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The structure of the transverse gluon propagator D of massless quantum chromodynamics is considered in

the Landau gauge. The essential differences in the weak-coupling limit g ~0 for y0/p0&0 and y0/po &0 are
exhibited. Here y0 and p0 are coefficients of lowest-order terms of the anomalous dimension and of the p
function. For SU(3} as the color group and quark triplets, the corresponding flavor conditions are NF & 9
and 10 & NF & 16, respectively. It was shown previously that for yo/p0&0 there are inconsistencies with the
postulates of local quantum field theory and the requirement that the positive-norm contribution D+ to D
should approach its free-field value for g~0. In the present paper, it is investigated in detail how this
requirement is violated assuming that the other postulates hold, including invariance under the
renormalization group. Using a specific, simple projection into a subspace of positive norm, it is shown that

D+ diverges like (g } "o'~0, while the free-field value and higher-order terms of D are entirely due to
contributions from negative-norm states. In contradistinction, the required dominance of positive-norm
states in the weak-coupling limit prevails for yp/Pp&0. In particular, the condition is fulfilled that D+
approaches its free-field value' for g '~0.

I. INTRODUCTION

u' l-"~~.
D(a*, g, ~')= —c„(;-'((n ~

J (1.2)

In previous publications we presented a detailed
study of quark- and gluon propagators for massless
quantum chromodynamics in the Landau gauge. "
In particular, we used I orentz covariance and
some minimal spectral conditions in order to ob-
tain the transverse gluon propagator as an analytic
function in the cut 0' plane. With the help of these
analytic properties and of renormalization-group
methods, we derived the explicit asymptotic ex-
pression for the propagator in all directions of the
complex pl.ane. We find that it satisfies an unsub-
tracted Lehmann representation'

00 (y I 2

g)(k2 2) dkl2 P 4 I g l

I 12 y2
0

and that

the Fourier transform G„„,„of
(&A;„(x)A',„(y)),

with

(1.3)

and define the transverse structure function ~„D
=D, ~ by

fo „„(k-)=(k.k, g„, —k, k, g„,

+ k k(, g„p —k„keg„,)D„(k') ~ (1.5)

For reasons of simplicity, '
we ignore in this paper

the possibility of a spontaneous breakdown of
global color symmetry. The generalization is
straightforward with the help of the detailed dis-
cussion given in Ref. 1.

The discontinuity p of D along the positive 4'
axis is generally a distribution. In Sec. II we will
give a detailed characterization. If appropriately
averaged, it approaches the asymptotic expression

0c,=(g*(((„((-"" mv( a«(*()&0
-y0/ 80-i

p (k', g, «')=- —'Cvk-' ln
~0

(1.6)

for k'-~ in any direction. Here ~(x) is an inte-
grable function, w'&0 is the renormalization point,
and p„y, are, respectively, the lowest-order co-
efficients of the renormalization-group4 function
P(g) =P~ + ~ ~ and of the anomalous dimension
y(g) = yog'+ for the gluon field A;. We consider
only the case P, &0 corresponding to asymptotic
freedom. '

Later we will also introduce projected propaga-
tors where the contributions of negative-norm
states are omitted. In order to eliminate the long-
itudinal part also for the projected case, we use

for k'-+~, with Cv)0 as given in E(I. (1.2).
Qf particular interest for our discussions is the

case y, /p, )0, where the structure function D be-
comes superconvergent. We then have the relation

dk"p(k", g, z') =0.
-0

In addition, we see from E(I. (1.6) that p becomes
negative.

In Ref. 1 we defined projected transverse gluon
propagators where only states of the type A;„(k)

~
0)

with positive norm contribute to the discontinuity,
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which is non-negative in the sense of distributions
and hence a positive measure. Besides the usual
assumptions of nonpertuzbative gauge theories, we
then introduced the requirement that the projected
propagator approaches its free-field expression
-1/k' in the weak-coupling limit g'=+ 0. We found
that this condition could only be fulfilled for yo/po

&0, but not for yo/Po &0, where the propagator be-
comes superconvergent and negative-norm states
play the dominant role in the limit g2=+0. For
SU(3) as the color group, and with quarks in the
fundamental representation, the condition y, /P, &0
implies 10 &N~(16, where R~. is the number of
flavors. Hence, our requirement imposes a lower
bound on this number.

In view of the interesting implications of our re-
quirement for the weak-coupling limit of the pro-
jected propagator, we consider in this paper the
structure of the propagator in greater detail, in
particular in the superconvergent case yo/Po &0.
We introduce an explicit and simple projection
method, which allows the evaluation of many fea-
tures of the projected propagators. We show ex-
plicitl. y what happens in the weak-coupling limit if
the special assumption of Ref. 1 is not imposed. '

Besides the main topics mentioned above, we
consider in this paper several related problems.
In Sec. IIIA, we use only general projections in
order to obtain an inequality for the anomalous
dimension of the projected gluon field, and in order
to derive a lower'bound for the projected gluon
propagator in the weak-coupling limit. In Sec. IV,
possible massive colored vector-meson poles' are
discussed, and it is shown that the transverse
gluon propagator cannot be a meromorphic func-
tion.

