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We use a semiclassical method to calculate the potential energy of a heavy quark-antiquark pair. We also
present numerical results for the average distribution of gluons which surround the quark-antiquark pair.

L. INTRODUCTION

A method for calculating the effects of interac-
tions between heavy quarks within the framework
of quantum chromodynamics (QCD) would be of
great utility.'"!* For heavy-quark systems, the
problem of determining an effective QCD interac-
tion potential is perhaps most clearly isolated
from the intricacies of the field-theoretical bound-
state problem. As quark masses increase, more-
over, the corresponding QCD interaction strengths
decrease, and the calculation of the potential in
perturbation theory becomes more reliable. For
systems such as the J/3 (Refs. 12—-17) or T (Refs.
18-20) families of resonances, however, the
strong-interaction strength o is 1-2.""*° Only
heavy-quark bound states of much greater mass
might be expected to be adequately described by a
Coulomb potential. For systems where «, is of
moderate strength, such as the J/y and T, we
must develop calculational techniques that go be-
yond those which are appropriate to weak coupling.

A feature which distinguishes QCD from QED is
that even static sources will induce an enveloping
cloud of radiation.*® This cloud arises from non-
vanishing couplings of stationary quark sources
and transverse gluon degrees of freedom. Such
couplings may ultimately be responsible for con-
finement through nonperturbative mechanisms and
certainly yield numerically significant contribu-
tions to the quark-antiquark potential for inter-
mediate coupling strengths.

In Ref. 8, henceforth referred to as “I”, we
introduced an approximation which may prove use-
ful for describing the gluon cloud that surrounds
a static gg pair. The approximation is an analog
of the Tomonaga approximation of nuclear phys-
ics.?”% In I, we demonstrated that this method
together with renormalization-group improvement
accurately approximates the known results of per-
turbation theory up to and including effects of at
least order o *Ina, (Ref. 5).

In the present paper we present some results of
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numerical calculations of the gluonic structure of
qq states in this static limit. Qur purpose here is
not so much to accurately determine a gq effective
potential—indeed the extraction of an effective po-
tential from our static-quark calculation requires
detailed consideration of velocity-dependent ef-
fects®-3¢—but rather to investigate the structure
of the non-Abelian gluon cloud generated in such
states. We also hope that the techniques discussed
here may provide a first tentative step along the
road toward the understanding of the structure of
heavy-quark bound states. :

The outline of this paper is as follows: In Sec.
II, we briefly review the results of I. The numer-
ical solutions of the equations derived in Sec. II
are discussed in Sec, III. In Sec. III we also de-
scribe the configuration-space structure of the
gluon cloud, its charge density, and its chromo-
electric and chromomagnetic fields. The detailed
numerical analysis of Appendices A-E are utilized
in this section. Section IV offers a summary and
discussion of our results. :

II. THE TOMONAGA APPROXIMATION
In this section, we consider the interaction of
stationary, pointlike, spinless SU(N) color
sources. These sources are described by charge
operators @, and @, satisfying the algebra

1 i
QaQb= 2_1\7 5ab+ %dachc-‘- Ef“chc’ (2.13)

—— 1 1 —
QaQb= Eﬁ 6ab'— %dachc-"Efachc’ (2.1b)

The indices a, b range from 1 to N2-1. The
charge density corresponding to these operators
is

Pl =@ T - s R)+Q%0 (T +5R), (2:2)

with coordinates chosen so that the quark resides
at R/2, and the antiquark at —R/2. In the analysis
which follows, we shall measure distances in units
of |R|, corresponding to setting |R|=1.
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The interactions of these static quarks are con-
veniently described by the QCD Coulomb-gauge
Hamiltonian, We do not address the problems of
the Gribov-Mandelstam ambiguities that may arise
in the implementation of this gauge.’®*'*® Such am-
biguities dppear to be most significant in regions
characterized by “large fields” where our approxi-
mation is also subject to large corrections arising
from many other sources.**® Qur calculations
show no hint of any such ambiguities.

In the Coulomb gauge the independent degrees
of freedom correspond to transverse gluons. The
interactions include cubic and quartic transverse-
gluon couplings, and instantaneous Coulomb inter-
actions of the quarks and gluons. The full set of
instantaneous Coulombic interactions are nonpoly-
nomial in the gluon fields and, even in the static
limit, are the source of nonvanishing interactions
of quarks and transverse gluons,

These interactions arise from the following term
in the Hamiltonian,

Veur =t 2 [ a2, (2.3)
a .

where E¢(F) (a=1,...,N2=1) is the longitudinal
chromoelectric field, The longitudinal chromo-
electric field is a dependent field which may be
determined in terms of the quark and transverse-
gluon degrees of freedom by solving Gauss’s law:

DjEj=VjEf+gAjXE;+gAI><EIL=pqum_k’ (2.42)
or '

DJEf=pquark+gE}LxAj =J9, (2.4b)
We use the notation

(A XB)°=fabcAbBc. (2.5)

In these equations, E , is the transverse chromo-
electric field and J° is the charge density arising
from quarks and transverse gluons. Using Eq.
(2.4b) in Eq. (2.3), we obtain

Vo= [ @rar 13@®2,GIF),  (2.6)

where the Coulomb energy operator <I>a,,(F, r’) is
&=(V:D)*(~v3(v-D)?, (2.7)

or

$,,(r,1")=

_v2 (F’;')Oab
+ ach 1 A § _1_ (" "l)+0( 2)
gf v Vi _ye r,r g7).

