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We use a semiclassical method to calculate the potential energy of a heavy quark-antiquark pair. We also

present numerical results for the average distribution of gluons which surround the quark-antiquark pair.

I. INTRODUCTION

A method for calculating the effects of interac-
tions between heavy quarks within the framework
of quantum chromodynamics (QCD) would be of

great utility. ' " For heavy-quark systems, the
problem of determining an effective QCD interac-
tion potential is perhaps most clearly isolated
from the intricacies of the field-theoretical bound-
state problem. As quark masses increase, more-
over, the corresponding QCD interaction strengths
decrease, and the calculation of the potential in
perturbation theory becomes more reliable. For
systems such as the J/~P (Refs. 12-17) or T (Refs.
18-20) families of resonances, however, the
strong-interaction strength n, is -1-2."" Only
heavy-quark bound states of much greater mass
might be expected to be adequately described by a
Coulomb potential. For systems where z, is of
moderate strength, such as the 4/g and T, we
must develop calculational techniques that go be-
yond those which are appropriate to weak coupling.

A feature which distinguishes QCD from QED is
that even static sources will induce an enveloping
cloud of radiation. " This cloud arises from non-
vanishing couplings of stationary quark sources
and transverse gluon degrees of freedom. Such
couplings may ultimately be responsible for con-
finement through nonperturbative mechanisms and
certainly yield numerically signif icant contribu-
tions to the quark-antiquark potential for inter-
mediate coupling strengths.

ID Ref. 8, henceforth referred to as "I", we
introduced an approximation which may prove use-
ful for describing the gluon cloud that surrounds
a static qq pair. The approximation is an analog
of the Tomonaga approximation of nuclear phys-
ics."" In I, we demonstrated that this method
together with renormalization- group improvement
accurately approximates the known results of per-
turbation theory up to and including effects of at
least order 'Ion (oRef. 5).

In the present paper we present some results of

numerical calculations of the gluonic structure of
qq states in this static limit. Our purpose here is
not so much to accurately determine a qq effective
potential —indeed the extraction of an effective po-
tential from our static-quark calculation requires
detailed consideration of velocity-dependent ef-
fects" "—but rather to investigate the structure
of the non-Abelian gluon cloud generated in such
states. We also hope that the techniques discussed
here may provide a first tentative step along the
road toward the understanding of the structure of
heavy- quark bound states.

The outline of this paper is as follows: In Sec.
II, we briefly review the results of I. The numer-
ical solutions of the equations derived in Sec. II
are discussed in Sec. III. In Sec. III we also de-
scribe the configuration-space structure of the
gluon cloud, its charge density, and its chromo-
electric and chromomagnetic fields. The detailed
numerical analysis of Appendices A-E are utilized
in this section. Section IV offers a summary and
discussion of our results.

@a@ b2N ab 2 abc@c 2fabc@c & (2.la)

1 1
@a@b 2N ab ~ abc@c 2fabc@c ' (2.lb)

The indices a, b range from 1 to N' —1. The
charge density corresponding to these operators
1s

(2;2)

with coordinates chosen so that the quark resides
at R/2, and the antiquark at -R/2. In the analysis
which follows, we shall measure distances in units
of ~% ~, corresponding to setting

~

R
~

= 1.

II. THE TOMONAGA APPROXIMATION

In this section, we consider the interaction of
stationary, pointlike, spinless SU(N) color
sources. These sources are described by charge
operators Q, and Q, satisfying the algebra
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(2.3)

where E~(r) (a=1, . . . ,N'-1) is the longitudinal
chromoelectric field. The longitudinal chromo-
electric field is a dependent field which may be
determined in terms of the quark and transverse-
gluon degrees of freedom by solving Gauss's law:

D& Z&
= v&Z&'+ gA& x E&+gA& x Z&' = p „„, (2.4a)

I

or

(2.4b)

We use the notation

(A x B)'=f"'A,B, .
In these equations, E,, is the transverse chromo-
electric field and J' is the charge density arising
from quarks and transverse gluons. Using Eq.
(2.4b) in Eq. (2.3), we obtain

(2.5)

V „g= dF~Y + r@'br r ~br (2..6)

where the Coulomb energy operator 4,~(r, r') is

e=(v D) '(-v')(v D) ', (2.7)

ol

e„(r,r')=, (r, r')&„

(2.8)

The interactions of these static quarks are con-
veniently described by the QCD Coulomb-gauge
Hamiltonian. We do not address the problems of
the Gribov-Mandelstam ambiguities that may arise
in the implementation of this gauge. "'" Such am-
biguities appear to be most significant in regions
characterized by "large fields" where our approxi-
mation is also subject to large corrections arising
from many other sources. "" our calculations
show no hint of any such ambiguities.

