the pole model does not work.
Le Yaouanc et gl."have suggested that very
strong PCAC breaking could help. Alternatively,
the pole model may be inadequate. Perhaps as
quark model techniques become better in the fu-
ture, they will be able to better decide where the
blame for this failure lies.

V. KAON DECAY

Qur intent in this section is to determine the
contributions of the operators 8„.. . , 86 to the
K-mm decays. If the K-mv amplitudes can be
successfully computed, the K- z~w amplitudes are
well fit using current-algebra-PCAC constraints
and the assumption of linear energy dependence. "
It is useful to define K- wm isospin amplitudes f,
and f, corresponding to n. I= —,

' and n. I= —, tran-
sitions, respectively,

which yields a value of 4.5 compared to the em-
pirical value

B(Z;)/A(Z'p) = » 9

However, the anomalous commutator contributes

(
~

30 ~K 0) (& )1/2f + (~)1/2f

("v ~X.~K )=(-')"f -2(~)"f
From experiment" we find

f, = i9.46 x 10 'm„ f, = i 6.78 x 10 'm, ,

(58)

(59)

Mode cs = 0 c&=-0.25 c& = -0.5 Experiment

z+ -p~'
z+ -~'

2
12

-22
7

11
14

-23
4

20
17

-23
1

16.1 +1.2
26.6 +1.2

-42.2 ~0.3
13.1 +2.2

TABLE V. Predictions and experimental data for the
hyperon parity-conserving decays in units of 10 ~. Val-
ues are given at fixed c&=2.5 and variable cq.

where our overall choice of phase is made for
convenience with regard to the ensuing discussiog. .

Calculation of S-wave hyperon decays via cur-
rent algebraic techniques is fairly straightfor-
ward —continuation to the soft-pion limit is not
hampered by appreciable momentum dependence.
This is not the case for nonleptonic kaon decay,
however, and our calculational confidence is
thereby reduced. The sources of the momentum
dependence in the kaon case are current-algebra-
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PCAC constraints and the theorem of Gell-Mann
and others'0 (GMPRSBB) which asserts that
K-2v amplitudes must vanish in the SU(3)-sym-
metry limit. Since, experimentally, K-2w

. shows no sign of such suppression, it is clear
that there exists a r'ather strong momentum de-

pendence in the decay amplitude. This can be
seen, for example, by evaluating the factoriza;
tion" or "vacuum-intermediate- state" contribu-
tion to K-2m from K '~', that part of the weak
Hamiltonian containing the left-left operators
6„... , 8 . We find

&v' v', !3C„'~'IK~&= ~~ cos6~ sin8cF[+(3k'+q, ' —4q, ')c, —~(q, ' —q, ')(c, +2c, +2c,)], (60a)

&v,
' v, IX„' 'IK,'&= 2~ cos&csin&cF. (k' —q, ')(c, +2c, +2c,)+ (k'-3q, '+2q, ')c, ,

1
(60b)

&v,
'

v,
' IK '~'IK~& = ~ cos6~ sin&cF (2k'- q,

' —q, ')(c, +2c, +2c, —4c,), (60c)

where F is the meson decay constant in the SU(3)
limit. In the limit k' =q,' =q,' all amplitudes are
seen to vanish, as required by GMPRSBB. However,
there is little evidence of this suppression in the
physical limit k'=rn~', q,' =q, '=m, '. Incidentally,
as a check of this parametrization note that for

in the physical limit, contributions from
6y 62 63 being 6I= —,

' al l vanish, and only the
aI = 2 contribution from 64 survives.