(2.8)

In perturbation theory, the leading-order coupling

of transverse gluons to the gq pair is given by the
second term in Eq. (2.8).

In the stationary-spinless-quark limit, quark
recoil and spin effects vanish, The spatial and
spin structure of the quark-antiquark sources are
time independent and do not induce correlations
in the spatial wave functions of successively emit-
ted or absorbed gluons. For this situation, as was
argued in I, a reasonable approximation for the
description of the gluons may be obtained by sup-
posing that all gluons share a single spatial wave
function. Note, however, that because the quark
and antiquark reside in a low-dimensional repre-
sentation of the SU(N) color group, color recoil
effects are expected to be very important. There-
fore, an essential ingredient of any approximation
to the description of such quarks must be the op-
erator structure of the color charges of quarks
and gluons,

The Tomonaga approximation discussed in I is
tailored to fit this body of constraints. The Hamil-
tonian which describes quarks and gluons is di-
agonalized in a subspace of states consisting of
arbitrary numbers of gluons of arbitrary colors,
all sharing a common spatial wave function zp,(k).
The operator structure of the quark and antiquark
charges is exactly maintained. As shown in I,
matrix elements of the Hamiltonian in this sub-
space of states correspond to matrix elements of
an effective Hamiltonian which describes N2-1
“coordinate” degrees of freedom (corresponding
to the N2~1 colors of gluons) interacting with the
NZ2~1 color “spins” of the quark and antiquark.

In deriving the effective Hamiltonian presented
in I, we made a further severe truncation of the
full Hamiltonian as it would appear in the Tomo-
naga approximation. We retained only the leading
interaction term represented by the second term in
Eq. (2.8). The neglected terms include modifica-
tions of transverse-gluon propagation arising from
the background field of the quark charges and from
mutual interactions of transverse gluons. We do,
however, allow for a shift of local operator expec-
tation values from their vacuum values, and in this
sense we are performing a mean-field approxima-
tion.

The resulting effective Hamiltonian is

5=8,fa"-a+FQ Q+7(@xQ)  (a+ah],  (2.9)
where a! and a, (@=1,...,N?~1) are one-gluon
creation and annihilation operators. The commu-

tation relations of a, a', @, and @ are, in addition
to those given in Egs. (2.1a) and (2.1b),

(@0 @3]= 0, 5 (2.102)
[a4;a,] =‘[aa’ Q,1=[al,Q,)
=[a,,@,]=[a},@,]=0. (2.10Db)
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The three numbers §,, B8, and ¥ are functionals
of the classical gluon wave function . The Hamil-
tonian is diagonalized for arbitrary §,, g, and ¥,
allowing us to obtain its ground state |Q). The
wave function ¥ is determined by minimizing the
ground-state energy &,[¥] with respect to i, sub-
ject to the normalization condition

dase " -
[ s P00 =1.
The variational calculation performed in I gives

J(k)
W) =g°P 1, (2.12)

(2.11)

where A is a Lagrange multiplier which enforces
Eq. (2.11). The current J(k) is the Fourier trans-
form of the spatial factors which couple to A%(F) in
Eq. (2.8) (Fig. 1),

- o 1 1
= 3 -iker T — = =
J&) fd ve [<4w|r—rll 411|r1—r2|)

xﬁ( ! L ]
4rir—1,| ~ 4miT,-1,1) )

(2.13)

The quantity P is the ratio of ground-state expec-
tation values

Q1(QxQ)-(a+a) )

P 2Qla’-al)

i

(2.14)

The Lagrange multiplier A must be determined
so that § is normalized to one. As the solution for
A as a function of g2 involves the intermediate step
of diagonalizing 3C (the couplings of which depend
on A), the problem of determing A is complex and
must be solved numerically.

