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Composite-particle form factors are studied in the limit of large momentum transfer Q. It is shown that
in models with spinor constituents and either scalar or gauge vector gluons, the meson electromagnetic form
factor factorizes at large Q and is given by independent light-cone expansions on the initial and final
meson legs. The coeAicient functions are shown to satisfy a Callan-Symanzik equation. When specialized to
quantum chromodynamics, this equation leads to the asymptotic formula of Brodsky and Lepage for the
pion electromagnetic form factor. The nucleon form factors G~(Q ), G~{Q ) are also considered. It is
shown that momentum flows which contribute to subdominant logarithms in GM(Q ) vitiate a conventional
renormalization-group interpretation for this form factor. For large Q ', the electric form factor G~(Q ') fails
to factorize, so that a renormalization-group treatment seems even more unlikely in this case.

I. INTRODUCTION

The discovery' of asymptotic freedom in non-
A, belian gauge theories has led to a great number
and variety of interesting predictions for inclusive
hadronic processes at high energy. Quantities such
as the total hadronic e'-e annihilation cross sec-
tion, and moments of structure functions in deep-
inelastic lepton scattering, ' inclusive e'-e annihi-
lation, ' and even lepton-pair production in hadron-
hadron collisions' have all been shown to be con-
trolled by the renormalization group in the stan-
dard Gell-Mann-Zweig quark model with strong
interactions mediated by colored non-Abelian
gauge gluons [quantum chromodynamics (QCD)].
In the case of exclusive processes, on the other-
hand, there have been so far no convincing appli-
cations of the renormalization group. Indeed, it
has been generally supposed that in order to ob-
tain precise predictions in exclusive processes„
it would be necessary to augment the renormaliza-
tion group with detailed information about the
mass singularities of the theory —a conclusion
which, in the case of a non-A, belian gauge theory,
could reasonably lead to pessimism.

The form factor of a composite particle at large
momentum transfer provides perhaps the simplest
example of an exclusive process which has long
resisted renormalization-group analysis. ballan
and Gross' analyzed the pion electromagnetic form
factor in a scalar gluon model at a conformal fixed
point of the theory; however, the leading terms

(0 ) "~ "o ' (where y„ is the fermion anoma, ious
dimension and yo that of the leading odd-chirality
operator $y, g) which they found were shown by
Menotti to have vanishing coefficient at the con-
formal point. A more thorough analysis along
these lines was performed by Goldberger, auth,
and Soper (GGS)' who found, in addition to terms

admitting a purely short-distance interpretation
[asymptotically -(Q') '-&"o~o' ', where O, O' refer
to operators appearing across the initial and final
meson legs], a potential behavior (Q')-'-"&~' "e.
These authors also pointed out that the dominant
operators at large Q' were the twist-2 even-chi-
rality operators Py, y~8, " 8 g. Unfortunately,
the approach used by GGS necessarily had re-
course to technical assumptions on the behavior
of the pion Bethe-Salpeter wave function which
could only be verified in a highly model-dependent
fashion (e.g. , in a ladder model for the pion). '
Furthermore, it is virtually impossible to decide
within the GGS approach whether the "wave-func-
tion poles" giving rise to the (Q')-'-"o~'-"e terms
actually appear with zero residue, as we shall
later argue they must. Such terms could not ap-
pear as such in the asymptotic expansion of a
physical form factor in a, gauge theory (y~ is a
gauge-dependent quantity). In fact, we shall show
below that in either scalar or gauge gluon models,
with spinor constituent barks, the pion electro-
magnetic form factor is indeed controlled by the
renormalization group at large momentum trans-
fer and given by terms of the pure short-distance
variety (Q')-'-&"o+"o»».

The renormalization-group approach to exclu-
sive processes divides naturally into two logically
distinct steps. First, one must demonstrate that
when the relevant invariant gets large, the mo-
mentum flows responsible for the dominant asymp-
totic behavior (up to powers of the large invariant)
are of a structure which allows the process to be
factor ized into a soft part, in which the momenta
are typically of the order of the internal masses
and renormalization scale of the theory, and a
hard subprocess through which the large momen-
tum. flows exclusively. This factorization, if pos-
sible, will in general lead to an interpretation of
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the soft part in terms of hadronic matrix elements
of renormalized local operators, whereas the hard
part is reduced, either directly (for short-distance
processes) or by taking moments (for light-cone
processes) to a coefficient function of the large
invar iant solely.

The second step is the derivation of equations of
Callan-Symanzik type for the coefficient functions.
%e wish to stress the logical. independence of this
step from the factorization proof. There may ex-
ist momentum flows which spoil the renormaliza-
tion-group interpretation of a factorized large-
momentum amplitude. An excellent example of
this situation occurs in the asymptotically free
(Q ), theory, originally studied in this context by
Appelquist and Poggio. ' An exact evaluation of
the asymptotic behavior of the graph shown in

Fig. I for large Q' -=8p p' gives

The appearance of a double logarithm in a one-
loop graph (as in the case of elementary fermion
form factors in gauge theories) is generally a
signal of the failure of the renormalization group.
One easily sees that the double logarithm arises
from momentum flows which are sensitive to the
internal mass of the top line only (referring to
Fig. 1) when the external lines are fixed off the
mass shell. Nevertheless, ihe arguments pre-
sented in Sec. II can be applied also in this theory
to establish factorization of ihe form factor for
large Q'. The renormalization group, however,
does not control the asymptotics of this process-
we shall see in Sec. III that momentum flows of
the sort mentioned above vitiate the derivation of
the Callan-Symanzik equation and are thus fatal
to the renormalization-group interpretation.