In the Coulomb gauge the independent degrees
of freedom correspond to transverse gluons. The
interactions include cubic and quartic transverse-
gluon couplings, and instantaneous Coulomb inter-
actions of the quarks and gluons. The full set of
instantaneous Coulombic interactions are nonpoly-
nomial in the gluon fields and, even in the static
limit, are the source of nonvanishing interactions
of quarks and transverse gluons.

These interactions arise from the following term
in the Hamiltonian,

of transverse gluons to the qq pair is given by the
second term in Eq. (2.8).

In the stationary-spinless-quark limit, quark
recoil and spin effects vanish. The spatial and
spin structure of the quark-antiquark sources are
time independent and do not induce correlations
in the spatial wave functions of successively emit-
ted or absorbed gluons. For this situation, as was
argued in I, a reasonable approximation for the
description of the gluons may be obtained by sup-
posing that all gluons share a single spatial wave
function. Note, however, that because the quark
and antiquark reside in a low-dimensional repre-
sentation of the SU(N) color group, color recoil
effects are expected to be very important. There-
fore, an essential ingredient of any approximation
to the description of such quarks must be the op-
erator structure of the color charges of quarks
and gluons.

The Tomonaga approximation discussed in I is
tailored to fit this body of constraints. The Hamil-
tonian which describes quarks and gluons is di-
agonalized in a subspace of states consisting of
arbitrary numbers of gluons of arbitrary colors,
all sharing a common spatial wave function g&(k).
The operator structure of the quark and antiquark
charges is exactly maintained. As shown in I,
matrix elements of the Hamiltonian in this sub-
space of states correspond to matrix elements of
an effective Hamiltonian which describes N' —1
"coordinate" degrees of freedom (corresponding
to the N'-1 colors of gluons) interacting with the
1V'-1 color "spins" of the quark and antiquark.

In deriving the effective Hamiltonian presented
in I, we made a further severe truncation of the
full Hamiltonian as it would appear in the Tomo-
naga approximation. We retained only the leading
interaction term represented by the second term in
Eg. (2.8). The neglected terms include modifica-
tions of transverse-gluon propagation arising from
the background field of the quark charges and from
mutual interactions of transverse gluons. We do,
however, allow for a shift of local operator expec-
tation values from their vacuum values, and in this
sense we are performing a mean-field approxima-
tion.

The resulting effective Hamiltonian is
X = g, [a~ ~ a+ pQ ~ Q+y(Q x q) ~ (a+a~)], (2.9)

where a~ and a, (a =1, . . . ,N'- 1) are one-gluon
creation and annihilation operators. The commu-
tation relations of a, a, Q, and Q are, in addition
to those given in Egs. (2.1a) and (2.1b),

(2.10a)

In perturbation theory, the l.eading-order coupling (2.10b)
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The three numbers g„P, and y are functionals
of the classical gluon wave function ~P. The Hamil-
tonian is diagonalized for arbitrary S„P, and y,
allowing us to obtain its ground state ~Q). The
wave function g is determined by minimizing the
ground-state energy b, [g] with respect to g, sub-
ject to the normalization condition

C, —AC2
C2

g C2
4w C, —AC2

(3.1)

(3.2)

f d'Q
g*(k) g(k) = 1. (2.11)

C,C2"'y=--
C, AC

(3.3)

(2.12)

The variational calculation performed in I gives

(r)(k) = g 'P

The functions C„(A) are obtained from a classical
current J as

(3.4)

where A is a I agrange multiplier which enforces
Eq. (2.11). The current J(k) is the Fourier trans-
form of the spatial factors which couple to X'(r) in

Eq. (2.8) (Fig. 1),

1 1
J(k) = d're '"'

4~tr —r, l 4m~r, —r, )

1 1
4p(r —r, ) 47) ~r, —r, j

(2.13)

The quantity P is the' ratio of ground-state expec-
tation values

g 'C, (A)P' = 1 . (3.5)