In the following sections, we discuss the solution
of this model theory. We determine A as a func-
tion of a, find the dependence of on a, and cal-
culate the gluon wave function ¢

III. RESULTS

The coefficients §,, B, and ¥ may be computed
in terms of functions C,(A) as

¥—D —

:q+l/2k
I
—_— — |
J(k) = amvwewl
k |

I—a -

I g-1/2K
*

FIG. 1. The current E(E).

o 02 ’ (3.1)
382 C, 3.9
P=47 T =AC, 8.2)

and
1/2
s G,C (3.3)

The functions C,(A) are obtained from a classical
current J as

cm= [ (Zd3k ’2’(k1 A)”. (3.4)

The parameter A must be adjusted so that the glu-
on wave function is normalized to one,

g%C,(A)P2=1, (3.5)

To solve this equation for A, 3¢ must be di-
agonalized for arbitrary A. The root of Eq. (3.5)
is then determined by successive iterations. We
have diagonalized 3¢ numerically in the basis dis-
cussed in I and determined A. To perform the nu-
merical analysis, we first obtained expressions
for C,(A) that could be easily evaluated. In Ap-
pendices A-C, the coefficients in the series ex-
pansion

C.(8)= 411)3 <Z

=0

= »
L e Y —@’A) (3.6)
p=1 P!

are determined. The coefficients C,(A) are de-
rived from

n!

C,(A) = (‘)H<ﬁ>"ﬂcl(m . (3.7)

We have checked this tedious analytic evaluation

of C,(A) by comparing Eq. (3.6) with the asymptotic
series for large A and by directly evaluating Eq.
(3.4) with the Monte Carlo numerical integration
routine Vegas.?® The asymptotic series for C,(A)
is derived in Appendix D. Plots of C, and C, are
given in Figs. 2 and 3. Both C, and C, are rapidly
decreasing functions of A for 0<A <1 and are not
well approximated by their lowest-order terms in
the expansion of Eq. (3.6),

0.25

020

0.15

@m3c,(n)

Q.10

005 L .

FIG. 2. The function C;(A).
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FIG. 3. The function Cy(A).

C,(h)= T‘llw?—[%(l - —1”;—>+ 32—11 A 1nA] . (3.8

1 2

CZ(A) =- (4”)3 '3—”"

InA, (3.9)
for A2 %,

We have used the functions C, and C, in the di-
agonalization of 3¢ which was carried out numer-
ically for SU(3). We varied the parameter A until
the normalization condition [Eq. (3.9)] was satis-
fied. This procedure gave us a relationship be-
tween Aand o,

=%asG(as). (3.10) .

The lowest-order perturbation-theory value for
A was found in Ito be A=3a,, sothat G(a,) sat-
isfied

G(0)=1.. (3.11)

To an accuracy of 10%, G(a,)=1 for O<a, <2, A
plot of G(a,) is shown in Fig. 4.

The quantities &,, 8, and ¥ as functions of a;
are shown in Figs, 5-7. Several features of these
functions are noteworthy. For small a , both &,
and g rise rapidly from zero while the parameter
¥ rises slowly from zero. For intermediate values
of a,~1-2, §, levels off and B and ¥ vary linearly.
In fact, for large o,

Blag) ~=y(ay). (3.12)

The perturbation-theory values of §,, B, and ¥

.10 T T T
1.08
.06

.04

G(as)

1.02

1.00

FIG. 4. The function G(ay).

2.0 T T T

€o(as)

o 1 i L
[ 0.5 1.0 1.5 2.0
Qs

FIG. 5. The function §y(a,).

are given by Egs. (3.1)-(3.3) and Eqgs. (3.8) and
(3.9). With A=3a,

2 1 .
? ~ 92 - T ,
= 41r(1 12) Tna, (3.13)
= 1
g= = a lna, (3.14)
2-(1- -
411(1 12)
and
— 32 —g— /2
y=-a?(-o—lna,) . (3.15)

For o 2%, &, B, and y show significant devia-
tions from their perturbation-theory values.
The magnitude of y determines the strength of

‘mixing between states with different numbers of

occupied coherent gluon modes. The slow increase
in the magnitude of ¥(c,) for a,51-2 leadstoa
small gluon content of the ground-state wave func-
tion. In fact, for o, =2, the average value of the
number operator (2 |a'-a|Q) is less than 0.25 as
shown in Fig. 8.

The amplitudes for the ground-state wave func-
tion to be in the states |0), |1), and |2) are shown
in Fig. 9. The amplitude for |2) reaches only
~0.10-0.15 at & ~2. The contribution to the
ground-state energy from these various modes is
~(amplitude)?, so that for o, <2, the contribution
from modes with n > 2 is 8E <1-2%. For this
range of a  the system is adequately described as
a mixture of the two total color-singlet states:

1.25 T T T

100 - N

0.75 - T

B(as)

0.50 |- B

0.25 - T

FIG. 6. The function B(ay).
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FIG. 7. The function y(ay).

|singlet quark pair, no gluons) and |octet quark
pair, one gluon).