Recently, there have been a number of investi-
gations" which suggest that even in gauge theories
meson form factors may be controlled by the re-
normalization group. In particular, Brodsky and
Lepage" have calculated to all orders the leading
logarithms for large Q' in the pion electromagnet-
ic form factor in QCD. Their result strongly sug-
gests the existence of a light-cone expansion in the
large-Q' regime, as well as a renormalization-
group interpretation for the coefficient functions.
Similar claims have also been made for the nu-

P

FIG. 1. A one-loop contribution to the scalar form fac-
tor in ($3)6 theory.

cleon magnetic form factor G„(Q'). We present in
this paper a derivation of the factorization and re-
normaljzation-group behavior of meson vector
form factors in both Yukawa and gauge theories. "
Our results establish that the structures hypothe-
sized by Brodsky and l.epage indeed persist in all
the subleading logarithms. However, our tech-
niques also lead us to conclude that in the case of
baryon form factors, the renormalization-group
interpretation breaks down in subleading loga-
rithms.

A brief summary of the paper follows. In Sec. II
we establish the factorization of the electromagnet-
ic form factor of a compositepseudoscalar meson
with fermion constituents interacting either via
scalar or Abelian gauge vector gtuons. The com-
plete set of subtractions needed for large Q' are
described, and a Zimmermann identity used to
demonstrate the factorization of the asymptotic
pa.rt. The result is that the large-Q' behavior of
the meson electromagnetic form factor is given by
independent light-cone expansi. ons on the initial
and final meson legs. " In Sec. III, we derive the
ballan-Syxnanzik equations which control the
large-Q' behavior of the meson form factor. We
also discuss briefly a number of other cases in
which factorization or the renormalization group
fail. In Sec. IV we specialize to QCD and derive
the asymptotic formula for the pion electromagnet-
ic form factor found by Brodsky and I,egage. In
Sec. V we discuss the nucleon form factors Ge(Q'),
G~(Q'). Factor ization fails immediately for
Gz(Q'), though not for G„(Q'). Unfortunately,
there appear to be momentum flows, leading to
subdominant logarithms, which prevent a deriva-
tion of a Callan-Symanzik equation for G„(Q').
Consequently, we think it unlikely that baryon
form factors have a conventional renormalization-
group interpretation.

II. FACTORIZATION OF THE MESON FORM FACTOR

We begin by deriving a factorization theorem for the meson form factor (with a vector current) in the
limit of large momentum transfers. This result will hold both in theories with Yukawa-coupled scalar
gluons and in gauge gluon theories (it will be crucial, however, as we shall see in Sec. III, that the con-
stituents be spinor objects in order to obtain factorization of the mass-inserted amplitude). The result is
simply stated: the large-momentum-transfer regime is given by independent light-cone expansions on
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each of the meson legs.
Consider the following five-point function (illustrated in Fig. 2), with external fermion legs amputated:

y(P, )ed', X')-=, (d ed')„(y y )„(y y ) eef d xd'yd''x d'y 'e-"e'"'*e'e" e '""'--"'*'e'"'"""

x «ITi "«)&,(y)c, (y')&. , (~)c. , (~') I0).

xS ' (P+k)S '88 (k p)S-'(),()
(p'+k')S-', „,(k' -p'). (2.1)

The Dirac projections at the ends of the meson
legs are introduced to extract precisely the tensor
component of v' which will factorize for large
Q'—= -4(P —P')'. As we eventually go to the bound-
state pole, these projections do not entail any loss
of generality. Neither, clearly, does the inclusion
of the factor (p+Pd), as current conservation
forces the meson form factor to be proportional to
(P -P')"

We shall be studying the Green's function (2.1) in
the Breit frame for Q'»renormalization scale and
all masses of the theory. Namely,

P, k,P'„O', -Q,
p„k„P',k' -m'/q.

(2.2)

k'-
p

Transverse components of the external relative
momenta are taken O(m), and p =p' =0. We shall
use the notation q„—= q„ for q„-Q, q„—= 0 for q„«Q.
It is convenient to begin by considering a scalar-
gluon theory. Then we shall discuss how to gen-
eralize the subtraction procedure to handle vector-
gauge-gluon theories.

The asymptotic behavior of the meson form fac-
tor will be obtained by first determining the as-
ymptotic behavior (up to powers of Q') of
v'(p, k, p', k'), and then going to the meson bound-
state pole. In analogy to standard proofs of the
operator -product expansion, '4 the factor ization
theorem. displays the leading asymptotic behavior
of v' as a convolution of subtracted four-point
functions on each meson leg (which contain the
meson poles) with a five-point Green's function
evaluated at a special momentum point. The latter
coefficient function will turn out in our case to be
merely V'(p, $, pe, k').

The leading asymptotic behavior of W(P, k,P', k')
can be determined by finding a set of subtractions

(including, of course, the usual ones re(luired for
renormalization) which extract the leading momen-
tum flows for large Q'. In other words, we need
a generalization of Zimmermann's "&-forest"
prescription" appropriate to this process. As
usual, a forest is simply a set of nonoverlapping
"subtraction parts" 1. These subtraction parts
consist of the usual renormalization parts y [(i.e. ,
one-particle-irreducible (1PI) superficially diver-
gent subgraphs, with the exception of photon-pho-
ton scattering in an Abelian gauge theory], togeth-
er with the following three classes of subdiagrams
(see Fig. 3 for a typical decomposition of V') cor-
responding to the momentum flows responsible for
the large Q' beh-avior:

(a) All connected five-point subdiagrams r of K.
%e will take v to be completely amputated.

(b) Connected four-point subdiagrams () on the
incoming meson leg: Such subdiagrams are as-
sumed amputated on the left, but not on the right.

(c) Connected four-point subdiagrams a' on the
outgoing meson leg, amputated on the right only.