To solve this equation for A, X must be di-
agonal'ized for arbitrary A. The root of Eq. (3.5)
is then determined by successive iterations. We
have diagonalized K numerically in the basis dis-
cussed in I and determined A. To perform the nu-

merical analysis, we first obtained expressions
for C„(A) that could be easily evaluated. In Ap-
pendices A-C, the coefficients in the series ex-
pansion

The parameter A must be adjusted so that the glu-
on wave function is normalized to one,

(0 I (Q x Q) (a+a') I 0)
2(Ala~ a!A) (2.14)

n A' P A'

The Lagrange multiplier A must be determined
so that g is normalized to one. As the solution for
A as a function of g' involves the intermediate step
of diagonalizing X (the couplings of which depend
on A), the problem of determing A is complex and
must be solved numerically.

In the following sections, we discuss the solution
of this model theory. %e determine A as a func-
tion of a„ find the dependence of on z„and cal-
culate the gluon wave function (().

III. RESULTS

The coefficients b„p, and y may be computed
in terms of functions C„(A) as

are determined. The coefficients C„(A) are de-
rived from

(3.7)

We have checked this tedious analytic evaluation
of C, (A) by comparing Eq. (3.6) with the asymptotic
series for large A and by directly evaluating Eq.
(3.4} with the Monte Carlo numerical integration
routine Vegas. 4' The asymptotic series for C, (A)
is derived in Appendix D. Plots of C, and C, are
given in Figs. 2 and 3. Both C, and C, are rapidly
decreasing functions of A for 0 & A &1 and are not
well approximated by their lowest-order terms in
the expansion of Eq. (3.6},

' q+)Irk
I

I

I

J{k) =
Ik

I

' q-i'm k

0.25

0.20

O. I 5

O. I 0

0.05
0

FIG. 1. The current J(k). FIG. 2. The function C~(A).
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FIG. 3. The function C2(&).
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C, (A) =,, —

~
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1 2
C, (A) =-

(4 )3 3
lnA,

(3.8)

(3.9)

FIG. 5. The function $0(n,).

are given by Egs. (3.1)-(3,.3) and Eqs. (3.8) and
(3.9). With A =

& n,

(3.13)
for A&2.

We have used the functions C, and C, in the di-
agonalization of X which was carried out numer-
ically for SU(3). We varied the parameter A until
the normalization condition [Eq. (3.9)] was satis-
fied. This procedure gave us a relationship be-
tween Aand n„

A= —,'n, G(n, ). (3.10)

The lowest-order perturbation-theory value for
A was found in I to be A =-,' n„so that G(n, ) sat-
isfied

1.1 0

1.08

1.06

1.04

1.02

1.00

(3.11)

To an accuracy of 10%, G(n, )=1 for 0& u, &2. A

plot of G (n, ) is shown in Fig. 4.
The quantities 5„p, and y as functions of a,

are shown in Figs. 5-V. Several features of these
functions are noteworthy. For small n„both h,
and p rise rapidly from zero while the parameter
y rises slowly from zero. For intermediate values
of n, -1-2, 80 levels off and p and y vary linearly.
In fact, for large n„

(3.12)

The perturbation-theory values of h„P, and y

1P-=& —, n, lna, ,
(

(3.14)

y
-=-o.,"' — inn, (3.15)

1.25

1.00

0.75

0.50

0.25

For n, & —,', g„P, and y show significant devia-
tions from their perturbation-theory values.

The magnitude of y determines the strength of
-mixing between states with different numbers of
occupied coherent gluon modes. The slow increase
in the magnitude of y(a, ) for n, & 'l-2 leads to a
small gluon content of the ground-state wave furic-
tion. In fact, for n, & 2, the average value of the
nu'mber operator (0~a'a~A) is less than 0.25 as
shown in Fig. 8.

The amplitudes for the ground-state wave func-
tion to be in the states ~0), ~1), and ~2) are shown
in Fig. 9. The amplitude for ~2) reaches only
-0.10-0.15 at n, -2. The contribution to the
ground-state energy from these various modes is
-(amplitude)', so that for n, & 2, the contribution
from modes with n & 2 is &E ~1-2%. For this
range of 0., the system is adequately described as
a mixture of the two total color-singlet states:

0.5
I

1.0
as

1.5 2.0
0

0 0.5 1.0
Qs

1.5 ' 2.0

FIG. 4. The function G(0, ). FIG. 6. The function p(n~).
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FIG. 7. The function T/(0's).