The function F(as) which measures the devia-
tion of E from its Coulombic dependence on o,

ER)=- 22 o, F(a,), (3.16)

is shown in Fig. 10. The function F(«,) rises
from its value of 1 at ¢ ;=0 and acquires a linear
dependence for o, ~1- 2 For o, = 3, the function
F(a,) is not well approx1mated by its perturbation-
theory value of

27 72
F(as) =1+ ?<1 - E)asz

+‘f_1'r allna +0(a®). (3.17)

Associated with the gluon wave function_i(ﬁ) are
various classical fields in coordinate space.
These are related to effective field operators in-
the Tomonaga approximation. In matrix elements
involving such states we have

£ &) -~ EGR)(a,+al), (3.18a)
E,K) -8 ®ila-a,), (3.18b)
B,(x)=8()(a, +a}), (3.18¢)
pEer(x) = p(R)ia x a', (3.18d)

where the c-number fields &, &,, &, and p are

0= [ —Lk _ iR (3.192)
a®- [ T <,

0.25
0.20 - B
T 015 7

0.10 |- !

FIG. 8. The expectation value of the gluon occupation
number F(ay).

1.0 ﬁ\\l
10>
0.8 |- 7

06 . 7

04 >
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0.2 |- |
12>
o L

0o 0.5 L.O 1.5 2.0
As

FIG. 9. Th_e amplitude of the ground-state wave func-
tion to be in the states | 0) (top line), | 1) (middle line),
and | 2) (bottom line).

Z da’k T T 9

&.® f__-"(znlem k| e H(k) , (3.19D)
BR)=VxERX), (3.19¢)
p®)=6,X) - ARX). (3.19d)

Figures 11-18 show plots of @%(x), & 2(x),
|®(x)|, and p(x) as functions of cylindrical vari-
ables 7, and z for A=0 and A=3., These fields are
azimuthally symmetric. The overall scale of the
magnitude of the various fields is arbitrary, the
important comparison being the relative shape of
the distributions. The quarks are located along the
z axis at positions which are obvious in the figures.

For any A #0 the asymptotic behavior of the vari-
ous fields can be deduced. For large 7, the poten-
tial @(X) falls like 1/2 while &, and @ fall like
1/7%. Thus, the resulting gluon charge density
falls like 1/,

The normalization condition on the wave function
is precisely the condition

f & p®)=1. (3.20)

For A=0, @ behaves asymptotically as 1/,

-while §, and @ behave as 1/7%. At the point A=0,

p becomes non-normalizable, accounting for the
logarithmic divergence in C,(A) as A~0,

Near the quark (X=T ) the dominant contribu-
tions to @, §,, and ® come from the large |K|
region of integration: |k|>A. The analysis of
Appendix E then indicates that @ ~constant, |&,|

1.6 T T

F(as)

1.0 1 | 1
0] 05 . 10 1.5 2.0

as

FIG. 10. The function F(ay).
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T
FIG. 11. The field @2 for A=0.

and p~1/|%-T,|, and |&@
0 is the usual polar angle.

The magnetic field is singular near the quarks
and its value depends on the path of approach to
the position of the quark. Along the line separat-
ing the quarks, the field is zero. As A increases,
the fields concentrate nearer the quarks.

The charge distribution resembles the distribu-
tion of transverse electric field. The charge is
concentrated near and between the quarks for
small A, and increasingly near the quarks for in-
creasing A.

For small A the transverse electric field is
spread out in the region between the quarks. In-
creasing A increases the concentration of the elec-
tric fields near the quarks.

As the gq separation changes, the magnitudes
of fields all scale with powers of 1/R correspond-
ing to their canonical dimension. That is,

~siné/|x-T,|, where

1 . X
—é(as,R,)?)=-§ @(as, 'I—Z"), (3.21a)
- - 1 - X
gl(as’R’x)=_RT L(as, R_)’ (3.21b)
&o B §)=i(§<a Ed (3.21¢)
s? b RZ s? R b .
pla, B, %)=~ (a E (3.214)
591V RS p\ A, R/ .

Thus, as quarks are separated, the overall shapes
of the field distributions are unchanged but magni-
tudes decrease. Note, however, that an observer
sitting at a fixed point in space as the pair is sep-
arated does see both the overall scale decrease and
effects due to the change in his scaled coordinate
X/R.

FIG. 12. The field @ for A=3,

FIG. 13. The field &, ? for A=0,

IV. CONCLUSIONS

In this section, we summarize our results and
consider their implications for the physics of
heavy-quark systems as described by QCD. Our
approximation scheme is designed to give a rea-
sonable representation of the gluonic structure
generated in the presence of stationary quantum
charge sources. The validity of the Tomonaga
approximation rests on the notion that in the ab-
sence of quark spatial and spin recoil effects,
gluons of a single space-spin wave function will
be dominant. The truncation of the Coulomb-gauge
Hamiltonian to the leading (in perturbation theory)
gluon-source interaction of Eq. (2.8) is motivated
primarily by the desire for simplicity and certain-
ly is appropriate for sufficiently small coupling.
Ultimately, the reliability. of our approximation
scheme for increasing o, can best be checked only
by computing higher-order effects.