II. TRANSVERSE PROPAGATOR

In this section we consider the complete trans-
verse gluon propagator D(k', g, «'). It is an analytic
function of k', regular in the cut complex plane and
real for 4'(0, with distribution-valued boundary
values along the positive real axis. In order to
bring out the main points, we will postpone dis-
cussions of distribution aspects until later in this
section. However, the notation used in the follow-
ing is perfectly correct in the general case, pro-
vided the formulas are appropriately interpreted
as relations involving generalized functions.

As we have pointed out in the Introduction, the
convergence properties of the representation (1.1)
for D(k', g, «') are qualitatively different depending
on whether y, /P, & 0 or yo/Po & 0. We consider both
cases separately.

(a). yo/Po&0 [corresponding to 10(R~(16 for
the SU(3) gauge group and color-triplet represen-

tations of quarkst. For the application of renor-
malization-group methods it is convenient to sep-
arate the representation of the dimensionless
quantity

8=-Q D,
R =R(k', g, «') =R(k'/«', g)

(2.1)

into two parts with momenta below and above a
certain value K'& 0,

& = -k2 dk" a"-a'
E2

= -k dk k'2 —02

E2

Rearranging the first term, we obtain
E2 K

da"p-
0

k" —k''f-

(2.2)

(2.3)

p(k', g, «')&0 for k')K'. (2.4)

Under renormalization-group transformations

p(k', g„«,') =Zp(k', g„«,'), Z&0,

or under scale transformations

(q2k2 g ~2«2) g2p(k2 g «2)

(2.5)

(2.6)

the sign of the discontinuity remains unchanged.
Therefore, the bound K' for the inequality (2.4)
may be chosen in a renormaliz ation- group-in-
variant fashion

~0
2

K'=x„x'exp dxly '(xl)
g2

=c tc' =-; exp-
&o'

x expl& dx v(x)
I

~

g2 j
E' = «'f(g') behaves as

0(e /Sot (g )+Sy /Bo )

(2.7)

(2.8)

for g-0.
With an invariant choice of K2, we see that the

first two terms
E E y12

dk "p, R, = J) dk"
0 0

(2.9)

We see from the asymptotic expression (1.6) for
the weight function that the sign of p is opposite to
that of y, /P, . Hence, for sufficiently large k', we
have p&0 in the present case, and we assume that
the point K' is chosen such that
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transform like

R, (g, ) = ZR, (g,),
R,(k', g„~,') = ZR, (k', g„x, )2,

Z ' =R(v2 /y, ') g, ), g' = Q (yR /x, ') g, )

(2.io)

The decomposition (2.3) for R is of considerable
interest since we have chosen K'(g) so that p) 0
for k') K'. Only the third term of (2.3), with a
positive weight function, survives for g-+0 and

fixed 02' 0:

under a renormalization-group transformation.
Choosing k', k0'0 on a ray through the origin, and
setting

R(k', g, x') = -k'
K2

0(( 2) yo /()0-) (2.1'7)

22k 2= 2
C2-8'0~ &y —& 2 ~

k0

we obtain the identities

)( r02'.*2-). (2.13)

2
4'0

R, (g)=R, (g,)exp xdyd), (2.11)
g2

R, (k ', g, x') = R, (k', g„x') exp( dx yd ')(l,
(2.12)

for g-+0, .with p&0 in the interval k'~K'. Hence,
the weak-coupling limit is completely determined
by the positive-metric states.

(b). yo/p, )0 [corresponding to fk//, (9 for the

SU(3) gauge group and color-triplet representa-
tions of quarks]. In this case it follows from Eq.
(1.2) that the transverse gluon propagator D(k', g,
x') vanishes asymptotically faster than in the free-
field case. We can write an unsubtracted Lehmann
representation not only for D, but also for the
dimensionless function R = -&2D

The first equation (2.11) implies

R, (g)=e (-,) exp(JI dxe)

—(g')-yo/~o for g'-+0, (2.14)

k"p
R dk

0 2 02-0

so that there are the two alternative forms
OO ()0

-0

(2.19)

(2.19)

where 0 is integrable at @=0, and

E (f0gc )

a, (g, ') = dk "p(k",g„~')
-0

is only a function of g,. The second equation (2.12),
in combination with (2.13), allows us to express
the limitg-+0 of R, (k,', g, x') by the asymptotic
form of R,(k', g„x') for k'- —~. From the defini-
tion (2.9) it follows that

E
-2'R, (k*,g„x')=f dk "2"p(k",g„x')

-0

for 0 --~2

Hence

R,(k', „gx)- -k'-e
pxl

l
dxp '(x) i,

g2

so that

(2.15)

t' P~o' &02

R, (k, ', g, x') —
expl&Ji dxP ' iexp dxyP-' I

g2

01+ ) 70/80+8] /80
. 2 . 2

(2.16)

for g-+0 at fixed $0 We see that R, vanishes
exponentially for g-+ 0 at given 002, whereas R,
goes to zero with the power (g')-yo/~0, since we
have y, /Pa&0. Of course, this latter term, which
may have a nonintegr. al power in general, will be
canceled by contributions from the last integral in
Eq. (2.3).

of the spectral representation for the transverse
propagator. Combining both representations (2.19),
we get the superconvergence relation

dk"p = 0.
-0

(2.20)

Since O'D vanishes at infinity in all directions,
this sum rule can also be obtained by taking an
appropriate limit in Eq. (1.1), for example, in the
direction k2 —-~.

