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It is argued that any term in the axial-vector anomaly proportional to n —4, in the n-dimensional
regularization scheme, does not contribute to higher-order processes, in particular those with overlapping
divergences, provided the usual cancellation of the n = 4 anomaly by compensating fermions is effected.

I. INTRODUCTION Y5 YX 2 1~5~

Recently, Frampton has questioned' the renor-
malizability of gauge theories of weak interactions,
or more generally, what is now called quantum
flavor dynamics. His point is that there is an ad-
ditional contribution to the familiar axial-vector
anomaly' which depends on fermion masses and
so cannot be canceled by standard methods. '4 He
argues that if one uses n-dimensional regulariza-
tion, a further anomalous terry. arises proportional
to n -4, hitherto disregarded, ' which can contrib-
ute to processes with overlapping divergences,
for example, violating naive Ward identities and
therefore destroying renormalizability.

An immediate objection to Frampton's work is
that no satisfactory definition of y, exists in other
than four dimensions. 6 However, we will show
here that, even if Frampton is correct, the extra
term does not yield nonzero contributions as n 4
in higher-order graphs. Moreover, we will pro-
vide a general argument based on unitarity that
only the usual anomaly can contribute to any pro-
cess, and therefore that the standard cancellations
are quite sufficient.

II. DIAGRAMMATIC ANALYSIS

The triangle process is represented by Fig. 1.
At the vertices we have I'„=(y~, y~ y, ); the pro-
cesses in question involve either one or three y, 's.
For ease of discussion, let us consider a case in
which all the internal fermion masses are equal
to, say, m, . Then, if I„„~represents the tri-
angle amplitude, and I» represents the same
amplitude with the replacements

the usual triangle anomaly is

1 a
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By working in n dimensions, Frampton' finds an
additional term on the right-hand side of (2),

0. 8
4,2 &~..8piP. (& 4)f(pi-Pg mi).

We will not require the detailed form of f in the
following, but merely note that as p, , it sat-
isfies
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where B is a function involving p, only logarith-
mically. Because of the mass dependence of (4),
it cannot be canceled by the standard mechanisms. '
The question is, can this new term cause problems
in higher-order graphs, for examyle those with
overlapping divergences'

We can answer in the negative by examining
some examples. For simplicity we will use the
Feynman gauge, and carry out the estimation in
four dimensions —any divergence corresponds to
a pole at n=4 which would cancel the zero at n=4
in the new anomaly. In Fig. 2(a) we have a simple
example of an overlapping diagram. To cancel
the usual anomaly we introduce fermions of masses
m, and m2 with opposite y, couplings. Then the
anomalous part of the divergence of the amplitude
has the form

q Ix=, (q [I„„„(p,, q-p„)m- I)(p„q-p„)m](dpi)
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FIG. 1. The "triangle" amplitude. Crosses denote the
vertex where multiplication by q~ takes place.
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FIG. 3. Example in which the pp part of a boson propa-
gator (denoted by crosses) couples anomalous triangle
diagrams ~

since the integral is convergent. Similarly, we
can consider the processes in Figs. 2(b) and 2(c).
The anomalous divergence of the first behaves as

q Fx (q)-(n-4) 2, &e„„„BP,q

Pl Pl (Pl

loops. The anomalous divergence part of Fig.
2(d} involves a superficially logarithmically di-
vergent integral, since, by Weinberg's theorem, '
the second fermion loop behaves no worse than
-p, . However, only the parity-violating part of
that loop contributes here, the leading behavior
of which is softened by the occurrence of fermions
with opposite y, couplings, leaving the amplitude
in the form of Eq. (7}with

while that of the second also vanishes identically,

q Ilg-(n-4), flu„y Sp,"q(dPl} . 8

(Va)

Although the integral in (I) is formally logarith-
mically divergent, it is actually zero by virtue of
the antisymmetry of the e symbol.

Problems can arise when, for example, the ex-
ternal fermion line in Fig. 2(a) is part of a further
divergent subdiagram. However, insofar as that
subdiagram is nonanomalous, it may be rendered
finite by the standard renormalization procedure. '
What about the high-p, behavior of such a subdia-
gram'P We consider examples of closed fermion

2 2
/II~ ~~ ™

J. 1

yielding a finite integral. Diagrams such as 2(e),
with two or more external bosons attached to the
second fermion loop, have vanishing anomalous
divergence: The fermion loop grows no worse than
logarithmically as p, , so the boson loop inte-
gral is convergent.