With our approximations, the following picture
of the quark-antiquark state emerges for couplings
a,s1-2: The total color-singlet ground state is
mostly pure (gg) singlet with a small admixture
of the one-gluon state (¢q);(G);. The amplitudes
for components containing more than one gluon
are tiny despite the fact that the Tomonaga ap-
proximation allows for their presence. We inter-
pret this result as a dynamical consequence of the
theory. Even at relatively large coupling (a,~2)

FIG. 14. The field§,? for A=3.
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FIG. 15. The field |®| for A=0.

there is no dramatic increase in the gluonic com-
ponent of the lowest-lying singlet state. This re-
sult, though perhaps disappointing from the point
of view of one looking for dramatic behavior sug-
gestive of an approach to confinement, is in ac-
cord with the naive quark-model picture of such
states as predominantly pure gq.

The behavior of the energy as a function of
is also undramatic. Inthe region of o ~1-2, it
deviates less from the Coulomb form than might
be suggested by the extension of the order a * Ina,
perturbative results beyond their obvious domain
of validity. Only the shape of the gluon wave func-
tion appears sensitive to the strength of the coup-
ling. This dependence is the source of nonanaly-
ticity in coupling at o =0.

The point in coupling at which our approximation
scheme breaks down is not clear. The small av-
erage gluon number in the region o ~1-2 suggests
that corrections in this region will be small. The
Tomonaga approximation itself (which becomes the
Tamm-Dancoff approximation when restricted to
M guon= 1) becomes unreliable when mechanisms
which tend to disperse gluons in space-spin are
important. Such effects are certainly present in
QCD (for example, in the interactions of gluons
with one another) but may be expected to be small.
One term which deserves particular attention is
that representing the Coulomb interaction between
a gluon and one of the sources (Fig. 19). It is this
term in the classical Hamiltonian which is respon-
sible for the Mandula instability of the Coulomb
field for a classical color source of sufficient
strength, a > 3 (Refs. 37 and 38). We might ex-
pect that this instability should be reflected in the
quantum theory for sufficiently large coupling if
the corresponding term in the Hamiltonian is in-
cluded in our approximation. This expectation
leads to an upper bound on the value of a, at which
we can have any real confidence in our results,

FIG. 16. The field |®| for A=3.

FIG. 17. The field p for A=0.

Note, however, that the instability is a single-
charge effect and may not dramatically affect the
interaction energy between charges.

The techniques introduced in I and analyzed here
might be expected to be of use phenomenologically
in the characterization of properties of heavy-
quark bound states, It is important in this connec-
tion to reiterate the observation that velocity-de-
pendent effects in the finite-mass case are not
trivial and the extraction of an effective gq poten-
tial is complex.**-** A more fruitful application of
our techniques might be the investigation of spin-
dependent forces induced via the gluon cloud.
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APPENDIX A

In this appendix, we find an integral represen-
tation for the current J(k). We begin by recalling
that the current can be computed from the Feyn-
man graph of Fig. 1 with the result

FIG. 18. The field p for A=3.
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FIG. 19. The Coulomb interaction of a gluon and a e o e
single charged source.
q_ wrfz _zl .z
(k) =2 _[ @7)? € a- e a FIG. 20. The contour 4.
1 1 . 1 [~ -1 > -
X 55 =——5. (A1) J(k)=———( —ku—zk-R)
@+:K)° @-5k)° 4 k |
- t i(a-1/2 %R —kR[a(l—ot)]l/2
In this equation, the separation of the quarks is X _O/ doe e - (A3)
R. The Coulomb propagators in Eq. (Al) may be : . .
combined using a Feynman parameter to yield Finally, if we change variables
a =cos?(36), (A4)
J(k) =2i(l§ -k §1—2' k -I?) then Eq. (A3) becomes
I T 2
><fldoze“""””“-i JO"“W( _ki_zk r)
0
T ~ A~
A% i Are > X f sind d@ exp[3 kR (i * R cosé - sind)].
—5(2;;1) e TR R[G+ a(l - @)k%]2. A X xp[2 ]
' (A5)
(A2)
. . . APPENDIX B
The integrations over d°g give . In this appendix, we shall evaluate the integrals
| .
d3k 1 Ry
= TNAe T e NE . : Bl
C,(8) f @m)32k (R+A) (k) (B1)

We shall proceed by deriving a Mellin integral representation for C, as a function of A. [In Appendix C we
shall use this Mellin representation to evaluate the coefficients of a Taylor-series expansion for C,(A) in
powers of A and powers of A times InA. We shall also use this representation to obtain an asymptotic ex-
pansion in inverse powers of A and inverse powers of A times InA.]