As in case (a), we also here choose a point
K'(g, v') in a renormalization-group-invariant way.
From Eq. (1.3) we see that p&0 for k') K' for
large enough K' since we consider the case y, /P,)0 and P, &0. We can again write Eq. (2.18) in the
form

-0 E2

dky2 P + 0( 1/()Og (gg) yo/80e()2/80

(2.21)
p= p(k", g, /(')&0 for k")K'(g, x').

Hence p&0 in the integrand, and the remainder
vanishes exponentially for g'-+ 0, at fixed k'o 0.
We see that the weak-coupling limit contains only
contributions f rom states

(2.22)
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of negative norm. Nevertheless, the free gluon
pole term of D is obtained in the limit

goes through leading to the results (2.17) and (2.21)
with the replacement

lim k, dk k„k, = -k, ,
g2 +0 K

(2.23) dk" — I dk' tel ~ (2.28)

which involves only negative-norm contributions.
In fact, the perturbative expansion of D(k', g, g')
can be recovered from

The precise meaning of the inequality p~0 for
2 l

OO (k/2 2

D(k' ') = dk" ' ' ' (2 24)
EC2(g, g )

dk't(k')p(k') &0 U y, /p, &0,2

~

~

2 2 ~

0
~

~

0 7

dk"t(k )p(k )&0 if y /p )0I~» 2 2 ~

0 0

(2.29)

for g2-+ 0 by inserting the asymptotic expansion
of p(k", g, ~') for k" -+~ inside the integral.

The dominance of negative-norm states of the
type (2.22), as demonstrated by Eq. (2.21), indi-
cates potential difficulties for the question of uni-
tarity. There is no problem with pextm bative
unitarity which has been shown to hold order by
order (apart from infrared infinities of the 8 ma-
trix). It should be noted, however, that our re-
sults go beyond perturbation theory leading to a
new type of ghost states enforced by the supercon-
vergence relation (2.20). In view of this, it may
be doubtful whether conserva, tion of probability
holds in the case y, /p, &0. At least, the question
of unitarity of the S matrix should be reconsidered
in the light of these results.

We finally discuss some relevant mathematical
aspects of the methods developed in this section.
The spectral representations (1.1), (2.19), as well.
as the sum rule (2.20), are valid in the sense of
distributions with

(kd2 k2) & t kz2(kd2 k2) d or (2.26)

+t2 g

where t, is a test function with

t, (v) =—1 for v ~1,

t, (v)-=0 for v~ 1+a, a)0.
(2.27)

Since this yields a. renormalization-group-in-
variant decomposition, the analysis of this section

as test functions. Given the boundedness property
(1.6) for k"-~, functions of the type (2.25) are
admissible test functions. 'The notation -0 for the
lower limit indicates that any value g&0 may be
used as the lower limit since the integrand vanish-
es identically for negative argument.

Decompositions like (2.2) or (2.21) are permissi-
ble if p(k") may be considered as an ordinary
function, around k" =K2. It may be assumed that
such values K2 can always be found. But even this
restriction is not needed for the discussion of this
section. For it is always possible to perform a
separation by inserting

for every positive test function t with support
above K'. It is an interesting consequence of
(2.29) that p is a, positive (negative) measure for
k2~K2 if y, /p, &0 (&0).' This result excludes de-
rivatives of & functions in the asymptotic region
k2 )g2

In the distribution sense there are no infrared
problems with the type of dispersion integrals
considered here. As an example, we take the case
where

p-(k")'", n-0. (2.30)

Then the Lebesgue integral
K

Pdk
-0

(2.31)

diverges at k" =0, whereas the expression is re-
garded as integral over a distribution p with the
test function (k" —k')-'. It is sometimes useful to
convert a dispersion integral into a form which is
Lebesgue integrable. We discuss this point in
some detail for the infrared behavior of spectral
repre sentations.

Consider the expression

D= f dd"
0

and

0 kI2 tt OO

-0

(2.32)

(2.33)

+ dk P

a
(2.34)

follows with c,. real. In this way the infrared

or a corresponding smooth decomposition by in-
serting (2.26). Both expressions have the same
analyticity and boundedness properties. After
multiplication by (k')", their imaginary parts are
identical on the real axis. Hence, their difference
must be a polynomial in (k')-', at most of order n.
Consequently, the representation

c, c„1 ' „(k")"pD ~ e ~ ~ ~ ~ ~~+
k k2n k 2tt k 12 k2-0
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singularity due to (2.30) in the sense of Lebesgue
integration may be eliminated, rendering the inte-
gral in (2.34) absolutely convergent for sufficiently
large n.

