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Current-algebra analysis of CI' violations in K~3m decay
in the six-quark Weinberg-Salam model
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The standard current-algebra technique is used to relate the parameter q+ 0=(tr+tr rr IH IKs)/
(w+w w IH„IKt ) in K~3w decay to the CP-violating parameters of K~2tr decays in the
context of the six-quark Weinberg-Salam theory (Kobayashi-Maskawa model).

The gauge theory of weak and electromagnetic
interactions has not only aesthetic appeal but also
quite substantial experimental support. Even
though the experimental. data has not ruled out all
the other models, it is rather impressive that
the simplest steinberg-Salam model' with three
doublets of quarks and leptons is able to describe
most, if not all, of the weak-interaction data
accumulated over the last few years. As pointed
out by Kobayashi and Maskawa, ' one of the nice
features of the steinberg-Salam model with three
left-handed doublets of quarks is the presence of
the CP violation in the gauge coupling to the
quarks. So far, most of the predictions on CP-
violating processes from this model are hampered
by strong-interaction dynamics. ' Recently, there
has been some experimental. interest in measuring
CP violations in E-3m decays. ' In this paper,
the standard current-algebra technique is used
to relate the CP violations in E- 3m decays to the
better known CP-violating E 2m decays in the
context of the Weinberg-Salam model. From the
successes of the current-algebra analysis of the
usual CP-conserving E-3m decays, ' one can ex-
pect that the result from this type of analysis for
the CP-violating part of the E-3m decays will.
not depend very much on the details of strong-
interaction dynamics.

In the E-3m amplitudes, with the kinematics
given by

E'(p) - w', (k, ) + wt(ks) + ws'(ks),

we can define the Lorene-invariant energy vari-
ables s~ as

s; =(p -kt)s,
with s, +s, +s, =Ss,=S(m,'+ —,'m, '). The indices s

label the isospin of the kaon, and a, 5, c label the

P

=i (2n, —n, )+(P, —sPs+vSys) ', ", (2a)
1F

( nt2+)n(P+, P ss Sy-v, )-', ' I, (2b)
ff

, (w'w w'III' IK, &
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(w'wow'III' IEs& =-Si(n, + ns),

(2d)
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where n„, p, (n„p, ) come from the transition
into the I= I state of three pions caused by the
b.I = —,

' (b I = a) part of the CP-conserving weak
Hamiltonian II', and y, comes from the I=2 state of
three pions. The CP eigenstates of the neutral
kaons are defined by

with

IK'& = CPIKc).

(3)

Note that the CP-even state E, can decay into the
n'-m mo state through the &~ = ~ part of the Hamil-
tonj.an without CP viol. ation. Simil. arly, the CP-
violating part of the E- 3m amplitudes can be

isospin of the pions. In the usual approximation
that the dependence of the Dalitz plot on the ener-
gies s; is at most linear, the CP-conserving part
of the E-3m amplitudes can be parametrized as'
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parametrized as

&w'w'w III„IK'&

tudes are

&'"III;IE'&=-.'(-.')'"f. , (Sa)

=i' (2n,'- n) +(p,'--sp,'+~»,') ' .', (4a)m g
&'. III;IE.&=-(-', )"X,+ „f„ (Sb)

&w'w'w III„-IE'&

=i' (-n,'+ —,'n,')+(P,' ——,'P,' —+3y,')

(
' 'III'. IK.& =(-.')' f —3f. ,

for the CP-conserving part and

&
w' wol II~ I E '& = —— g, ,

x/2

(Sc)

&w'w w IoII IE, &
=i' (n,'+ n,')-(P,'+P,') mr'

(4c)

&/2
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(w'w III IEo) =i —— g, + ~g,
L

(w'w III IK,) =i — g, + +g, (9c)
I

&w'w w III„IE,&
=i' '-o (s~-s, ),$3 mtt

&w'w'w'III IE, ) =3(n„'+ n,'),

(4d)

(4e)

&w'w w'III+ Es&
rl+-o(sj. ~sa~ss) —

~ + - oiIIW ( ~ g j
where

where H„ is the CP-violating part of the weak
Hamiltonian II, and n~, P,', y,' are defined in a
similar way as n~, P„y~. The parameters n;, n~,
etc. are real. if final-state interactions are ne-
glected but in general have compl. ex phases com-
pletely determined by CPT and unitarity from the
final-state strong-interaction S matrix. The
final sm states can be classified by the isospin
and the permutation symmetry of three pions. To
a good approximation' the phase is determined
by the isospin and the permutation symmetry of
the 3m states; thus there is one phase for aI.l the
e's, the ampl. itudes of the completely symmetrical
I =1 3w state, one for all the p's, the ampl. itudes
of theI=1 3w state with mixed symmetry, and one
for all the y's, the amplitudes of the I =2 state.