We begin by observing that

c,0)= (-p( p—l,) (d%)’ e, (B2)

so that without loss of generality we may consider only C,(A). Using Eq. (A5) with R =1, we have

1 ad 1 1 T
€, (M) =gy fo Rdk fl dz fu sing, di, sing,dy,

X (1 -2®) exp[-3 k(siny, + sing, - iz cosy, ~ iz cosy,)]. (B3)

We introduce a Mellin representation by the identity

1 1 [ dyg[kY
—= A_f,z_m' (7\—) TL+n)I(-n). (B4)

The contour 4 splits the poles of the I" functions in Eq. (B4) and is shown in Fig. 20. Interchanging the
orders of integration in Eq. (B3), and using Eq. (B4), we find
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1 d 1 T
C,(A)= 27(2”—)4_/;2—:2,—1"(1 +’r1)1"(—17)‘/_‘1 dzl sing,dy, siny,dy,

X fw dk A" km-l(l _22)

0

X exp[ -3 k(siny, + siny, — iz cosy, — iz cosy,)].  (B5)
The integrations over 2 are easily carried out with the result

A d"l 2 2+
Cl(A)=m[W‘F(1+ﬂ)r(2+77)1—'(~77)<x>

1 T :
X f dz f siny, dy, sind, dy,(1 — 2%)(siny, + siny, — iz cosy, — iz cosP,) ™", (B6)
-1 0
The integral over z is
1
J dz (1 - 2%)(siny, + siny, — iz cosy, — iz cosyP,) ™"
-1

=2(cosy, + cosy,) > Im{ E(

siny, +siny, ) ( siny, +siny, N i>‘” 1 ( siny, +siny, +i>M
n

cosy, +cosy, | \ cosy, + cosy, " n—1\cosy, +cosy,

1 (simp1 +sind, z) e [1 . (fm_%ﬁ{%_ﬂ } (B7)

" n+1 \ cosy, + cosi, cosy, + cosy,

In this equation, Im represents the imaginary part taken with 7 treated as if it were a real parameter.
Now, we change variables:

Y=t +9g, (B8)
V=3~ ). (B9)

With these new variables,

1 dT] “n=1
C.0)= gy f,‘z—ﬁ T(1+n)T (2 + 7T (=7)A

><f1r dzp+fw+,2dz/)_[cos"’zj)_ - cos?(y,/2)]cos™*(¥,/2) cos >

o b, /2

X {%sinip—*sin n@,/2 -7/2)- n i 1 sin[(n -1 (%- - g)] |

2
-7 sin[(n+1)(zl)+/2—7r/2)]}, (B10)
or with 9,/2~3,,
Ci =5 [ ZL p+ L@+ nr-na

2(2m)* Jy 2m

T/
§ f as, £ " ay.(cos?y. - cos™y,) cosy, cos™

(o}

1
n=1

sinl(n- D, = /20 - sinln+ ), - 7/2).

><<—3—] sin [n(y, - 1/2)]- -
n
(B11)

Elementary differentiation yields the identity

fdx cos % = 1
o -

T cos' %y, F (3,3-30a; 5~ 3a;cos). (B12)
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With the identity

rG-za)r@)

2F1(é,%_§a; 2= 320; 1)= F(l—%a)

(B13)
and Eq. (B12), the _ integration in Eq. (B11) can be performed to yield

C,(p)= LI+ (2+ T (=nA™t

2(2 2(27)* ./; 27

/2 1 . 1 :
Xf de{[sm'z "9< 71 k(e ‘—én,%—én;smaO)-—;?—_j2F1(%,%—%n;%—%n;sm23)>
o

1 1 TrE-zpreE, 1 1 r(%-émr(%)]
sinf n+1 Ir'(zn) sind n-1 TI(l-137)

2 . 1. 1.
x(n cosé sinnb — — sin(n—-1)6 - T+l sm(n+1)0)} s (B14)

where we have let 6=7/2 -3,.
Now, we use the identities (Gradshteyn and Ryzhik 9. 137. 17

(M+1)F (3,3 =333 = 31;8i0%0) = (1 = 1),Fy(3,~5 =373 3 — $1;8in%0) =2,F (5, -3 = 41;% - in;sin%0),  (B15)

and
2 cos@ sinng =sin(n +1)8 +sin(n -1)6, (B16)
to rewrite Eq. (B14) as

an_ it L
CyA)= (ZF)Tf i - T(1 +n)T(2 +n)T(-n)A
" e[ (L L1 IG-imTré)
xf de[( ~2-n F , 2~ 27 2
) l—ﬁrsm 69F (3, -3 —3M;% —37;8in’9) - z Sime nT1 . T-ln)
1 1 1 TGE-3nTE)) (sin(n +1)6  sin(n-1)8 ]
Ty sie =1 T(-in J\ 7+l ~ 7n-1 ) . (B17)
Using Bateman (2,8,12),%
S1006 _ ¢in6 cosé oFy (1 +g—, 2 ;3 sin 9> (B18)
and the Mellin representation for the hypergeometric function
2F§(Q’B 3Y 3R ) P(Q)F(B) 2711 ( ) r(p_{__.y) ’ . ( )
we see that
sin(n+1)6 sin(n =1)6 T3) sing Q 900 i DG T p +30)T(5 +p ~3n) /
- cosé sin®’6e (1 ~p).
n+1 - n-1 _"71..(2 +3mTG -3m) f T(p+3) ( °)
(B20)