In evaluating the nonfaetorization contributions
which arise in the current-algebra-PCAC reduc-
tion of the K- wm amplitude, we shall eventually
encounter K-to-m matrix elements of the operat-
ors 8, . As before, we employ the MIT bag model
in order to determine these matrix elements. Di-

. rect evaluation gives expressions in terms of the
four-quark wave-function integrals A, B:

I

K- 2m amplitudes and the single-particle matrix
elements, we shall assume that the momentum
dependence of the K-2z amplitude is as given by
the factorization terms since, after all, these are
consistent with all the current algebra and the
GMPRSBB constr aints. Thus, e.g. , we suppose that

v; v, I 8, 1K'&=A(k'-q, '), (62)

where A is a constant to be determined. This to-
gether with continuation to the soft-pion limits

-0

(63)

'
&v,

'
I
6, !K',&

identifies the quantity A as

R= 4(2m ')"' N'N'(A —B)K (61a) Wk'= '
&v,', ! 8, IK'„&

&v I8, IK )=~&v'!6, IK'&

(2m )"' N'N'(A ~) .4~ (64)

R=- ~ (2m 2)"' N'N'(A+B) . (61b)

The relative sizes of the matrix elements in (61a)
and in (61b) are exact consequences of the val-
ence-quark model. Proofs of these relations are
entirely analogous to those given for the hyperon
matrix elements. The corresponding &v'I 8, K'&

matrix elements can be obtained via standard iso-
spin considerations [In Eqs. (61a) and (61b) the
factor (2m'')"' arises from the invariant normal-
ization term (4m' E,)"' which we assume contin-
ues smoothly and thus retains the value it had in
the physical region E,=mr/2. "].

In order to make contact between the physical

There is clearly a problem in interpreting this
relation —What is "k'"? It is not clear what hap-
pens to the momenta when we take one of them to
zero. If we use the value k'=m&', then by the
same token in treating K '- m'm' we should use

Q 2 m, , which is inconsistent with the neu-
tral kaon system. As a compromise we shall em-
ploy "k"' = —,

' (mr'+m, '). This is admittedly a dif-
ficult point with which we do not currently know
how to deal adequately; what is needed is a tech-
nique which allows our bag states to move.

Another complexity we must handle is the ques-
tion of double counting. The point is that we wish
to include both the factorization and the current-
algebra amplitudes in our analysis. However, in
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the limit

(65)

there is a contribution to the bag integral from a
pion which is already included in the faetorization
term involving the operators 8„... , Q„namely
the contribution proportional to

&w'IX Io&&0IX, IJc"&.

This piece must be subtracted in order to avoid
double counting. Adding on the factorization con-
tribution just cancels this subtraction, so that the
net result is obtained by omitting the factorization
term completely. Putting all the previous consid-
erations together, we have the following momen-
tum- dependent amplitudes:

(w' w, IK„IK~&=,', ' c T~+ . ', ', j-2(c,+2c, +2c,)T~+~(c,+ —,', c,)T ],
6(»'+ n' -4~,')

(66a)

(w; w. I~.Ill&= ~
'

~ c T + ' [2~2(c+2c+2c.)Ti-~ ~(c.+~c)Tz] (66b)
1 2 mK +m mK +m»

(w,
'

w,
' IR IIf',&=, ', 2 I~2(c, +2c, +2c, —4c~)T~- + ~2(c, ++, c,)T ],

'K
(66c)

where T~, TR signify contributions from the left-
left operators 6„.. . , 64 and "left-right"
operators 6» e„respectively.

-3

cosi sine (2m

N'N'
x g-a), (67a)

3

cosec sin8c (2mw')"'

N 'N1
x (&+a) (67b)

and primes indicate strange-quark kinematics.
Upon employing the numerical values R =3.26
QeV ' and m, R=1.0, we find in units of mK

T~ =-il.51 x 10 'mK,

TR =i1.02 x 10 'mK.
(68)

cannot be reliably computed. However, we can
infer that the matrix elements are not large,
which is riot an entirely negative conclusion be-
cause it means that the matrix element of the
AI= 2 operator 64 is suppressed.