Next, we define subtraction operators Tr for the
various types of subtraction part. For the con-
ventional renormalization parts y we take T, =t,
the usual subtraction operator extracting the lead-
ing Taylor coefficient(s) at zero external momen-
tum. The subtraction operator T, replaces the v

integrand by (y,y )(2)(y,y,) q, (P„k„Pf,k,'), where
the Dirac structures y,y (y,y, ) are those appearing
across the incoming (outgoing) meson legs, and

P„k„etc., are the external momenta of the v sub-
graph. The subtraction operator T, replaces the
left-hand external momenta p„k, of a 0--type sub-
diagram by P„k, (i.e. , drops + and transverse
components of P„k,). Similarly, T,, evaluates a
0' subgraph with right-hand external momenta
P„k, at P„k,.

Constructing 4 forests 'lt~(q') in the usual fashion

p+k

FIG. 2. Five-point function leading to meson form fac-
tor.

Flo. 3. Forest structure appropriate for subtractions
at large Q (scalar gluon theory).
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from the subtraction parts I'—=(y, v, o, o'], the ex-
pression for v'(P, k, P', k') oversubt~acted at large
Q is 3ust

(2.3)

k-p

p+k

k&-p

p+k&
I

k-p

p'+ k

where V'" is the unrenormalized Feynman inte-
grand. The asymptotic behavior can be immedi-
ately extracted from (2.3) by a Zimmermann iden-
tity. Before doing this, however, it may be help-
ful to the reader ta show by examining an explicit
class of graphs how the subtraction procedure
(2.3) actually succeeds in removing the dominant
momentum flows for large Q'. Consider therefore
the class of graphs shown in Fig. 4(a), in which the
rectangular blobs denote two-particle-irreducible
subgraphs. All internal subtractions are assumed
to have been done-we shall only display explicitly
the additional subtractions needed to remove the
dominant Large-Q' piece. These are indicated in
Fig. 4(b); zeros denote application of the subtrac-
tion operators discussed above.

Consider first the region of large momentum flow
through the entire graph shown in Fig. 4(a); specif-
ically, k»- Q (p =+, —,or i = I, 2). . The two-par-
ticle irreducibility of the rectangular blobs forces
all internal lines off-shell by an amount of order
Q'. Hence there is a cancellation of the leading
asymptotic power, separately between graphs (i)
and (ii), (iii) and (iv), (v) and (vi).

Next, consider a region of momentum flow for
which the quark line immediately to the right of the
electromagnetic vertex insertion is off-shell of
O(Q'), but the line to the left. is close to on-shell,
namely, (k, -P)'-(k, +P)' -m', but (2P'-P +k,)'-Q'.
Straightforward tensor decomposition followed by
power counting shows. that graphs (v) and (vi) are
separately suppressed and give a contribution to
v' of order I/Q4 in this regime. It is also easy to
see that graphs (i) and (iii) cancel to leading power
in this regime; the large momentum flowing to the
right allows us to ignore the small momentum
components, and also extracts the appropriate
Dirac structure on the left-hand side of the v sub-
graph. Since graphs (ii) [(iv)] are simply (i) [(iii)]
at special momentum points, they also cancel to
leading order in this regime.

We shall point out here that there is also a Po-
tentially dominant momentum Qow, certainly pres-
ent in scalar field theories (and also in spinor field
theories for the scalar form factor), characterized
by

(k —k,)'- (P +k,)'- (2P' -P +k,)'

-(P' -P+k, —k')'-mQ,

(k, -P)'-m'.

+ 0 0

(iv)

+ 0 0 0

(v) (vi)

FIG. 4. (a) A class of diagrams contributing to the
five-point function of Fig. 2. (b) Lay'ge-Q subtractions
for the diagrams of (a).

However, as has been noted previously, ' this re-
gime actually leads to a contribution suppressed by
powers of Q for the meson vector form factor in
spinor field theories. In fact, all the terms listed
in Fig. 4(b) are separately small in this regime.
We shall see in Sec. III that the absence of flows
of this type is crucial to the derivation of Callan-
Symanzik equations.

We now resume the derivation of the asymptotic
factorization formula. The renormalized five-
point function Y' is constructed from the conven-
tional forests %l(v') (consisting of renormalization
parts of W) of the unrenormalized integrand V" by
writing

(2.4)

The leading part of K for large Q', up to powers
of Q', is evidently

~asym + +re g

and may be written explicitly (see Fig. 3)

(2.5)

(2.6)

In Eg. (2.6), X and X' are the subgraphs of v' (am-
putated left and right, respectively) external to v.
gg„is the set of all forests of X built from subtrac-
tion parts of y or c type. a(r) refers to the set of
normal forests of v, built from conventional re-
normalization parts y only.
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The final result is obtained by summing (2.6)
over all graphs. It is straightforward to verify
that this sum generates precisely 7'(p, k, p', k'),
sandwiched between two four-point functions, each
w'ith a single oversubtraction on the inner momen-
ta. Define the forests of an oversubtracted four-
point function X„,(p, k, k, ) by means of the decom-
positions indicated in Fig. 5. Thus, if E is the
unrenormalized integrand, X the conventional re-
normalized integrand (i.e. , containing all the sub-
tractions of type y), K„,is given by

k p

E„„=E—
0 UlCan) U2eql(e) F1F-Ul 12CU2

(2.7)

K the notation of Zimmermann, "E„,is simply

P& kl

FIG. 5. Forest structure appropriate for defining an
oversubtracted four-point function.

I&, . .. (o, o, o & fs"s=so"'8"", ""*~""' &ol so'*(s)s r.)&«.o. (o&S, &..,&&I o&

(2.8)xs-'„,(k -p)s -'...(p+k).