In the above equation we shall take 4 to be a contour parallel to the imaginary p axis with 1> Re(p) > 3.
With the identity of Eq. (B20), Eq. (B17) for C (A is
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dp et ime DA NI +m)T(=nTE)TE +p +3mT(3 +p —3n)T(1 —p)
Cid)= wf 2ni Jy 2 27 TG+ TG +3)

T/2 -2-17
xf do s1n2”*‘9cose(—-1—-1?—9—2F1(2,—2 -3n;% - 4n;sin%9)
0

L TI(z -3n)T() 1 TG -inrd
" 2sing (n2+ 1)1“(-%217) T 2sin’e (n-DI(L —Z%n) ) ’ (B21)

Under the substitution
z=sin’f, (B22)
this equation becomes

Ap_ pyn-tyin DL EMT(2 +MT(=MTE)TG +p +3mTG +p —3nIT(1 -p)
) =gy o [ e e TG+ I ~InT(p + D)

Z-i-n/Z L L 5 L
deZ _“'TzFx(z, -3 =3M;% —3N;2)

Ay-i/2 r(z zﬂ)r(z) +1z _3/21"(2 zn)r(z)

—_— e B23
ENCES ) =TT —) (B23)
Using Bateman (2.4.5) ,*?
! T(c)T(1 -b)T(za + w)T(za - w)
a/2-w-1 e ) — 2 2
_/; dzz 2I;“(a’b’c’z)_1"((11)1“(0—§a+w)1"(1—b+%a—w)
Te)r(l -») b a2t .
“T+a-b)T(c -a) j{; dz z JJia,l-c+a;l-b+a;z), (B24)
and the identity
1 .
oL (=5 =3m, -1, —3n;2)= 1—<1+n) . (B25)
the integrations over z may be performed with the result
1 an r dp s i LA+ T (24 )T (—71)1“(2+p+2n)1“(p -zmT( - p)
C.(AN)=- — [ == (A)" el B26
0= =5z S, mi f, 2w (V77 (0 —OT(E+ In)TG 2T+ 3) (B26)
With this integral representation, we see that C,(A) possesses the Taylor-series expansion
1 At & A8
C,(0)=5( D =t+ A —ﬁ> B27)
(8) (411)3( ot I 2 (

(We shall calculate the coefficients a, and B in Appendix C.)
For large A, C,(A) has the asymptotlc expansmn

1 N1 1
Cl(A)=W<;—A—p’}’p+ InA gﬁ5p> . (B28)

(We shall calculate the first few terms in this asymptotic series in Appendix D.)

APPENDIX C

In this appendix we shall calculate the coefficients @, and B, in the series expansion for C,(A) [cf. Eq.
(B27)]. To do this, we use double Mellin integral representatlon of Eq. (B26),

dan aim1inp L1+ T2+ )T (=n)T(5 + p+ $1)T(p = $7)T(1 - p)
€)==z J, ;e (0 ~HTG +InTE ~ 5T (7 D)

To begin we deform the p contour to the right in the complex p plane and find

(c1)
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an_

T(1+7)C(2+ 7)1 -7) TE+in+ B)I(1 -39+k)
25(271)a 21 )3 (€2)

TE+inTG -3n) &2 (k+3)(k+3)T(k+ 3)T(k+1)

The 71 contour is deformed to the left in the complex n plane, with the result

C,(A)= (a)ym

Cy(

i 2 T(1+k=3p)T G+ E+1p)
211) rerd

R=0 F(P+ 1) k+z)(k+z)r(k+2)r(k+ n)rq - P)F(2+2P)

X (L+p{InA = p(p+ 1)+ 5[9(1 —4p) = ¥(2+3p)] -2 [¥(1+ £ =3p) =9G + £+ 1p)]D.
(C3)

We now turn to finding explicit results for the coefficients in

Ata &\ A%8
C,(n)= (477)3( 3 e 3 ;,Jl) (c4)

We first consider the coefficients 8,. For odd p, these coefficients are

(-1)" i: (B+n+1)+++(k+1) (C5)

Pams ™ (an+3) 45 (er D+ D+ D)+~ (kv g -] °

The summand may be decomposed into partial fractions and the sum over & converted into Euler dilog-
arithms. After some straightforward algebra, we find

1 T+3) [r2(, 1 2 1 .11 1
Bz"*l—n(2n+3){1"(§)l"(n+1)[2 (1 2(n+1)(n+§)> (n+1)(n+2)+2< +§+ +%+ﬁ+ +T)]

= (n+j+3)ee(i+3) 1 ceeyk
(‘I)J[ix(n-l G+ 1P+ 27 (J+é+ +%>]} ' “

For even p, we have

8 _2 T'(n+3)
22" 3 (4 2LE)C(n+1)3

2(—%,2+‘ﬂ,§;§,§;1) (C7)

A list of the coefficients B, is given in Table I.
Finally, there are the coefficients @,. The odd coefficients are

=i +afd (C8)
where
1
a'gr)u— Bz""(m+ W(2n+ 2)) s (c9)
and
2 _. (=) & (B+n+1)++(k+1)

Yom1= o (2n+ 3) 4o (bt 2kt S)(B+3) e (4 L —n)T[‘p(""‘"”’r 2) = Y(k+z -n)]. (C10)

TABLE I. The coefficients a, and g, for p=0, ---, 10.