An interesting feature here, as previously noted
by Donoghue and Qolowich, ' is that the matrix
elements of the operators 6„82... g„associ-
ated with the dynamical integral A- B, are sub-
ject to large cancellations. A nice way to see
this effect is to take the limit of equal quark mas-
ses. This integral, which we denote as A -B, is
evaluated explicitly in the Appendix and is plotted
in Fig. 2. %e note that A. -B has a zero for m
=110MeV if R =3.3 GeV and never does get very
large for reasonable values of quark mass. Thus,
at least in this model, the matrix elements

f, =-i1.27 x 10 mw(c, + 2c2+2c~)$

-i4.56 x 10 'mw(c, + ~~ cs),

f, = -i5.66 x 10 'mwc4$ . (69)

The large contribution of 8, can also be partially
accounted for by the large color-counting factor
~6, seen in Eq. (61b). The factor is a general fea-
ture which will be present in all quark models.

A heuristic demonstration of the cause of this
suppression can be seen by considering n -ev.
%hen the weak interactions are due to vector and
axial vector currents this process is suppressed
by the difficulty of forming the helicities of the
e and v into a pseudoscalar state, with the ampli-
tude vanishing as m, -0. However, if the inter-
action is through scalar and pseudoscalar densit-
ies, no such suppression occurs. An analogous
effect happens in our calculation. The left-left
operators 6, . . . Q4 are always the product of two
V-A currents, and their amplitude is helicity
suppressed, with the lower components in the
quark wave functions canceling the upper com-
ponents. However the left- right operators 8„8,
can be rearranged by a Fierz transformation into
a product of scalar and pseudoscalar densities,
whose matrix elements are not helicity sup-
pressed. Thus the large cancellation which we
observe should be a general feature of all models,
although its precise value would change from mo-
del to model.

In view of the large cancellations in A —B, we
shall append a factor $ to terms containing this
integral as a reminder that its precise magnitude
and even its sign must be viewed as uncertain. "
The contributions to the physical isospin ampli-
tudes associated with the quantities T~ and T
are thus
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Next we consider the commutator terms 8,'", 6,"'.
These are equivalent to factorization processes
in which the operators 6„6, first undergo a
Fierz transformation into an effective SP inter-
action form. The associated contributions are
pure n. I=-2 and thus contribute to f, the expres-
sion

T .-T' = T — Q„cos8 sin8 E

R 2
X

m gt

m +my . m +m

=T~ —j3.98 x 10 am~

=i6.2x10 m~. (V5)
m2 R

m +my m +ply
The final result for the kaon isospin amplitudes

is then

~~(c, ++, c,), (VO)
m~

m.' m.'
where m, ', m„' are parameters which describe the
momentum dependence of the matrix elements
&»'m ~dd ~0&, &w ads ~K&. Observe that if m, =m„and
m, =m» then f, =0as requiredby GMPRSBB. Numer-
ically we have for these contributions

=-i1.27 x 10 '(c, +2c, + 2c,)$

-i2.7V x 10 '(c, + ~6 c6)
R 2

-i1.04 x 10™2— '2 ~(c, + ~6 cs),
m~ mg j

=-i5.66 x 10 'c~t' .
P7 g

(76)

(77)

mR~
f, =-i1.02x10'm» ", — ', j(c, +~8 c,),

=0.

&v,
'

f
8, /K,'&

'
[&v,'f 6, /K,'&

——': &~' fdy.d/0&&0[sy, d fK &]

or correspondingly

(74)

At this point we must again take caution against
double counting. We accomplish this by subtract-
ing off from the current-algebra amplitude T„
the contribution from factorization. For example,
consider the contribution to K'- g w' of the oper-
ator 6,. Upon taking the soft-pion limit we obtain
for the nonfactorization amplitude

&v;»;
~
6,

~
K„'&,...„

[-.'&»,'i 8, iK'„&
~pl

+ ~ (0 (dd )0&,&w,'~s(1+ y, )d ~K'„&].