Defining in mirror fashion a left over subtracted Ã„, (p', k', k', ), our final result for the leading asymptotic
behavior of v (p, k,p'k') is

8 1(P, k,P', k') =
,
'
,(X,V—-,) B(w,r ) 2 (2 ),

'
(2 )4'...g,(3,(p, »ki (&sr B, ,

& r(p, k„p', k,')(y y )2 ~ & . ~ 8 2 (P,k, ki).

Now as we go to the meson pole, (2p)' - mB2-0,

B

where g„, is an oversubtracted Bethe-Salpeter wave function

k,...,s(O+O„O, O& fo' (Ol&&-(s.,-=(-l~&&'&(l.*&)los& ' "*

(2.10)

(2.11)

and y, is the conjugate minimally subtracted wave function, with external legs amputated:

k,„(o+s,o o) fs'~(so
l

-s'(s,=-( ',~g, ( ',«)(o)~. —"-s-'„,.(-o —o)s-'..*.-(o+o). (2.12)

Our meson states here are covariantly normalized, (P (P') =(2m)22E~52(p -p'), and internal bound-state
degrees of freedom, such as isospin, have been suppressed.

The meson vector form factor E(Q') is defined by the matrix element

(2P'(~ "(0)(2P) -=2(p p') "F(e')
From (2.1), the behavior of K at the meson poles is given by

(2.13)

2

(2P ') -e 2- 0

&«rl~, y.x,(p +k, k -P) ltr h.~ x...(P'+k', k' -P')l.
Qn the other band, from (2.9) and (2.10), the behavior of 7' „at the meson poles is just

(2.14)

„(p,k, p', k')
&2p)2 „2,, (2p)' -mB2+2& (2p')' —mB2+ie
(2P ) haft jp2w 0

x —' tr[&,&,x,(p+k, k -p)ltr[y& x,(p'+k', k' -p')l

«b,yx„,(P+k„k, P)l7(t, k P" kl)trh, x,-x...(p'+kl, kl -P')l.
8

(2.15)
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Comparing (2.14) and (2.15) we obtain the desired factorization theorem for the asymptotic form factor

4 p

&(Q') ~ ——, , „ tr[ysy Xre, .(P+k~k-P)]9 (»k' P' k')tr[ysy+X z
(P'+k', k'-0')]

Q~~ao (2&)

+terms smaller by powers of —. (2.16)

This result may be written in a form which dis-
plays explicitly the connection with a light-cone
expansion by introducing variables

X ~
+
I ~

Expand:

(2.17)

(We expect W to be analytic at x= x' = 0 with the
nearest thresholds at x =+1, x' = +1.) Then, noting
that

( )~ tr[y,y X,.g(P+k, k-p)]x"

.(0I&s@ysy (2ie )"gll2p), (2.18)

we see that for large Q' the vector form factor is
governed by independent light-cone sums over
twist-two operators" on each meson leg. In Sec.
III, we shall derive renormalization-group equa-
tions for the coefficient functions T„„.(Q').

The factorization derived above for scalar gluon
theories can be generalized in the following way to
gauge theories. For the present we shall consi-
der a massive Abelian gluon theory, in the Feyn-
man gauge, as we shall then be able to subtract
at zero external squared momenta, without en-
countering infrared divergences. Once the re-
normalization-group equations for the coefficient
functions have been derived, it will be easy to
generalize the result to the non-Abelian case. (An
analogous derivation for the non-Abelian case,
with an appropriate subtraction scheme, should be

possible, though technically non trivial. ) Essen-
tially the only change in the argument given above
for the scalar gluon case is that it is now neces-
sary to include subtraction parts o, 0', and v in-
volving arbitrary numbers of gluons collinear
with the initial meson momentum p on the left and
with the final meson momentum p' on the right
(see Fig. 6). These collinear gluons are either
emitted from the initial meson state with polari-
zation + (i.e., they couple at the point of emission
to a y-) or they are absorbed by the final meson
with polarization —.For such gluons, and such
gluons only, can the extra hard denominator re-
sulting from the gluon insertion be canceled by
additional numerator factors.

The proper prescription for subtracting o, o',
and v subgraphs involving collinear gluons is ob-
tained by using the %ard identity to compute the
effect of a soft polarized gluon entering a sub-
graph consisting solely of hard lines. As a spe-
cific example, consider the o-type subgraph shown
in Fig. 7, in which a single collinear gluon with
momentum q lip ll k couples with —polarization to a
diagram with all internal lines off-shell by Q'
[take (k, +p)'-Q', (k, -P)'-m']. As before, we
amputate fermion legs on the left, but not on the
right. Then, if

S (p + k g~ k —p) 4 ~p + kgb kg P)

denotes the sum of all insertions of a —polariza-
tion gluon into the hard subprocess, the Ward
identity for the insertion of q at the gluon vertex
yields, up to powers of 1/Q,

p+k p& k)

FIG. 6. Forest structure appropriate for subtractions
at large Q2 (gauge vector gluon theory).