~

singlet quark pair, no gluons) and
~

octet quark
pair, one gluon).

The function E(n, ) which measures the devia, -
tion of E from its Coulombic dependence on ~„

E(Z) =- —„' n, E(n,), (3.16)

9
+

4
— n, ' inn, + 0 (n, ') . (3.17)

Associated with the gluon wave function ((k) are
various classical fields in coordinate space.
These are related to effective field operators in

the Tomonaga approximation. In matrix elements
involving such states we have

X,(x) - B(x)(a,+a,'),
&„(x)- &,(x)&(a,'- a,),
&,(x) = I(x)(a, + a,'),
pa'|uou(x) —p(x)t'a x at

where the c-number fields 8, 5„, and p are

(3.18a)

(3.18b)

(3.18c)

(3.18d)

8(x) = .'" "C(k)
(2w)'21k I

(3.19a)

is shown in Fig. 10. The function E(n, ) rises
from its value of 1 at n, =0 and acquires a linear
dependence for n, -1-2. For n, & —, the function
E(n, ) is not well approximated by its perturbation-
theory value of

27 tT2

E(n ) =1+—1-—n '
s 8 12 s

FIG. 9. The amplitude of the ground-state wave func-
tion to be in the states

I 0) (top line), 11) (middle line),
and 12) (bottom line).

u.~*~ = f (2w)'21k I

$(x) = V x B(x),

p(x) = b, (x) ~ B(x}.

(3.19b)

(3.19c)

(3.19d)

d'x p(x) = 1 . (3.20)

For A=0, 5 behaves asymptotically as 1/r,
while e, and behave as 1/r'. At the point A = 0,
p becomes non-normalizable, accounting for the
logarithmic divergence in C, (A) as A-O.

Near the quark (x= r, } the dominant contribu-
tions to 8, S„and d) come from the large ~k

~

region of integration: ~k ~» A. The analysis of
Appendix E then indicates that B-constant, ~g,

~

Figures 11-18 show plots of 8 (x), h,'(x),
~(S(x) ~, and p(x) as functions of cylindrical vari-
ables x, and z for A=O and A=3. These fields are
azimuthally symmetric. The overall scale of the
magnitude of the various fields is arbitrary, the
important comparison being the relative shape of
the distributions. The quarks are located along the
z axis at positions which are obvious in the figures.

For any A IO the asymptotic behavior of the vari-
ous fields can be deduced. For large ~, the poten-
tial 5(x) falls like 1/r while h, and (T) fall like
1/r' Thus,. the resulting gluon charge density
falls like 1/r'.

The normalization condition on the wave function
is precisely the condition

0.25—

0.20—

14

0.10—

0.05— 1.2—

0
0 0.5 I.O

as
1.5 2.0

I.O
0 0.5 1.0

&s
1.5 2.0

FIG. 8. The expectation value of the gluon occupation
number R (s). FIG. 10. The function I (ns).
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FIG. 11. The field 9 for A=O.

and p-1/(x- r
8 is the usual polar angle.

The magnetic field is singular near the quarks
and its value depends on the path of approach to
the position of the quark. Along the line separat-
ing the quarks, the field is zero. As A increases,
the fields concentrate nearer the quarks.

The charge distribution resembles the distribu-
tion of transverse electric field. The charge is
concentrated near and between the quarks for
small A, and increasingly near the quarks for in-
creasing A.

For small A the transverse electric field is
spread out in the region between the quarks. In-
creasing A increases the concentration of the elec-
tric fields near the quarks.

As the qq separation changes, the magnitudes
of fields all scale with powers of 1/8 correspond-
ing to their canonical dimension. That is,

1 x&
K(n„R, x) = —8 n„—i, (3.2la)

1
h, (a„R,x) =, h, n„& (3.21b)

$((x qRy x) =
2 I1

(3.2lc)

1 x
p(o»R&x) =

3 p n» (3.21d)

Thus, as quarks are separated, the overall shapes
of the field distributions are unchanged but magni-
tudes decrease. Note, however, that an observer
sitting at a fixed point in space as the pair is sep-
arated does see both the overall scale decrease and
effects due to the change in his scaled coordinate
x R.