According to (2.34), the coefficients c, are uni-
quely determined by D.' 'To illustrate this for n
=1, we take the example

D, (k', g, «') =f(g')13, (k', g, «'),

f(g') = «'-D, («', g, «'),
(3.1}

-k'D=1 at 0'=v'

the transverse projected propagator will be de-
noted by D'. By setting

p (k
k 2) = C (k

& 2) 1 kk + p (k
k 2)

with p being L (Lebesgue integrable). Then

(2.35)
the projected propagator itself becomes normali-
zed to one at the Euclidean point v', namely

(3.2)
a a

c, = dk "p(k")= --a "+ dk"p(k"), (2.36)
0 0

where we have used the distribution formula'

'The dimensionless q uantity

R, (k', g, «') = -k'&, (k', g, «'),
(3.3)

J
0 X+1

dxx = 1, Xw-l.
0 X+1' (2.37)

&, =A, (u, g), u=k'/«',

satisfies the renormalization-group equation

Another, but related way to handle infrared
singularities of p is via the usual subtracted dis-
persion representation for k'"D(k'). For example,
if k'p(k') is L but not p(k'), we may write in place
of Eq. (1.1)

sR. .8$,
u ' =P +'+yR. .

~Q
(3.4)

The coefficients P, y are related to the Callan-
Symanzik functions P, y of the conventional nor-
malization by

k' —«' " „k"p(k")
(k "—«')(k "—k') '

(2.38)

pp=p r=y+ f (3.5)

with «'&0. If D is normalized so that -O'D(k') = 1
for 0' = v', the subtraction term is known.

III. TRANSVERSE PROJECTED PROPAGATOR

In the first part of this section we will derive
some properties which hold for projected pro-
pagators in general. For these arguments the
specific form of the projection on a subspace of
positive-definite metric is not relevant. As in
Ref. 1, it is only assumed that the state space con-
tains a linear subspace of positive metric" which
is Lorentz and translational invariant and does not
involve new dimensional parameters in its con-
struction. In the second part of this section a
specific construction of such a subspace will be
given and studied in detail.

A. General projection

%e first derive an inequality for the anomalous
dimension of the transverse projected propagator.
In the weak-coupling limit, and under similar hy-
potheses as in Ref. 1, this inequality can be used
to give another derivation of the consistence condi-
tion y, /p, (0 for massless quantum chromodynam-
ics, which was first obtained in Ref. 2 and dis-
cussed in detail in Ref. 1.

%e consider the transverse structure function of
a projected propagator as described in Sec. I and
introduced in Ref. 1. In the conventional normali-
zation,

with f given by (3.1}. For the present argument
we assume, as in Ref. 1, that the projected pro-
pagators approach their free-field values in the
weak- coupling limit. Then

r(g') =r(g') =rQ «r g'-+o. (3.6)

Using this information, the unsubtracted Lehmann
representation

D =Jdk". (3.7)

(3.8)

Inserting here the Lehmann representation (3.7),
we find Wilson's sum rule"

A,

i )(=k-K' J dk" ' —~' kk'*
(kl2 «2)2

„k"p,( ")
(k" —«)

'The equality sign only holds if

p, (k') = c5(k'),

which, according to (1.6), is not possible for 0& g
&g„. An upper bound for the anomalous dimension
follows by using the normalization condition (3.2)
in the form

was proved in Ref. 1. By (3.2)-(3.4) the anomalous
dimension $ is alternatively given by
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-«'J dk"- P follows, or

ID. (k' g, «')l- (g') "'" f» g'-+0 (3.1I)
Substitution in the first line of (3.9) implies

y - 1= -w dk", 2
'

2 2-0)k" —«' '
r

(3.10)

0&y(g')&1 if 0&g&g„. (3.11)

Combining this result with the weak-coupling limit
(3.6), we find

yo &0 (3.12)

as a consistency condition under the stated assum-
ption. Since Po&0, this is equivalent to the condi-
tion y, /P, &0.

It is apparent that the hypothesis on the weak-
coupling limit of the projected propagator plays a
central part in the derivation of the flavor condi-
tion. To some extent it was also used for proving
that the projected propagator satisfies an unsub-
tracted spectral representation. Reversing our
point of view, we will now investigate what follows
for the weak-coupling limit if the gluon propagator
is assumed to exist with a nonvanishing transverse
projected structure function D,. If D, satisfies an
unsubtracted Lehmann representation, the inequa-
lity

E2

D ~ dk~2 ~+ k2&P+ y/2 y2 P

L
(3.13)

follows. K' and I,' are chosen as invariants of the
renormalization group [see Eq. (2.7)] such that

p, $0 for I ' ~k" ~K'. Equation (3.13) implies the
estimate

/D,
f

~ fk'/- for k' (3.14)

If the behavior of D. for k2--~ is such that the
spectral representation requires subtractions, the
estimate (3.14) holds anyway. The dimensionless
function

G= —k D+

satisfies an identity similar to (2.12):

(3.15)

which is a special case of a relation we have ob-
tained in Ref. 2. Again the equality sign cannot
hold for 0&g&g . Thus, the anomalous dimension
of the transverse projected propagator is placed
between the bounds"

at fixed k . For y, /P, &0, this inequality is com-
patible with the hypothesis that projected propa-
gators approach their free-field values in the
weak-coupling limit. For y, /P, &0, however, a
nonvanishing projected gluon propagator must
necessarily diverge at least like (g') &0 8o in the
llmlt g ~+ 0.