FIG. 7. CoQinear gluon insertions in a 0-type subdia-
gram.
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S (p+k —q, k-p, q,p+k„k, -p)- —[S(p+ k —q, k —q- p, p+k„k, —p) —S(p+k, k-p, p+k„k, —p)],
Q'

(2.19)

where

S(p+ k, k —p, p+ k„k, —p)

is just the usual four-point subgraph with no gluon entering from the left evaluated at the usual subtrac-
tion point. %'e now define the subtraction operator T applied to the subgraph of Fig. 7 as the right-hand
side of (2.19). An exactly analogous definition holds for T, in the case where a single collinear gluon en-
ters v.. It is evident that the subtractions for the multigluon case can be related to those needed when no

gluons enter the subtraction part by iterative use of the Ward identity.
The only effect of these additional subtractions on the light-cone' expansion for the asymptotic form fac-

tor is the replacement of the twist-2 tower of operators N, (gy,y (-,'ib ) () appearing in the scalar case
[see Eq. (2.18)]by the corresponding gauge-invariant twist-2 tower

A,(i',y (,'-is +gA. )"g) .
Consider, for example, the contribution to K„~in (2.6) arising from decompositions in which a quark,
antiquark, and a single gluon line connect o and v (but, for simplicity, only a quark and antiquark line
connecting v' and 7.). The sum of such contributions leads to a term in E(Q') of the form

E, (Q')= ——,f d Xd ed k'tr[x r x(P+x —d, X-p, d)]—[v(P)[—d()', k )'—t'(p))j'', k')]reg
Q'

where

x tr[y,y, Z...(p'+k', k -p )], (2.20)

X,...„(&+X d, e P, d) fd xd=-'Xx -''" "'-*x"'(e]Xt(e„(e)et(X)dx(X))]XI).

If we expand (pv, k, p', k') as in Eq. (2.17), then noting that

l d'k dq (k —q)"—k"
(2 )4 (2„)4 tr[y5y-X eg(P+k —q k px q)1

(2.21)

0 N 0 y,y -'iB 'A 0 —,'i ", ' ' 0 2P, 2.22
g. =0 )

we see that this set of contributions generates
precisely the parts linear in the gauge field of the
twist-2 operators in the hght-cone expansion on

the initial meson. Higher-gluon emissions are
handled similarly in this Abelian theory.

magnetic form factor.
Consider the effect of an application of the Cal-

lan-Symanzik operator Q -=m's/[]m'+P(g)B/Bg
—4y„(g) to the five-point Green's function
7'(p~k, p', k'):

v'(p, k, p', k') = uv'(p, k, p—d, kd) . (3.1)

III. CALLAN-SYMANZIK EQUATION FOR THE
MESON FORM FACTOR

In this section we shall show that the asymptotic
coefficient functions v'„„,(Q') [see Eq. (2.17)] are
controlled by the renormalization group for large
Q'. We shall consider a massive Abelian gauge
theory (with, for simplicity, equal gluon and fer-
mion masses); the Callan-Symanzik" equation
(3.7) derived, however, holds equally for scalar
gluon theories. The generalization to non-Abelian
gauge theories will be made in Sec. IV when we
diagonalize the Callan-Syrnanzik equations and
derive the asymptotic form of the pion electro-

Graphically, g corresponds to the set of all pos-
sible soft (i.e. , minimally subtracted) mass in-
sertions into the graphs contributing to V. In or-
der to obtain a Callan-Symanzik equation, we must
extract the asymptotic behavior of J by determin-
ing the set of subtraction parts corresponding to
the dominant momentum flows of 7 for large Q'.
Once again, the forest notation concisely expres-
ses the necessary subtractions:

v'„,(p, k, p, k') = Q, 'g', (-Tr)y'"(p, k, p', k').
Ue~&(E) re U

(3.2)
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o A 8 o

A o B o o A o 8 o

{vi)

FIG. 8. Large-Q subtraction for a class of mass-inserted diagrams.

Here the subtraction parts I are of the 7, o, o', and

y types discussed above in the course of the fac-
torization proof, and the T„are as defined there.
The ~ forests are built in the usual manner from
these F subgraphs, with the proviso that no a, a',
or T subgraph with a mass insertion is to be con-
sidered a subtraction part (y subgraphs with mass
insertions are given the minimum number of sub-
tractions required to make them convergent). We
claim that v'„„is suppressed in the large-Q' re-
gime by inverse powers of Q compared to iP'.

The subtractions prescribed by (3.2) for a par-
ticular class of mass-inserted diagrams are
shown in Fig. 8. The reader may easily verify
that when large momentum flows through both
kernels A and I3, (i) and (ii), (iii) and (iv), and

(v) and (vi) in Fig. 8 cancel separately. Note that
we envisage using the Ward identity to pull the
collinear gluons exhibited out of the large-mo-
mentum subprocesses, and that any large-momentum

flow through the mass-inserted kernel on the left
is power suppressed. The discussion for the
other momentum flows follows in precise analogy
to that given in the preceding section for the sub-
tractions of Fig. 4(b).

A potential, disaster for the renormalization-
group interpretation of this process may be de-
tected in the class of mass-inserted diagrams
shown in Fig. 9(a). Our subtraction scheme (3.2)
implies for these diagrams the subtractions
shown in Fig. 9(b). The success of these subtrac-
tions in removing the dominant momentum flows
for large Q' depends crucially on the absence of
"double-flow" regimes of the sort mentioned in the
preceding section. Consider, for example,
(p+k, )', (2p'-p+k, )', (k- k,)', and (p'-p+k,

—k')' all of order mQ. Were such a flow to give
rise to a dominant asymptotic contribution, it
would clearly not be properly subtracted by the
terms displayed in Fig. 9(b), and would result in
an inhomogeneous term in the Callan-Symanzik
equation. [We shall see below that the subtrac-
tions contained in (3.2) are precisely such as to
allow us to write the asymptotic part of Y' in terms
of v'. ] Given the absence of such flows in models
with spinor constituents, we must still verify that
the subtractions of Fig. 9(b) are successful in the
single-Qow regimes. Consider a large momentum
flow to the left: (2p' —p+k, )2-m', (k, —p)'-m',
(p.+k, )'-(k-k, )'-Q'. Evidently (i) and (iii) cancel
(to leading power in Q) in this regime. We claim

k-p
k)-p At yvk'-p'

p + k ~
p&kl ~p p+k& '

(aj

~v
p' + k'

4V

k p~ kl p

y5 X

P ~ k ~ ~p& k)

(b)

(c)
1/Q

FIG. 9. {a) A class of diagrams contributing to
fop™,A. ,p', k')i. (b) Large-Q2 subtractions for the diagrams
of {a).{c)Asymptotic behavior of central diagram of {b)
when large momentum flows to the left.
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Q »M
p+k

k)-p
qp,

p+k&-q

FIG. 11. Oversubtracted five-point function in vector
gluon theory.