(V2)

In the same limit we find for the factorization
amplitude

&v;»;~ 8, ~K„'&„., = ~ &v;~dy, d~O&
ql~p r

x &01sy,d IKa& ~ (73)

Clearly, this equals the contribution to &wo
~
6, ~KO&

in Eq. (V2) arising from the vacuum intermediate
state. Thus we must modify the nonfactorization
amplitude in the soft-pion limit to read

Here one can see that the largest contribution
to the I= —,

' amplitude comes from the quark-model
evaluation of the "left-right" operators 6„6,.
This is in contrast with the S-wave hyperon am-
plitudes where the anomalous-commutator term
gave the largest matrix elements. This result is
gratifying in that the dependence on light-quark
masses is minimized. Our absolute values for
both f, and f, tend to be somewhat large. However,
this is not unreasonable in view of the several as-
sumptions which we were foced to make in order
to handle the momentum dependence in K- 2m.
What is important is that since f, receives a con-
tribution only from 8~, which has smaller matrix
elements, we have the possibility of obtaining a
AI = —,

' dominance of sufficient size. For c4=0.4,
the ratio f', /f, would agree with experiment for
c,/)=0.9, an entirely reasonable value.

VI. CONCLUSION

We have attempted to give as complete an eval-
uation of the weak nonleptonic Hamiltonian as is
possible with present techniques. Current-alge-
bra methods were used to turn two-body decay
amplitudes into matrix elements between single-
particle states. The latter are amenable to eval-
uation using quark-model techniques.

Two general types of effects were found. Given
the standard current commutation relations, ma-
trix elements of the parity-conserving Hamilton-
ian were calculated in the MIT bag model. In ad-
dition, for the operators 6, , recently suggested
by SVZ, we have identified an anomalous-com-
mutator term. When evaluated using currrent
algebra and the quark model, this yields the ma-
trix elements calculated by SVZ by use of the
quark equations of motion. The work of SVZ is
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incomplete in that it only includes this latter ef-
fect. We find that both types yield significant con-
tributions.

In some regards our methods are crude. For
example, we do not directly calculate a decay
process, but use PCAC to relate it to an ampli-
tude which we can calculate. Other mechanisms
can be imagined to have an effect, such as PCAC
breaking, nonperturbative phenomena, ' or quark-
sea processes. " In addition, there are several
uncertainties inherent in our methods. However,
it is hoped that our procedure would yield the
dominant effects, and the reasonableness of our
results suggests that they do give some insight
into the nonleptonic decays.

The hyperon parity-violating amplitudes are
most favorable for the use of our methods. The
calculated matrix elements' obey the AI = —,

' rule
and have an SU(3) octet property. If we only in-
clude 8, ~ 8, the relative rates of the various
decays are not correctly given. Including 8„8„
the anomalous commutator yields a large matrix
element which tends to improve both the magnitude
and the SU(3) structure of the amplitude. For
-c, ~ —,

' the improvement becomes noticeable, and
a study of Table III shows that a reasonable under-
standing of the decays is obtained for e, =-0.5--1.
These values have the same sign as that suggested
by SVZ, but are somewhat larger.

The parity-conserving hyperon amplitudes are
the least amenable to direct calculation. We have
studied them using a pole model with baryon and
kaon poles. In this method, a ~I=-,' rule is ob-

inated by isospin one half. The signs of the am-
plitudes (relative to the parity-violating ones) are
correctly given. However, the SU(3) structure of
the amplitudes is not accurate. We are unsure as
to the source of this difficulty, but feel inclined
to blame it on the pole model and on our inability
to find a better calculational framework.

For the kaons, the standard operators 8y 84
involving only left-handed currents have small
matrix elements. On the other hand, 8„8„with
both left- and right-handed currents, have very
large amplitudes when evaluated in the quark
model. This difference is due both to a large
color-counting factor associated with 8, , and also
to a helicity suppression for operators with only
left-handed currents. Its importance is that the
AI = —,

' rule becomes understandable in the kaons
if c, is large enough. The aI= & effects are sup-
pressed relative to the large, purely aI = —,

' contri-
bution of 8,. The AI=-2, —,

' amplitudes are repro-
duced in our method for c, = $ =-0.3.