By explicit construction it will be shown below
that a projected propagator can always be defined
which is nontrivial and satisfies an unsubtracted
Lehmann representation. There may, however,
be other definitions of a positive-metric space
JI, for which the propagator representations di-
verge in their unsubtracted form. Of particular
interest is the case where the weight function

vp, (k') = ImD, (k'+ f0),

given by

(A~„(k)pA. p~(k)) =2(2v)'8(k, )6(k+ I)

x (kq kp g, ), —k)( k),g,()

—kpkpg)(„+ k,k) g)d()) ImD, (k')

(P projection on H„A„, Fourier transform of
B„A,—e+„),increases faster than any power of
k' for k'- ~. In such a case even the subtracted
forms of the spectral representations diverge and
the introduction of time ordering presents difficul-
ties. A similar situation is known from the uni-
tary gauge formulation of the electron propagator
in massive quantum electrodynamics. In the fol-
lowing we study what such high momentum beha-
vior would imply for the weak-coupling limit of
the weight function. We form the dimensionless
expression

u, (k', g, «') = k'p, (k', g, «'),

g, =v, (u, g), u-k/i« i,
for which an identity similar to (2.12) holds

(3.19)

2
gp

e, (P,',g, rr')=e, ((r', g., x')exp~ dxyd ). '
2

(3.20)

~o2

G(k„', g, x')=G(p', g„x*)exp(, dxyi) ').
(3.16)

p2 n

(7+ (k y goy «) ~
l~ I

the estimate is

(3.21)

With (3.14), the estimate
2

Ep

) G(P„',g, x')
( exp(, dxyd ')

2
y

2

e, (g,*,g, x') eep(-e rixd ' leep dxyd ')l,

or
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/ I
o+(k', g, «')- e"' "' (a') (3.22)

[for g'-+0 at given k'&0. The conclusion of this
analysis is that a projected gluon correlation func-
tion (3.18) must be bounded by a polynomial in k'

unless it increases faster than any power of e'/"

in the weak-coupling limit. All the above rela-
tions should be interpreted in the sense of dis-
tributions.

B. Special projection

We now introduce a specific definition of a trans-
verse projected propagator. The absorptive part
p of the structure function D is proportional to
the norm of states of the form

C„,(k)a.*~ (k) ~0), (3.23)

where A'„„=s„A;—eQ'„, and A'„,(k) is the Fourier
transform. These states are eigenstates of P„P"
andP, with eigenvalues k'» 0 and k, -0. Only
states of the form (3.23) contribute to D. Hence,
regarding the transverse propagator, we need only
define a projection on positive-norm states within
the space Hr spanned by the vectors (3.23). We
define the space B~ as the subspace of II~ formed
by all linear superpositions of these states (3.23)
which have positive norm. In accordance with
this definition, we decompose the absorptive part
into

the projected propagators separately for the two
cases y, /p, &&0.

2 2E K k/2
I2dk p +—,

0 0
(3.28)

On the other hand, for D„(k',g, «') we have, as an
analogous decomposition of Eq. (3.2'l),

2 2I'«1 K k12p
D+ =-—,

J
dk"p++ —, dk" k»

0 k

.JI dk" „'„.
K

(3.29)

Since our projection procedure is invariant with
respect to the renormalization group, the coeffi-
cients of -1/k' in the first two terms of Eqs. (3.28)
and (3.29) can be analyzed in the same way as the
corresponding expressions in Eq. (2.3) for the un-

projected propagator. Hence, we find
2 2

dk»p, (k",g, «') =a~oI —,
I

0 40 )

0~P0 & 0

From Eqs. (1.2) and (2.4) we see that p (k', g, «')
vanishes for k &K'(g, «'). We can write Eq. (3.4)
for D zn the form

K

D = dk" „P-.
0

p =p++p

by setting

p(k') if p(k') &0,
p+ ik') =

0 otherwise.

(3.24)

(3.25)

( E0
xexpl dx o(x) I,2

(3.30)

with integrable o(x} at x=0, and

(A precise formulation on the basis of distribution
theory will be given at the end of this section. )
Hence, p, contains all contributions of positive-
norm states of the type (3.23). With the definitions
(3.24) and (3.25), we introduce projected propaga-
tors by

(3.26)

D, = Jt dk" (3.2 "1)

D„represents the transverse propagator function,
projected on the subspace JI~.