FIG, 10. Callan-Symanzik Equations for V'(p, A,p', k').

that (ii) is separately suppressed by a power of
Q' in this regime. First note that the tree con-
tribution to the structure on the right of (ii) is
just

(y,y ),.(y,y,), @2(1
—

)

Furthermore, the regime of interest is charac-
terized by QQ»m', Q2(1 —x,)-m'. One may check
that crossed-channel thresholds in higher-order
graphs do not enhance the tree behavior in this
regime by more than logarithms. So, up to pow-

ers, we are led to a net contribution in this re-
gime of the form shown in Fig. 9(c), which is
readily shown to be of order 1/Q4.

The derivation of the Zimmermann identity and
the extraction of the asymptotic behavior J
=X ~ „,proceeds in complete analogy to the
factorization discussion. The result is shown

graphically in Fig. 10. Let us first consider only
the graphs where the mass insertion is made on
the left-hand side of the electromagnetic vertex
(a sensible distinction provided double-flow con-
figurations are absent). The contribution of
graphs in which only a quark and antiquark, but no

gluons, connect the mass-inserted subgraphs to
the 7.-type hard subprocess give an asymptotic
contribution [in analogy to (2.9))

))kk d4k

( „„, )(p,k, p', 0')= —~(y,y,)., &„„...,(P, k, k, )(y,y ).. .&(-P, k„P', k'
(2 )„ (3.3)

K...( (k), k)=-( *I,, +I) —K...( ,(),4)4 (3.4)

is simply the oversubtracted four-point function defined in Eq. (2.8) with a soft mass insertion at all pos-
sible points. The subtractions for the graphs in which a single gluon connects the mass-inserted (left-
hand) side of the diagram to the 7 subdiagram are related to those with no gluons by the Ward identity in
the usual manner. Asymptotically this class gives

), „„..)(k, k() k ) .g(r r ), )'f, k'=-~-,), (P. ,.k, k„k)(r.,r )p... .
x [7(P,k, q, P—, $ ) 7(P, k„P,S')] (3.5)

where SC„,~ ~ „(P,k, k„q) is the following mass-inserted five-point function (see Fig. 11):

K (p k k q) = d4~d4y d4X d4z e-4(Q'")'"ek(k (')'re 4(()k (')'"ke(Q 4
eglao a'l~lu» l. ~ . 3

I

x (o ~T8,.(y)8..(x)&.((. (o)0, (~,)&.(~)) ~o)5 '„(k-P)S '...(P+k) . (3.6)

In analogy to the factorization discussion, the multigluon exchanges give contributions related to V

v'(p, k, p, k ) by iterative application of the Ward identity. Equations (3.3) and (3.5) display the classic
homogeneous ballan-Symanzik structure; application of the operator S to the asymptotic function V yields
contributions involving t linearly. The integrodifferential Eqs. (3.3) and (3.5) (and their multigluon rela-
tives) can be reduced to differential form by performing the expansion (2.17). One then finds

(3.7)

We have defined an infinite-dimensional anomalous-dimensional matrix y„„by
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dz 0 TagnR3$ z +b mN2A. „g
~ 7$

xq. ,(y))),(x)NS('(0)yg ——— D- t/)(0} 0 S qq. (k —P)s ~ (P+k) ~

p~
(3.8)

Here a(g) and b(g) are defined in perturbation
theory by the requirement that insertion of the
soft mass operator

a(g)mN~(gg)+ b(g)m N2(A„A")

in an arbitrary renormalized Green's function be
equivalent to the application of the Callan-Syman-
zik operator for that Green's function. Thus, to
lowest order, a{g)= ——,'+O(g ) and b(g) =1+0(g ).

It is clear that the y„„& are pure numbers; the
right-hand side of (3.8) is dimensionless, and the
only external momentum invariants (P,P k, k )
vanish. Furthermore, the maximum power of k
generated by an insertion of the operator

N~

N3~+5y -2 D

is evidently k "& so the sum over n in(3.8) term-
inates at n=n&. Qur final result, then, is an in-
finite set of coupled equations of Callan-Symanzik
type involving infinite-dimensional upper triangu-
lar anomalous-dimension matrices. This mixing
of operators with the same twist but different di-
mension is of course a consequence of the fact that
our light-cone expansion is being performed in a
channel carrying nonzero total momentum.

We wish to conclude this section by commenting
briefly on the situation in a number of other mod-
els than that considered explicitly above. In Q'
theory in six spacetime dimensions (an asymptot-
ically free theory), the proof of factorization car-
ries through, but we are unable to derive Callan-
Symanzik equations for the form factor because
of the presence of double momentum flows. In
the case of the scalar form factor in spinor field
theories the situation is even worse. The Born
contribution to the five-point function here is pro-
portional to a quark mass. The appearance of
such a mass in processes of this type is a signal
for the failure of factorization; for purposes of
power counting, mass terms and transverse nu-
merator factors behave similarly. As a conse-
quence, momentum routings in which the large
momentum flows through (say) the Born contri-
bution to 7 cannot be factorized —the hard and soft
parts of the graph are still entangled via thetrans-
verse-loop-momenta integrations.