FIG. 13. The fields~ for A= 0.

IV. CONCLUSIONS

In this section, we summarize our results and
consider their implications for the physics of
heavy-quark systems as described by QCD. Our
approximation scheme is designed to give a rea-
sonable representation of the gluonic structure
generated in the presence of stationary quantum
charge sources. The validity of the Tomonaga
approximation rests on the notion that in the ab-
sence of quark spatial and spin recoil effects,
gluons of a single space-spin wave function will,
be dominant. The truncation of the Coulomb-gauge
Hamiltonian to the leading (in perturbation theory)
gluon-source interaction of Eq. (2.8) is motivated
primarily by the desire for simplicity and certain-
ly is appropriate for sufficiently small coupling.
Ultimately, the reliability. of our approximation
scheme for increasing n, can best be checked only
by computing higher-order effects.

With our approximations, the following picture
of the quark-antiquark state emerges for coup}.ings
n &1-2: The total color-singlet ground state isS

mostly pure (qq) singlet with a small admixture
of the one-gluon state (qq), (G),. The amplitudes
for components containing more than one gluon
are tiny despite the fact that the Tomonaga ap-
proximation allows for their presence. We inter-
pret this result as a dynamical consequence of the
theory. Even at relatively large coupling (n, -2)

FIG. 12. The field 9 for A=3. FIG. 14. The field g~ for A= 3.
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FIG. 19. The Coulomb interaction of a gluon and a
single charged source.

-2 —
I

Re 7)

0 I 2

J(k)=2f, e'"'
I q —k -. k q FIG. 20. The contour y.

1 1

(q+-, k) (q —~k)
(Al)

J(k)=ki(R —k —k k)k

I
d~ ~f(o-1/2) R'R

0

In this equation, the separation of the quarks is
R. The Coulomb propagators in Eq. (Al) may be
combined using a Feynman parameter to yield

1
g(k)=- R-k —,k R

4m'

Finally, if we change variables

n = cos'(-,'8),
then Eq. (A3) becomes

kik,

Z(k)=- R-k —,k r~~
8m k )

i

(A3)
X/2

3
x ~, e"'"q R[q'+n(I —o.)k'] '.

(2I) )'

(A2)

The integrations over d'q give

if A A

sin8 d8 exp[-,' kR(ik R cos8 —sin8)] .
0

(A5)

APPENDIX B
In this appendix, we shall evaluate the integrals

dQ I
(2v)'2k (k+A)'

We shall proceed by deriving a Mellin integral representation for C~ as a function of A. [In Appendix C we
shall use this Mellin representation to evaluate the coefficients of a Taylor-aeries expansion for C~(A) in
powers of A and powers of A times lnA. We shall also use this representation to obtain an asymptotic ex-
pansion in inverse powers of A and inverse powers of A times Ink. ]

We begin by observing that

C, (k) = ( )
-
(—', ) („—)' 'C, (k),

so that without loss of generality we may consider only C, (A). Using Eq. (A5) with R = I, we have

(B2)

1 ~ j
C, (A) = 25(2v)4 k dk

k A
dz sing, dp, sing, dp,

0 + 1 0

(I z ) exp[ z k(sin(t)& + sin/2 jz cosg jz cosy )]

We introduce a Mellin representation by the identity

(B4)

The contour 0 splits the poles of the I" functions in Eq. (B4) and is shown in Fig. 20. Interchanging the
orders of integration in Eq. (B3), and using Eq. (B4), we find
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a

C, (A) = —,
(
„.I'(I+]1)I"(-7i) dz sing, dg, singpt/r,2 27l j ~

2'wz 0

x dkA a "k""1 —z
0

x exp[-~ k(sing, + sing, —iz cosg, —iz cosg, )] . (B5)

The integrations over k are easily carried out with the result

A drl 2 2+/

C, (~)=, , I (I+q)1 (2+q)1'( q)—

The integral over z is

1 g

dz sing, dg, sing, dg, (l —z')(si ng, + sin(, —i z eos]]), —iz cosg, ) ' " .
0

(B6)

dz (1 —z')( si n]1,)+ sing, —iz cosg, —iz cosP, )
' "

-a

2 sing, + sing, sing, + sing, . " 1 sing, + sing,'+z
cosy, + cosg, cosP, + cosg, q —1 cosg, + cosg,