The distribution p, is by definition a, positive
measure consisting of parts which are I ebesgue
integrable except for the neighborhood of singular
points and of 6-function contributions with positive
coefficients. On the other hand, the negative-norm
states contribute to p, which also contains all
multipole ghosts corresponding to derivatives of
5 functions. In the work that follows, we discuss

2 2 , k"p (k" g «')dk"
0

C (g )e&/Bpr (g )-)' /8 +8 /8 (3 31)

for g'-+0, k' w0 fixed. For a detailed proof, we
refer again to Sec. II.

We conclude that for y, /p, & 0, the weak-coupling
H.mit of the projected propagators is quite rea-
sonable. The ghost part D vanishes; the first
terms in Eqs. (3.28) and (3.29) with the power
(g') &«80, and the second terms exponentially.
We have a nontrivial example of a theory which
satisfies the condition introduced in Ref. 1 that
the projected propagator D( kg, }«approaches
its free-field expression -1/k' for g'-+ 0, k' e0
fixed. The pole term is generated as the limit of
the last term in Eq. (3.29). It may be seen ex-
plicitly by inserting the perturbation expansion in
the dispersion integral of the last term, as we
have discussed in Sec. II for the full propagator.
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2 &0/po & 0(NF 9

From the discussion of the unprojected propa-
gator, we know already that in this case the nega-
tive-norm states dominate the weak-coupling lim-
it. Since p, vanishes for k'- K'(g, K ), we have
in analogy to E&Is. (3.28) and (3.29)

p(k') =v(k')+ Q D,.(k'),
f

where we suppress other variables like g q
K

and where

(3.36)

a gauge field theory which allows negative-norm
states, we assume that the discontinuity p(k') is a
distribution of the form

&&(k') =z(k')+ Q C«6(k' —k«'), (3.37)

E
dk' p

0
2

+—, dk „---,+ dk
0

Because of the improved boundedness of p for
0'- ~ in the present case, we can also write Eq.
(3.33) in the form

D =-~ dk p
1 p2

2
k "p 1 " 0"p

+ 2 d~
~ 2 ~2+~2 d~

~ 2 ~2
0

D~ (k ~g, K )=—1
(3.35)

in the limit g' +0. Rather, the last integral. of
the negative-metric part D actually approaches
-1/k', and in fact, as also described in Sec. II,
generates the perturbation expansion via the
asymptotic expansion of p . Of course, D con-
tains the positive-metric free-field pole -I/k' as
a secondary term in the limit g'-+0. This pole
is shielded by the negative-metric contribution of
the first term which diverges as described above,
so that the overall coefficient of -1/k' in D re-
mains negative for aQ values of g', as required
by definition.

We finally discuss in greater detail the distribu-
tion properties of the weight functions, as far as
they are relevant for the purpose of this section.
In order to cover all situations to be expected in

In all three e&luations, the coefficient of -I /lP in
the first term is given by an expression corre-
sponding to (3.30). But since now y, /P, &0, these
coefficients di&&e&ge for g'-+0 like (g') "oi 0.
As indicated in E&I. (3.31), the second terms in all
three equations still vanish exponenfially. In D
=D++D, the diverging coefficients of -1/k' can-
cel because -of the superconvergence relation
(2.20), as may be seen by adding E&ls. (3.32) and
(3.34). For general y, /p, & 0, there is no leading
or nonleading term in D, (k', g, «-) which approaches
the free-field expression

n

D, (k') = C, „6&"&(k'.- k ')
n=1

(3.38)

The function 7(k') is a sufficiently smooth func-
tion which we take to be L (absolutely integrable
in the sense of Lebesgue) except for isolated sin-
gular points. As singularities of ~(k'), we think
in particular of the possibility of an infrared be-
havior like

7(k')-(k') '-", &I~ 0. (3.39)

P 4f kf C f P (3.4o)

with Cf ~&0 for positive- and negative-norm re-
spectively; the derivatives of 5 functions are as-
sociated with states 4 of finite norm, which satis-
fy

(s'- k,.')"4, ~0,
(a' k')""e =o. (3.41)

%e have pointed out in Sec. I that the weight func-
tion p is either a positive or a negative distribu-
tion for sufficiently large values of A'~ E'. Hence
it must be a measure for these k', and conse-
&Iuently there are no contributions D, (k') for k'
) 2 ~K, l.e.)

0 ~ Af' &K'. (3.42)

In particular, the weight function p, of the pro-
jected propagator (3.7) is non-negative for all k'

Except for such isolated singular points, the part
o(k') of p(k') is a real measure. (The general

'

form of a real measure, as the derivative of a
function of bounded variation, contains an addition-
al term. This term is an almost everywhere va-
nishing derivative of a continuous function which
need not be constant. Such terms do not appear in
the context of dispersion relations. ")The positive
part p, as described by (3.26) is then defined by
the positive part o, of (3.37) omitting derivatives
(3.38) of 6 functions.