The experimental quantity of interest is

&I =nlH„IKo& =a„e"".
The experimentally measured quantities are

7l. = e + e'/{1+ &u/N ),
goo = e —2e'/(1 —V2 (u),

where'

f = p +kg~/f~ ~

v2 e' =-~(f,/f, )(g, /f, -g, /f, ),
~ = -f./f, .

(12a)

(12b)

(13a)

(13b)

(13c)

The weak Hamiltonian responsible for g-3m
decays in the six-quark Kobayashi-Maskawa
model can be written H =H' +II with

for the CP-violating part. The parameters f„g,
denote the b.I = —,

' transitions, and f„g, denote the
&I = ~ transitions. They are related to the stan-
dard notation for the E- 2m amplitudes' by

f, = -2 Rea, e"o, f, = 28ea, e"2,

g, = -2 Ima, e"o, g, = 2 Ima, e"2,

IE ) =(IE,&+plE. &)/&1 I pl',

IE.& =(IE.&+ plE, &)!~1+I p[ .
(6a)

(6b)

II' = —rhody (1 -y, )[(Mu —cc)+K(cc tt )j-
x r.(1 r,)s, —

Because of the CP-conserving amplitude (2c), the

quantity q, 0 is not in general a CP-violating
quantity. We therefore limit ourselves to the case
s, =s, to eliminate the amplitude (2c) so that
q, o depends only on s, . From Eqs. (3)-(6), we
then find

„.(n!+n!)—(pl+ pl)X

y =- (s, -s,)/m, '.
The isospin decomposition of the E- 2w ampli-

II.= —'i&E'~r" (1-r, )(cc —tt )r,(1 r,)s, -(14b)

where" A. , E, and K' involve the three mixing
angles and the CP-violating phase ~. With the
phase convention chosen by Kobayashi and
Maskawa, ' the CP-violating piece B satisfies
the 4I = ~ rule so that

ns = ps = ys =go = 0,
and only the CP-conserving piece II' violates the
&I= 3 rule.



180 LING-FONG LI AND LINCOLN WOLFENSTEIN

Since both H' and H consist purely of left-
handed currents, we have for both the usual.
rclat. ion

[Q".»pc ]= -[Q"»pv ] (16)

then be written using the usual current-algebra
technique as

lim (v, w, xt ( Hpc )E') =- —(v,"v, j[Q,",Hpc ](E')
where B» is the parity-violating piece and H pc
the parity-conserving piece of the Hamiltonian and = —

&x, 2 i[Q",H,„][a&. (IV)

The soft-pion limits of the E- 3m amplitude can

When the isospin operator Q" acts on the states
(R;) and

~ 2m), the E-3x amplitudes are related
to the K- 2m amplitudes in the soft-pion limits.
For example,

pc III ) = [&»'IHpvlff')+&&'v IH IIf'&]
a&~o r

[(vr'v'—[Hpv (Z')+(vr'v [ Hpv[ ff') ——(x'x') H, ( Jf')],
k2~o w

(16)

~CR
-

~Q 1

f, g, f 6&3'

~o.
' 1 1

f, . g, f, 3v6'

(19a}

(19b)

(19c)

(19d)

The linear dependence on the energies of the
X-3s amplitudes given in Eqs. (2}and (4) can then
be used to extrapolate from the unphysical soft-
pion limits to the physical region. In terms of
the parameters previously defined, we then
obtain

q, ,(0}—e =i~
fi o'i+~a (22)

The result that this difference is purely imaginary
has been noted before. ' Using Eqs. (12) and (13}
to eliminate g, /f, and remembering g, =0, we
find