Our ability to work in the Feynman gauge is pre-
dicated on the preservation of the gauge invariance
of the theory. That gauge invariance will be broken
by any noncanceled anomaly. So, it behooves us to
consider the diagram in Fig. 3, in which the PyPy
part of one of the boson propagators acts on two
fermion triangles; because of the anomaly, we
may not be able to eliminate this unwanted term
by use of Ward identities. We consider the an-
omaly part of both fermion loops, for, otherwise,
the Ward identities may be used. Again we cancel
the anomaly to the extent possible by additional
fermions, leaving us with the amplitude
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FIG. 2. Examples of processes involving the anomalous triangle diagram as part of a process with overlap.
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for again the integral converges.
Thus we see no evidence for any of the prob-

lems foretold by Frampton. ' Clearly, it should
not be hard, merely tedious, to construct a gen-
eral proof along these lines, that there are no
consequences of any anomaly term proportional
to n -4. Instead, we shall now offer a general,
independent argument, based on unitarity that the
standard anomaly-can&cling schemes are suffici-
ent.

III. UNITARITY ARGUMENT

The argument is based on the fact that one can
analyze any process in terms of all possible cau-
sal exchanges of real particles; the resulting ab-
sorptive parts determine the full amplitude up to
contact terms. First, we must remind ourselves
of how the triangle anomaly emerges from this
point of view, '" Suppose, for example, -we con-
sider a triangle graph coupling a virtual W to a
real W and y." A spectral form (dispersion re-
lation) may be obtained by considering a process
in which an incoming timelike W produces a real
exchanged lepton pair. The corresponding ampli-
tude, in the Weinberg-Salam theory, is propor-
tional to"

I„„„=iTr dco~dar~~ 2m' 5 +P'- q

(r) rPrpr5+ rxr5~Prv)x, r.(~ —~p'), (9)
1

m+7 p k

as far as the y, part is concerned. Carrying out

the trace and phase-space integration, and re-
moving the causal restriction that the exchanged
particles be real (space-time extrapolation),
leads to the amplitude'

dM'I
q +M sem

2 2&+~ 2 n
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m~ -M

(10)
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c= dM',', +B, M' =, 14

Now we are prepared to discuss the cancellation
of the anomaly. As usual, we have in mind can-
cellation of the anomaly by compensating fermi-
ons, as first suggested by Gross and Jackiw. ' We
will show that this cancellation occurs even when
the triangle process is part of a larger, compli-
cated graph with overlapping divergences. It is
sufficient to consider the diagram in Fig. 4. Con-

The factor in front of B,(M') is' required by elec-
tromagnetic gauge invariance, as shown in Ref.
10; also given there are explicit forms for the
weight functions 3, and B, . The anomaly arises
because if we were to compute q~r„„~ we would
obtain a causal amplitude which differs from (9)
by the replacement y q--m. Space-time extra-
polation of that amplitude yields

Co dM'
~2 q'+M' —i~

with

-mI (I') = -B,(~') —~'B,(M') . (12)

This, however, is clearly not the same as q I„„~,
the difference, the triangle anomaly, arising be-
cause -q'4 M':

L
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FIG. 4. Causal decomposition of a general process in which the fermion triangle couples to an arbitrary fermion line.
Long lines represent real particles, that is, indicate where the general amplitude is "cut".
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traction with the external momentum is to be taken
with respect to the lower boson leg, and the ex-
ternal fermions may be virtual, so this diagram
may be part of a larger process. In particular,
q~ may arise from the qqq„part of the boson prop-
agator. We use unitarity" to analyze this process
in terms of all possible causal exchanges of real
particles, '~ as also shown in Fig. 4. The triangle
anomaly discussed above occurs in Fig. 4(a), be-
cause the three-boson vertex is the full amplitude
given, for example, in its axial-vector part by
(10}. Figure 4(b), on the other hand, has no an-
omaly since the fermions to which the divergence
couples are real. Likewise, processes Fig. 4(c}
and 4(d} give rise to no anomaly because, for ex-
ample (P'=0),

+» r, rP r „(~—rP') r„, (15}

where any anomaly would be due. to the last trace,
which vanishes when integrated over phase space:

d(opcf(o~s(211) 5(P + P 0) epg~sP P

It remains for us to analyze the processes of Figs.
4(e} and 4(f), which we can again do by a causal

e~ »
( P}

r'r, rPr„(e —rP')r.

I
~ r, rpr„(~ —rp') r,~+ r(e-p

analysis. As before, the triangle anomaly comes
only from the process where the full, noncausally
analyzed, fermion loop occurs, coupled to two
real bosons. This is then just the usual triangle
anomaly, completely cancellable by the standard
method.

In summary, provided Tr [T,(T„,T,}]=0, lead-
ing to cancellation of the usual anomaly, '4 Lee
and Zinn-Justin's proof' of renormalizability is
not disturbed. For, according to the above, we
can (in an ft gauge) (i) analyze the process in ques-
tion in terms of all possible causal exchanges (cut
the diagram in all possible ways), (ii} use naive
Ward identities to compute these causal processes,
and (iii) determine the full amplitude by space-
time extrapolation (write the amplitude in terms
of a dispersion relation}. Since this scheme pro-
ceeds in a step-by-step manner, in which ampli-
tudes are expressed in terms of subamplitudes,
which can in turn be causally analyzed, one will
never encounter any remnant of the triangle ano-
maly.
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