Since negative-norm states are possible, we
also include the distributions (3.38) which are
derivatives of 5 functions. While the 5 functions
in (3.37) correspond to normalizable states
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~ 0, and hence a positive measure except for iso-
lated singular points of 7.,(k')

mesons a,s particles associated with asymptotic
fields. We can introduce the appropriate opera-
tors

IV. POLES AND DISCONTINUITIES Z" = Z'~2m~ (4.6)
In this section we discuss the behavior of the

residue of pole terms at points k' =m'(g) as a
function of g', as well as of the discontinuity
k'p (k', g, «') evaluated at a renormalization-group-
invariant point k' = K'(g, «'). Furthermore, we

consider the question of propagators D(k', g, «')
which are meromorphic in the complex k2 plane.
As promised in Ref. 1, we give a proof that the
meromorphic case can be excluded.

We suppose that D has a pole at k' =m'(g) & 0,
where

2

m'(g) =m'(g, ) exp~ dx P-'(x)
~2 ]

so that the corresponding structure function D'
satisfies

lim (m' —k')O'=I.
0 ~m

Here the factor Z is given by Eq. (4.4):

Z '=~(g),

(4.7)

(4.8)

with x(g) & 0. The asymptotic fields A '"' are
then obtained as the appropriate limits of A. ' for
x, =v ~. If ~k) denotes a normalized one-particle
state generated by the Fourier transform of Ah, we

find

=m 'e' 8o' (g') '8). ()0 (4 1)

for g'-+ 0, as we have already seen in Eq. (2.'I).
Then

&o~w„(x)~k) = Z-'"&ol&g(x)lk&

= Z-'~'&o~a„"(x)
~
k)

Z-i/2C0 eaux
V (4.9)

lim [nP(g) —k']D(k', g, «') =r(g)
A, ~m2Q)

(4,2) From Eqs. (4.4), (4.8), and (4.9), we see then that

is a dimensionless function of g' which satisfies
the renormalization-group equation

8+
P(g) 2+y(g)~=0 ~

Bg

Consequently we have

(4 3)

R(K'(g, «'), g, «') —(g') )'oleo,

—K'(g, «')p(K'(g, «'), g, «') —(g')»~8(), (4.5)

for g'-+0.
Returning to the problem of pole terms in the

structure function D, it may be of interest to con-
sider the possibility of massive colored vector

2
( (do

r(d) =r(d, ) exp( J(l dxr()-'I

2

=r(d,)( .) exp(J
'

dxe(x)), (4.4)

with an integrable function o(x). Depending upon
the sign of y,/P„ the residue diverges or vanishes
for g'-+0. Therefore, unless @0=0, such pole
terms cannot approach the free-field gluon pole
-1/k'.

It must be noted that for g'-+0 also all other
singularities of D(k', g, «'), which are at finite
ppints pn the ppsitive real k' axis fpr g'& Oy

cumulate at 0'=0 for g' +0. In general we find
that the dimensionless function R(k', g, «')
= —k'D(k', g, «') and its discontinuity -k'p(k', g, «'),
if evaluated at a point k'.= K'(g, «') as given by
Eq. (2.7), behave as (g')» 80:

(4.10)

for g +0, a result which is related to our finding
for projected propagators discussed in Section III.

If the colored vector mesons are tentatively
considered as physical particles, it is of interest
to look at the relation

S(k„.... , k„) = Z"~', (k,
' m' )r(k„-. .. , k„)

(4.11)

between connected S-matrix elements and the
corresponding connected 7 functions involving
time-ordered products of the fields A.'„(x). We
know from the discussions in previous sections
that our gauge field theory has a reasonable weak-
coupling limit for y, /P, & 0 (10 ~ N~ ~ 16), at least
as far as the two-point function (1.3) is concerned.
If the same is true for more general T functions,
.the limit g -+0 of S-matrix elements is modified
by the diverging factors Z'~' (g)"'~~&. Because
of the gauge invariance of the S matrix, this state-
ment is not restricted to the Landau gauge.

The previous considerat. .ons are, a pviaxi, not
sufficient to exclude the existence of colored vec-
tor mesons. It is quite possible that the appear-
ance of factors (g)"'~~' in Eq. (4.11) signals a
modification of the isolated pole term. For ex-
ample, a logarithmic modification could be com-
patible with the renormalization-group equation.
A situation like this is familiar from quantum
electrodynamics, where there are, however, phys-
ical zero- mass quanta which lead to a superposi-
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tion of poles and of branch points due to many
photon thresholds. In a strong interaction theory
with only massive particles for g'& 0, we may not
expect such thresholds in the S matrix if colored
channels are assumed to be physical.

We now want to show that the propagator
D(k', g, «') cannot be a meromorphic function of
k'. We can assume that there are no asymptotic
gluon sta, tes and hence no positive-norm poles in
the propagator. Because, if we allow physical
gluons, the unitarity condition will certainly gen-
erate branch cuts corresponding to many-gluon
states so that D(k', g, «') would not be meromor-
phic.