IV. ASYMPTOTICS OF THE PION FORM FACTOR
IN QCD

Given the results of the preceding section, it is
straightforward to generalize to the case of quarks
with color and flavor interacting via a non-Abelian
gauge gluon theory. We shall take the local color
gauge symmetry group to be SU(N, ), and will con-
sider only two flavors of quarks (u and d). Our ob-
ject will be to show that the results for the pion
electromagnetic form factor at large Q recently
derived by Brodsky and I epage" in leading-loga-
rithmic approximation do in fa.ct follow rigorously
from the renormalization group.

We begin by describing our notation. Color,
flavor (in this case, isospin), and Dirac indices of
the quarks will be denoted by letters (a, b, a', b',
. ..}, (A, B,A', B', . . .), (n, P, n', P', . . .), respec-
tively. The isospin label of the initial and final
pion will be I and I'. Suppressing isospin and Di-
rac indices, the QCD Lagrangian is

We shall use the notation

tr(T, T,) = T(Z)C,, ,

T~T, =C2(E)1,

tr(rr7r ) =25rr

where w~ are Pauli isospin matrices.
In analogy to (2.1), define

v'rr-(P k P' k') =
—,', (P+P'), (ygy. ) gy5 -), g

x(7,)„,(r, )„,„8.,y,.,

(4.2)

/
'aaA, e'a'A, 'BbB, 8 O B'(Pike'P 'yk ))

(4.3)
where we have explicitly displayed the Dirac,
color, and isopin indices of the external quark
lines of the amputated five-point function V . For

k-p

p+k
2p'-p+k

p+k

FIG. 12. A Born contribution to g(p, k,p', k').

——,'(~„A„' —QA'„+gC„~4'„A~)2

+ &el'~&st +8'(T))ask)]4 —(~() ~ (41)
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example, the tree diagram shown in Fig. 12 leads
to the following contribution to &„,:

into the matrix y„„, so we definennl&

(4.8)
2

tree 1
+II' CII'+cc2(+) q2 (1 x)(1 xi) (4.4)

The computation yields

with CII ~ =—tr(r, r, ~ ro), r@ —
6

+
2

7'a=quark charge1

matrix.
The next step is to compute (to one-loop order)

the anomalous-dimension matrix y„„,[see Eqs.
(3.7), and (3.8)j in this theory. The relevant dia-
grams are displayed in Fig. 13. It is convenient
to absorb the fermion anomalous dimension

g2
r&= ~ c2y'

(4.8)

Note that these diagonal elements are precisely
the nonsinglet anomalous dimensions' familiar
from deep-inelastic scattering. The off-diagonal
matrix elements are

g' ' 1 2(n+1)

6„„=0 otherwise.
(4.7)

with the normalization

8 J((l' 1 e
Qr)

Then one finds

(4.9)

The terms with odd n or n' in (2.17) correspond
to operators with even 6 parity, so their vacuum-
to-single-pion matrix elements will vanish in the
limit of exact isospin conservation, which we
henceforth assume. The diagonalization of &„„,
(Ref. 17) in the even sector is readily accom-
plished —the eigenvectors generate the coefficients
of the Gegenbauer polynomials, as follows. Let

n

nl=o
{4.8)

Q
2

7((((Ã) (Q2, +) 0 7 (((((P) (q 2,+ (i +))

elf

x exp — dx(X„+X,, )g„,(x,g),
0

(4.12)

we may recover &'"" ' trivially from &(x, Q', x)
by using the orthogonality relations of the Gegen-
bauer polynomials:

((((~n)
( 2)

(2%+3)!!(2N + 3)!!
4(N+ 2)!(V'+ 2)!

x dx I -x dx' I -x"C„x
-l -l

N/2

Q e, x =,, C„(x). (4.1O)
&& v'(x, Q', x')C ~ '(x') (4.13)

Thus, if we take

(q2) pe(N) 7 (i(N') (q2) e (N' )

so that the &(""'(Q') evolve simply under the
renormalization group [f —= ln(Q'/Q, )]

(4.11)

In an asymptotically free theory the leadingbe-
havior for large Q' (up to inverse whole powers
of lnQ') will be given in terms of the Born dia-
grams contributing to W. In the case of the charged
pion electromagnetic form factor, these three
diagrams are readily evaluated [choosing r,
=( ,r+i)r/W, 2r, =(r, —ir, )/.&2t and yield

+ m g/()

~ j.o. 13. One-loop graphs contributing to anomalous-dimension matrix y„„.nn~'
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2

g 8„„,(x, Q', x') = —', NcC, (F) @e

2 I
(&-x)((-x') o+x)((+x'\)'

(4.14)

The even sector part of this is

y Born+-( ) q ) x ) ~c 2( ) q2 (1 x2)(1 xi 2)
'

(4.15)

Referring to (4.12), (4.13), and (4.15), we ob-
tain finally the asymptotic behavior V'"" ' (Q'),
up to inverse powers of logarithms:

g()()N') (q2) ~ c 2( )geff
Q2

Note that Cp=o the anomalous dimensionvanishes
for the minimum dimension operators (!)y,y, )1),

which are components of the partially conserved
weak axial-vector current. Since C~ are mono-
tone increasing with N, operators of higher di-
mension give contributions for large Q'suppressed
by fractional powers of logarithms.

The matrix elements arising in the light-cone
expansion governing this process are of the form

(0~N, (Iy),y r (—,'iD )"~P)Iv', 2P&=4/ ""f'"',
(4.18)

where f,("=f, is t—he usual pion decay constant
(f, =96 MeV). The factorization formula (2.16)
then yields in this case [a,«(q') -=g.«'(Q')/4v]

p(q, ) ~ 16 C,(P) o-'„,(Q')

„(2N+8)!!,,„(2N'+ 2)!!,,„,
++2! X'+2!