4 a, ) By
0 0.266 299
1 0.073 091 0.212 207
2 —0.224 261 0.333333
3 —0.457439 0.387335
4 —0.602 447 0.400 000
5 —0.682167 0.393399
6 —-0.726 537 0.380952
7 -0.754 449 0.367 990
8 —0.785430 0.355555
9 —0.792 668 0.343 666
10 —0.796 744 0.332468
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We have not succeeded in finding a finite sum representation for agﬁl‘, as we did in the case of the coef-
ficients B,. For even p, we have ’

Qo "aégz‘*az(f:z’ (C11)

where
1 1 1

ag),= 62"’2<2n 4+z¢(n+1) 7+ 3 —m—%¢(n+%)+¢(2n+3)>, (C12)
and where

@@ = 1 L(n+3) i [(k=n-1)-- (—n)][(k+%+n)'--(n+%)]

2 4(n+2) Th+1I(3) 4 (e+2)(e+2)[(k+3) -~ 3][k"- 1]

x( L el 1 _..._L). (C13)
k+n+3 n+3 k=n-1 -n

Considerable use of partial fractions gives this sum as the finite sum

Ty ey AR S I YRS\
az(?p:2 - 4(n+2) {z [k'(k+ )(k+ (n_ ) <k+%+n + + 3w +1’t+ o+ 1)

k=1

4 T+ D +1) = p(1)] Te+1)IQ) [ 1
"3 TUT@rED  C TweeD (nT%'*"'*z‘““z)

Fr+2)TG) [ 1 1
" TTeD \wé*'“*%'z“‘z)}' (€14)

The coefficients o, are given in Table I. The coefficients o, and 8, are plotted vs p in Figs, 21 and 22.

APPENDIX D

In this appendix, we shall calculate the coefficients of the asymptotic expansion of C,(A). To derive this
asymptotic expansion, we rewrite Eq. (C2) as
(C2) as

C,(p)=

1 ()™ < m >2F(n+1) > () L(3+3n+k)
23(2m)* Zm sinkmn) n-1 &2 (e +2)(+3)T(zn=E)T(k+3)T(k+1)
' (D1)

To evaluate C, for asymptotically large A, we close the n contour to the right in the complex n plane. This
procedure yields an expansion in powers of A™ and InA multiplied by powers of A", The first term in this
series is proportional to 1/A. The terms up to and including order 1/A3 are

0.50 T T T
240 '
0.25 035

0.30
a
-0.25

-0.50

-0.75

-1.00 . L
0 20 40 60

FIG. 21. The coefficients a,. FIG. 22. The coefficients B,.
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1 6/, =\1 1 16 1 .
Cl(A)_W[_Tr-(I - ﬁ)x - % t3, -A—S(lnA+y- 1)]+O(1nA/A ). (D2)

In this equation y is Euler’s constant,

APPENDIX E

In this appendix we obtain an integral representation for
7 = k= ik
é(r)=f (2n)32k ¢(k)e ’ (El)

and for the transverse electric and magnetic fields. With these integral representations, we may find the
energy and charge densities generated by the gluon cloud corresponding to .
Using Egs. (3:19), (4.2), and (4.3) of I, and (A5) of this paper, we have

G(r)=- 811C2‘1’2(A) (2‘:;?2}3 (I-EE)-R ki_A eii-::fo” sinpdype ®R/2) ik ose-stne) (E2)
with
m=r+4Rcosy (E3)
and
x=k|m|. ‘ (E4)
A little algebra shows that
&6 =-myergy S, k) sy ghg B (o) = ,06)/x) R - R[3, 060/ x = )]}
2 ) 0
(E5)
In this equation the spherical Bessel function of the Ilth is j,(x). Letting
@) =7@,+RG,, (E6)
we have
&, =~ gy S [ sinsay i o TR costi o080 (S o),
(ET)
and

Q =————"—l——fwdkf”sim[)dw k e-kR/Zsinw
BT 4(2m)3C, M3 (A) U, A E+A

2R cosi(z R cosyp+ v cosh)
(3 R% cos?+ Ry cosy cos b +72)

x ([jo<x> ) /x]+ (31, 60)/x —,jo(xn). (E8)

The equations for E’L are identical to Egs. (D6)-(D8) except that

_k_F (E9)
B+ A B+A
We also find that

. 1 A f“’ L »2 r bR/ .
B=—— 5 #XR dk sinyp d = g RR/Zsind; () (E10)
4(277)3(:21/2(1\) (7’ ) A /(: ZP (ll B+ A |I‘+%§.COSZI)] .71(
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