1 v2 c. /c., 'n, -.-n, - = (n. -n.-.) 3-+ 3 J3/J]

where we have neglected terms of the order
a, /n, and f,/f, compared to unity. Since o.,/o. ,
and f,/f, are known 'approximately from experi-
ment, Eq. (23) may be used directly to estimate
q, ,—q, . By combining Eqs. (19a) and (19b) we
can obtain a second soft-pion result

Using this result together with Eq. (13a) we obtain

(19e)

We first apply these results to the center of
the Daiitz plot where y =0. From Eqs. (7) and

(15),

o.,/o. „=v 2f,/f, .
Substituting Eq. (24} into Eq. (23}, we obtain

0+ 0 1+ 900 0+» y

(24)

(25)

7)~ o(0) =p +$ Q&/( tX~ + CR~) .
We now use one of the soft-pion results, the
first part of Eq. (19a),

o'i/ni =gj./A ~

(20}

(21)

or q, 0 =q». Equation (24), unlike Eq. (21), is
inconsistent with the unitarity constraints since
the left-hand side is real whereas the right-hand
side has the phase factor exp[i(6, - 6,)]. Thus,
Eq. (25} also is incorrect as to phase. If we use
only the magnitude relation in Eq. (24), we obtain

In. general, soft-pion. results have problems with
phases; thus we do not expect from unitarity
that n, has the same phase as f, as implied by
Eq. (19a}. However, Eq. (21) does not have this
problem since both sides are real by unitarity.

(26)

Final-state interaction effects would also be ex-
pected to affect the magnitude relation of Eq. (24);
both theory" and experiment indicate it should be
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good within a factor of 2 so that we expect Eq.
(26) to be valid within this factor.

In the same way, we can estimate q, , at other
values of y. Using Eqs. (19) in the form p,'/p,
= N/o. „we find in place of Eq. (23)

1 P2 ct, /o. , R2 P, /n,
)+ Q 9+ (}+ )QQ) 3 3 f /f 3 f /f

(27}
where we have also neglected P, /o. , and P, /ct,
compared to unity. Again this result is in terms
of CP-conserving observables. From Eqs. (19c)
and (19d)

(28}

so that, Eq. (2V) becomes

Equation (29}, like Eq. (25), is inconsistent with

the unitarity constraints. It should, however,
give the approximate magnitude of the variation
of q, , over the Dalitz plot.

Recenfly, it has been suggested" that the pen-
guin diagrams coming from gluon exchange might
help to explain the &I =

& rule in the nonleptonic
decay. If an effective Hamiltonian is defined as
involving purely left-handed pieces plus the
penguin opera for

H'=C[sy„(1 —y, )X d](uy A, u+Zy"A. d+ ~ ~ ~ )+H.c. ,

where C is some constant and ~ is the color
SU(3) matrix, our results still hold. This is
because H' also satisfies the commutation
relation of Eq. (16) because the factor
(uy'a u+dy"A. d) is an isospin singlet.

Our major result is given as either Eq. (23) or

(26). This shows that q, , -t), (or t), o
—&),

which vanishes in the superweak model, is ex-
pecfed to be approximately equal in magnitude to
(p, - tl„) in the Kobayashi-Maskawa (KM} model.
Experimentally we know that ~q, -q„) is less
than 0.06 times [q, ~, and theoretically we expect
a small nonzero value of the order of 0.01 to
0.05, the exact value depending on the KM param-
eters and the treatment of penguin terms. " Thus,
an experimental determination of g, ,-g, to
the same accuracy as q, —q«would be of interest.
Proposed experiments'' aim at measuring q~/tl, .
to

leap

'but the most optimistic proposal' to mea-
sure q, o aims at a 25% accuracy. From the point
of view of the KM model, this q, , proposal is
therefore not competitive.

The reason for the small value of g, -q,o is
well known: As long as the &I = ~ rule holds at
least as well for CP-odd amplitudes as it does for
CP-even, &' is bound to be small. From a genera, l

phenomenological point of view, this approximate
&I = -,' rule does not require that ~q. ,—e~ be
small compared to e. However, for the relatively
simple KM Hamiltonian, this follows from the
soft-pion arguments; for more complicated
Hamilfonians, this need not be true. In particular,
for the SU(2)~ x SU(2)„model of CP violation, "
q, -q„vanishes but [ q, ,—e[ may be of the order
of magnitude of c itself.
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