Including the new operators 8, , with a sizable
coefficient function therefore has two beneficial

aspects. It improves the structure and magnitude
of the hyperon S waves, and most importantly, it
allows a aI= 2 rule in the kaons. This suggests
that the presence of these operators should be
considered seriously.

Within this framework, then, it is possible to
understand the ~I = rule with three basic in-
gredients: (1}QCD radiative corrections enhance
I=-,', suppress I= &, and bring in the I=-,' operator
8,. (2) Color symmetry suppresses I= —,

' in bary-
on-to-baryon matrix elements (the Pati-Woo the-
orem). (3) I = , effec-ts are suppressed in kaons
relative to 8, by color and helicity factors. It is
interesting to note that all three factors are im-
portant and that there is no single "master-stroke"
explanation of the AI = —,

' rule. This suggests that
in charmed-. meson decay, where (3) presumably
is inoperative, we would not expect the sextet
rule (the analogy of the nI=-,' rule) to hold as
strongly as the ~I=-,' rule does for M=1 decays,
which seems to be consistent with experimental
indications. "

Many past approaches to the ~I= —,
' rule have sug-

gested modifying the structure of the weak-inter-
action theory to incorporate this unexpected sel-
ection rule. However, given the remarkable var-
iety and consistency of the many probes of the
weak current, these approaches are less plaus-
ible at present. The low-energy structure of the
weak interaction is given to a high degree by the
standard Weinberg-Salam theory. The problem
then is to find a dynamical reason why the strong
interactions should allow 4I = —,

' effects to be
stronger than n. I= —,'. The combination of QCD
radiative correction and quark-model matrix-
element evaluations considered in this paper al-
low a plausible explanation of this problem.
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APPENDIX

All the four-quark integrals in our analysis can
be expressed in terms of two quantities,

&& [j.(&}j.(P'u} —(«'}"'j,(Pu)j, (P'u}] (Al)

and
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1'

B= 2c"' u'du j,(Pu)j, (Pu)
p

&& [~"'j.(p'u)j, (pu)+ ~'"'jo(pu)j, (p'u)]

(A2)

where symbols accompanied by a prime pertain
to kinematics of the strange quark. We also en-
counter the commutator terms a two-quark inte-
gral

The four-quark integrals can be expressed as
linear combinations of the following functions:

I,= du I'j, Pu
- 0

sin'p Si(2p) Si(4p)
p4 p3 2p3

1

I„= du u'j, '(Pu) j,'(Pu)

(A6)

1

C = u'du [j,(pu)j, (p'u)
0

-(gg')"'j, (pu)j, (p'u)] . (A3)

sin~p sin'p cosp sin'p Si(2p) Si(4p)
+

3 5, 3 4 +
3@3 6@3

(A7)

N
(2uP —2u+mR) sin'p (A4)

The dynamical two-quark and four-quark inte-
grals can be easily evaluated in the limit of SU(3)
invariance. We denote the SU(3) limit by placing
overbars above all the defining symbols, e.g. ,
A, B becomes A, B. The two-quark integral is
easily evaluated and we find

All these SU(3)-noninvariant quantities were nu-
merically evaluated on a computer.

In the above, e = ((u —mR)/(&u+mR) and the quark
momentum p and frequency ~ are related by ~'
=p'+m 8'. For baryons, we employ a bag radius
R = 5.0 GeV ' whereas for mesons we use A = 3.3
GeV '. The quark-field normalization factor K
is given in terms of these quantities by

1

du u'j, '(Pu)
0

sin p 4 sin'p cosp 14 sin p 6 sin p
5p' 5p 15p' 5p'

2 sin'p hosp 4 sinP cosp 1 VIpp

15p' 5p' 5p 15p' '

(A8)

A Ipo 2&Ipy + & I3 y (A9)

and

B=4qIo, . (Alo)

In particular, the dynamical integrals from Secs.
II and III are combinations of

C =u [1-jo(2p)]/[p'(m+mR)]

-j,'(p)/(w+mR) . (A5) A B Ipp 6&Ioz + e I (A11)

For example, the meson integral from Sec. III is
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