We write then

p(k', g, «') = g c„(g)S(k„'(g,«') k'), (4.12)

and have c„(g)&0 in view of the absence of posi-
tive-norm states. If yo/Po& 0, we ha. ve the super-
convergence relation

dk "p (k",g, «') = g c„(g)= 0 (4.13)

which implies c„(g)=0 for all n, since all coeffi-
cients have the same sign.

If yo/po&0, we have no superconvergence,
k'D(k', g, «') increases asymptotically according
to Eg. (1.2), and p & 0 for k'& K'(g, «') &0. Since
all c„(g)&0, we have therefore

k„'(g, «') & K'(g, «'), (4.14)

and hence D(k', g, «') is regular at k'=~ in con-
tradiction to Eq. (1.2) for yo/Po & 0.

We conclude that D(k', g, «) cannot be a mero-
morphic function of O'. There must be branch
points on the positive real axis with cuts drawn
to infinity.

V. CONCLUSIONS

We first review the assumptions underlying the
results of this paper. They include the usual
postulates of quantum field theory as far as they
are a,ppropriate for a non-Abelia, n gauge theory
with indefinite-metric states. Only minimal spec-
tral conditions are required: exclusion of negative
eigenvalues of P~P" and Pp Solutions of mass-
less quantum chromodynamics are supposed to
exist, parametrized by the coupling consta. nt g
and the normalization mass x'. The topologically
nontrivial sector of the theory is not essential,
since our arguments depend only upon general as-
sumptions and the short distance properties
Hence, instantons and associated features need
not be considered explicitly. Important are
asymptotic freedom and the representation of the

D,(k', g, «) =-C,(g)/k

+0(e't oo&'(go)-&o& oo 6t oo') (5.2)

with C,(g)&0 diverging like (g') "o o. There is a
corresponding term -C (g)k o in D so that C, +C
=0 due to the superconvergence relation. But D
also contains an infinite integral over negative-
metric states which approaches the free-field
pole -1/k' for g -+0. Hence this pole term ap-
pears as a secondary term in D, shielded by the
diverging negative-norm contribution mentioned
above.

Clearly, the case yo/Po&0 does not satisfy the
requirement of Ref. 1 that the projected propaga-
tor D, approaches its free-field value for g'-+0.
Even apart from the diverging contributions to
D, and D, there is a marked discontinuity in the
weak-coupling limit, which is particularly appar-
ent in comparison with the case yo/Po&0 we have
discussed above, and where the limit is normal.

As in the previous paper, we have restricted the

general solution in the limit g -+0 by the formal
perturbation expansion of the Lagrangian formula-
tion, at least as far as the first few terms of this
expansion are concerned.

We now summarize the results for the full
transverse propagator function D(k', g, «'). For
yo/Po& 0, we find the conventional situation where
the Lehman representation of D(k', g, «') is domi-
nated by positive-norm states, with all negative-
metric contributions vanishing in the weak-coup-
ling limit g'-+0, in which we recover the pertur-
bative expansion. But for the case yo/Po& 0, the
situation is just the opposite. The propagator is
superconvergent and negative-norm states domi-
nate. For 0 &0, all positive-norm contributions
vanish exponentially. Nevertheless, the free prop-
agator pole at k'= 0 is reproduced in the limit g
-+0. Due to the superconvergence, it is the limit
of an infinite superposition of negative-norm
states.

We have also constructed explicit projected
propagators D, (k', g, «'). Their properties in the
weak-coupling limit reflect the features described
above for the full propagator D= D, + D, but there
are additional interesting results.

For yo/Po& 0, D is regular at k'=~, and it
vanishes for g'-+0 and fixed k'& 0. The positive-
norm part D, approaches its free-field expression:

g «o) =-]/k'+0((g ) "oooo)

forg —+0, k'&0. Hence, in this case, the theory
satisfies the condition formulated in Ref. 1.

On the other hand, for yo/Po& 0, the function D,
has a finite cut. For k'40 and g'-+0, it behaves
according to
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discussions here to the Landau gauge. In a sepa-
rate publication, ' we mill present our results, for
gluon as mell as quark propagators, in other co-
variant gauges. If the conventional gauge parame-
ter is denoted by n, we have y(g, n) =y,(n)g'+ '
with y,(n) =y«+y„n, where y» is the same as the
constant denoted by &0 in this paper, and p„&0.
The constant Pc is independent of n. It is impor-
tant to note, and will be shown in Ref. 14, that un-
der certain restrictions the asymptotic properties
of the gluon propagator discontinuity involve only

y» [and not y, (n)] as far as their functional depen-
dence is concerned. Mainly because of this fea-

ture, we find that the abnormal behavior of the
theory for y»/P, ) 0 (Nz ~ 9) is not restricted to
the Landau gauge.

It is also of considerable interest to extend our
explorations to noncovariant gauges, in particular
to the axial gauge, which mould also be helpful for
assessing the implications of our findings for the
unitarity structure of the theory.
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