1 sing, + sing, . ' " sing, + sing,
+Z 1+

w) s( cos2, s cos2, cos2, s cos2, ), I' (BV)

(B8)0s = 42 + [l'21

(B9)

Kith these new variables,

In this equation, Im represents the imaginary part taken with p treated as if it were a real parameter.
Now, we change variables:

C, (x) = —, , ~. 1(I~q)1 (2+q)1 (-q)cV~-'
W $ 7[i[

r
x dt/r, dg [ corfu s—cos'(g. /2)]cos '(g, /2) cos ' "(])

0 -g /2

x —sin —'sin[q(g, /2 —m/2))- — sin (q —1)
n 2 q —1 2 2

sin [(n + 1)(2,/2 —w/2)]I,
1

0+1 (B10)

or with g,/2-g„

C, (A)=, , I'(I+a)I(2+~)I( n)/&"'-
7T f KZ

ti'/2 4+
x d$, dg ( co(s—eos'g, ) eos 'g, eos ' "g

0 0

x —sin [c(2.—w/2)]- sin [(n —1)(2.—w/2)] — i [(snl)w() lts—w/2)]). .2 ~ 1 1
q

' g- 1 ' g+1
(B11)

Elementary differentiation yields the identity

(B12)
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%ith the identity

1 1 1, 3 1, I (2 2 +)~(2)
2&, (ze 2- 2 (2e .—2c(e 1)- ~(II" 1 —2n)

and Eq. (B12), the g integration in Eq. (Bll) can be performed to yield

C,{A)= . I {1+~)1(2+~)I"{-1
. 227r' |2'

(BIS)

g/2
"

]x ee sin-- e i,e:,(, —,'--', q, -', --', q;sin e) — . ,r(l , !-!q;-l-l q;sine))
0

I (2 2 g)I (2) 1 1 I (2 2 q)I (2)
sine @+I I'( q) sin'8 q- I I'(I- —,'q}

x( —. nose sinqe- sin(q —1)e — sin(q+()e)I,
I, '9 g~ 0+1

where we have let 8 = q /2 - (I)..
Now, we use the identities (Gradshteyn and Ryzhik 9.127.17)4'

(B14)

1 j. j. ~ 3 1(q+ l)2E~(» —, -27);—, -~»sin 8) -(q-I) 2E((2 2)20e2 2$ seln 8) 22+f(2e 2 27);2 --2g;sin'8),

2 cos8 sinr18 = sin{g + 1)8 + sin(q —1)8,
to rewrite Eq. (B14) as

C((A) =—'

4 —.I'(I +g)I'(2+q)I'(-q)A " '-,1 1
(22)' ) 22i 7l

ff/2 1 1 1

z»n 82&&(21-2 —2'Re 2 20e»&—8) —,1 1 1 I'(-2 —2q) I'(;.-)
2 sin8 g+I I'(-,'-q)

Using Bateman (2, 8, 12),42

1 1 1 1(-', --',q)r(-', ) sin(q+i)e "in(q —\)e}"
2 sin28 q-I 1(l-zq) q+ I . q-I (B17)

sinp8

p
i sneoose eri)( +,2-)—,—;sine},

and the Mellin representation for the hypergeometric function

I(Y) dP I'(P+()')I"(P+P)1"(-p)
I'( )I"(P ) 2

' I"( y )

vie see that

sin(7/+ 1)8 sin()7 1)8 ( ) . dP . 2 ( I( + P + —)7)I(—+ P

(B20)

In the above equation we shall take 0 to be a contour parallel to the imaginary p axis with 1 & Re(p) & 2.
With the identity of Eq. (B20), Eq. (B17) for C,(A; is
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„, ,„I'(I + q)I'(2 + ll)I'(-ll)1 (-', )&(-'2+ P+-'2n)1'(2+ P —2a)1'(I - P)?
(2~) ( 2~i ) 2' I(-, + —,r/)1(-, --,ll)r(p+-, )

Under the substitution

a=sin 9,
this equation becomes

w/2 ~ 2 ~fJ
~ 2p 1 1 1 1 . 3 1

BP 2 Z092 2 )isbn
0 1-n

1 I'(-,' --,'?))F(-,') 1 I'(-', --,'ll)F(-')
2 sine (q+ 1)I'(--2'l)) 2 sin'8 (i) —I)1'(I --2'll) /

(B21)

dn dp A -1 F(1+0)1'(2+8)1'( n)F(?)I'(z + p+2r/)1(2+ p 2n)I (I p)
2(2 )4, 2.i, 2 i I"(-', + —,'r/)r(-', .ll)1-'(-p+ .)—

1 -i-n /2
1 1 1 . 3 1X dZ Z 2 2Fl(21 2 2/Iy 2 2llyZ)

0 j. -g

Using Bateman (2.4.5),4

l -1/2 F(2 2 t)F(2) + 1 -3/2 F(2 2 l)F(2)
(ll + I)I"(--',l)) '

(0 —1)I"(1- -,'0)

I'(c) I'(1 —b)I'(-,'a + (o) I'(-,'a —(o)

(B22)

and the identity

r(c)1'(I -b)-
F(I + b)F( )

dz 2' '" ' 2El(a, 1 —c+a; 1 —b+a;z),
0

2E,(=2 ——2q, -1;——2q;Z) = 1 — 1+— Z,

the integrations over z may be performed with the result

~-l;.pi'(I+ n)1'(2+ n)I'( n)1'(2+ p-+2n)I'(p —2n)1'(I p)—
(B26)

With this integral representation, we see that C,(A) possesses the Taylor-series expansion

(B2V)

(We shall calculate the coefficients u and P in Appendix C.)
For large A, C,(A) has the asymptotic expansion

1 N ] 1

2=1 p=a

(We shall calculate the first few terms in this asymptotic series in Appendix D.)

APPENMX C

In this appendix we shall calculate the coefficients n2 and p in the series expansion for C,(A) [cf. Eq.
(B27)]. To do this, we use double Mellin integral representation of Eg. (B26),

dq dp ), ,„F(1+q)I'(2+ ll)I (—l))I'(—+ p+ —ll)1'(p ——?i)F(] —p)
2'(27/)' i 2ni ) 22 i (p' ——,')r(-,'+-,'g.)1'(-,' ——,'q)1'(p+-,')

To begin we deform the p contour to the right in the complex p plane and find

(C 1)
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dq „,I"(1+q)I'(2+ q)I'(I —q) ~ I'(~+ ~@+k)l'(1 -~@+0)
2 (2m)~

~
2m' I'(—'+ —'q)I'( ———'q) ~ (k+ —)(k+ —')I'(k+ —)I'(k+ 1)

The q contour is deformed to the left in the complex q plane, with the result

A I'(1+ k —2p)I'(~+ k+ ~p)
2'(2v)' ~ ~ I"(p+ 1) (k+ —')(k+ —,')I'(k+ —')I (k+ 1)I'(1 —'p)I'(2+ —'p)

x (1+p(lnA —g(p+ 1)+ ~~ [$(l —~p) —$(2+ ~p)] - ~ [$(1+k —~p) —g(2+ k+ 2p)]j) .

We now turn to finding explicit results for the coefficients in

(C2)

(C3)

(G4)

We first consider the coefficients p~. For odd p, these coefficients are

( —1)" ~ (k+ n+ 1) (k+ 1)
)) (2n+ 3) ~0 (k+ 2 )(k+ 2 )[(k+ ~ ) ' ' ' (k+ 2 -n)] '

The summand may be decomposed into partial fractions and the sum over k converted
arithms. After some straightforward algebra, we find

w(2n+ 3) I'(2)I'(n+ 1) 2 2(n+ 1)(n+ 2) (n+ 1)(n+ ~) I,n+ ~ 2 n

into Euler dilog-

~ ~ ~ +
1)

For evenp, we have

~
~

~

~

~ ~ ~
~I)g ( ni++ )2" '(i s+) ( I

i) (n —I-i) ~ (i+ I)'(i+ 2)' ~g+ k k)
(C8)

2 F(n+~2) + 5 i.'s s. 1P2))+2 3 (n+ 2)P(5)P(n+ 1)3 2( I 2+ & 2 & 2 t 2 t

A list of the coefficients P~ is given in Table I.
Finally, there are the coefficients 0,'~. The odd coefficients are

n = n&'~ + n+&
2n+1 2m 1 2w 1 &

where

(C7)

(C8)

(C9)

(-)" ~ (k+n+1) (k+1),~,=2 (2„3)z, (k g)(k, )[(k 3)
—(k, )]

[p(k+n+2) —p(k+-,' -n)]. (C10)

TABLE I. The coefficients n& and P&. for p=0, ~ ~ ~, 10.

0
1
2
3

6
7
8
9

10

0.266 299
0.073 091

—0.224 261
—0.457 439
-0.602 447
-0.682 167
—0.726-537
-0.754 449
-0.785 430
-0.792 668
—0.796 744

0.212 207
0.333 333
0.387 335
0.400 000
0.393399
0.380 952
0.367 990
0.355 555
0.343 666
0.332468
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We have not succeeded in finding a finite sum representation for +2~' „as we did in the case of the coef-
ficients P~. For even p, we have

n =a&'& +a~"
2nt2 2tf+2 2~2 &

where

(C11)

2ft+2 2g+ 4 2~+ 3
(C12)

and where

r(n+ ~) ~ [(k —n —1) ~ (-n)][(k+ 2+n) ~ ~ ~ (n+ )]
4(~+2) r(~+I)r(-:), , (k+-'. )(k+-,')[(k+-) ".;][k "1]

1 1 1 1
X + 0 0 0 + 0 0 ~

k+n+ 2 n+ k- n-1 -n (C13)

1 1 1
+ ~ ~ ~ + + ~ + ~ ~ ~ +

2+n n 1

Considerable use of partial fractions gives this sum as the finite sum

~) 1 ~ (-)'(k+2+n) ~ ~ (k+ ) 1
4(n+2) ~) k! (k+ 2)(k+ —,')(n- k)! k+ 2+8

4 r(n+ 2)[|!)(n+1)—((I)] r(n+1)r(&) 1 1
3 I (-.')r(n+1) r(n+ ) ~+ —,

'
—,
' "

)
r(n+2)r(-')t'I . 1 212r(n+ —,') ),n+ —,

' (C14)

The coefficients u~ are given in Table I. The coefficients n~ and P~ are plotted vs P in Figs. 21 and 22.

APPENDIX D

In this appendix, we shall calculate the coefficients of the asymptotic expansion of C, (A). To derive this
asymptotic expansion, we rewrite Eq. (C2) as
(C2) as

)
1 dq

( ), 7) r())+1)
( )~ 1(2+2g+k)

23(2v)' ) 2' sin wq )!-I „0 (k+:)(k+ 2)r(~q- k)r(k+ ~)r(k+ I) '

I

To evaluate C, for asymptotically large A, we close the g contour to the right in the complex g plane. This
procedure yields an expansion in powers of A ' and lnA multiplied by powers of A '. The first term in this
series is proportional to 1/A. The terms up to and including order 1/A' are

0.50

0.25

ap

-0.25

-0.50

-0.75

0.40

3.55

330

0.25

3.20

3.15
0 20 60

—1.00
0

P

FIG. 21. The coefficients . n&.

60

FEG. 22. The coefficients P&.
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1 ~6 p 1 1 16 1
C, (A)=, —1 ————:,+ —,(lnA+y- I) +O(lnA/As) .

(4v)2, v 12 A A' 3v

In this equation y is Euler's constant.

(D2)

APPENDIX E

In this appendix we obtain an integral representation for

( ) -=(2,),2k 40) "', (El)

and for the transverse electric and magnetic fields. With these integral representations, we may find the
energy and charge densities generated by the gluon cloud corresponding to )I).

Using Eqs. (3.19), (4.2), and (4.3) of I, and (A5) of this paper, v))e have

(f(r) =— (I kk) .R eik r Signd C))eikR/2)(ik R nosk-s)nk)
8))C2)/'(A) (2v)'2k k+ A

with

m r+ —=—2' 5cosg

(E2)

(E3)

g-=kim[.

A little algebra shows that

(E4)

1
4(2v)'C "'(A) dk sin d 8

0

(E5)

In this equation the spherical Bessel function of the lth is j,(z). Letting

K(r) =r8„+RS , R

we have

(E6)

4(2v}2C2"2(A), , ~ ~ k+A (-,'R'cossg+Rr cos8cosg+2 } ( x

(EV)

1 -kR/2 sink
4(2)))'C "'(A), k+ A

(E8)

The equations for 8, are identical to Eqs. (D6)-(D8) except that

k k
k+6 k+A '

We also find that

ff 2

k+A Ir+ —,'Rcos/ I

(E9)

(E10)
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