(4.16)

where t =—In(q'/Qo'), and the constants C„are
explicitly

NC~= 2bpr

2
Bm

(N+2)!

+ terms down by inverse powers of t .
(4.19)

The normalization of the leading term in (4.19)
(corresponding to N=n =0) is completely deter-
mined in terms of f,:

P(Q2) ~ 36v C2(~)
y

2 eff (q
N, ' Q

2

I,g'=,~, [~C,(G) —-', T(P)]. (4.17)
+ terms down by inverse fractional

powers of t . (4.20)

V. NUCLEON FORM FACTORS AND THE RENORMALIZATION GROUP

(5.1)

I

In this section we wish to describe the results of applying an analysis along the lines of Secs. II and III
to the nucleon electromagnetic form factors Gs(Q') and G„(Q'). Let the momentum and spin of the initial
(final) nucleon be P, o (P', o'), with (P P')'—= -Q'. -Then these form factors are defined in terms of the
matrix element of the electromagnetic current as follows:

r 2

(P...
~

(0) ~P.& „(,, ) .(Q')+~.C. (Q'), „(P -P)" G. (Q')-C. (q'). (,)
Q' 1+ -21+~24M

Once again, the analysis is considerably simpli-
fied in the Breit frame, where

(0) IPo&=f ~e, Xt.o X,G„(Q')

(5.2)

(5.8)

In this frame one may easily check that Gs (Q'),
G'~(q ) are given directly by insertions of the
longitudinal and transverse current respectively:

where X,», are unit normalized spinors satisfying
(AX~/ 2 +X» 2 and 4,&

is the totally antisymm etric
tensor in two dimensions (&» = +1).

Consider first the electric form factor Gz(q').
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p g

p-k

p+4+k

p'-l'

p'- k'

p'~ k'+ 4'

p-e

p-k

p+&'k y

$p-2p+L+k

2p'- k'-2'-p+2

p'-g'

p-k

p'+g, '+ k'

FIG. 14. Seven-point fuIlctioD I leRd1.ng to bRrgon forIIl
fRctor. FIG. 15. A Born contribution to I'.

In this case we cannot even hope for a factoriza-
tion of the amplitude for large Q'. The relevant
quantity here is the amputated seven-point func-
tion shown in Fig. 14, with p, = —at the current
insertion (we find it convenient to set P =3P,
E'= 3p'). Just as in the pion case, we consider
the tensor structures which survive application of

y, on the incoming quark lines, and y on the out-
going quark lines. One of the Born diagrams for
this process is shown in Fig. 15. The reader may
easily verify that the dominant asymptotic terms
contributing to such tensor structures are obtained
by keeping the mass or transverse momentum of
either the (2P'- )jan' —P'+jj( —f+m) numerator or the
(3P'+g+f+m) numerator. The result is an as-
ymptotic contribution of order m/Q'. We have,
then, a situation very analogous to that of the
scalar form factor of mesons, described briefly at
the end of Sec. III. When the Born graph of Fig. 15
appears as the hard subprocess (the "~"subdia-
gram) in our subtraction procedure, it will neces-
sarily be coupled to the soft part of the diagram by
tx ansverse-momentum integrations. Such coupling
clearly destroys the factorization.

In the case of the magnetic form factor G~(Q'),
one obtains a purely dlmenslonal conti ibution fol"

'arge Q' from the Born graphs —there are no ex-
plicit quark masses in the asymptotic form, and

small components («Q) of the external momenta
are ignorable as only momentum components of
order Q enter in the internal lines. In fact, we

expect the form factor to factorize in this case.
If 0., & refer to the initial nucleon spin and iso-
spin, then (with a„a„a,denoting quark color in-
dices) the leading operator appearing across the

initial nucleon leg may be written

~„„[y „ (o)y,yA . (o)] [-.(z)y „(0)],

where tP is the charge-conjugated fermion field.
Note that this operator is separately antisymmetric
in color and spin-isospin.

If one were confident that the renormalization
group controlled the behavior of the coefficient
functions multiplying such operators in the factor-
ized expression for the form factor, one could
proceed to the calculation" of anomalous dimen-
sions for the operator cited above (and its higher-
derivative relatives). Unfortunately, the presence
of double-flow momentum configurations makes it
impossible to derive a Callan- Symanzik equation
for this process. More precisely, consider the
graph shown in Fig. 16. [Figure 16(a) labels the
momenta for the graph while Fig. 16(b) gives the
relevant y matrices appearing at the vertices and
on the Feynman propagators of the fermions. ]
Call the contribution of the graph shown in Fig. 16
1"„,„,z. Then define (&=—charge conjugation ma-

trix)

ab
48

I' has a single lnQ' coming from a region of inte-
gration where k„k,= O(m) with k„«p,', k, «p .
(There is a second region of integration where a
sjngle ln Q can arise, however this In Q comes
about from a region where k, ' and k,' are large
and thus can be separated uniquely from the above
soft region. ) In the above momentum range (x=l /

p, x' —=l,'/p', etc. )

gB I
4(2~)' (1-x)(1-x')(2-x-y)'(2-x'-y')'(P P')'

~ ~ ~

d'k, d'k, (k „'k, + m')
(k -m + jc)(k —m +f&) (k —$6)(k —26)P(k +k ) —zc] [(k +k ) —zc]

where A denote the restricted range of d'k, d'k, . (5.4) is easily evaluated by doing the k„and k„contour in-
tegrations first. The result of doing these integrations is

8(2w)~(p 'p')' (1-x)(1-x')(2-x—y)'(2 —x'-y')' (k, '+m')[k, (k, +m2)+k, (k '+m')]2(k, +k, ) '
(6 6)
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After doing the transverse-momentum integration one
obtains

g8

6(2 )'(P 'P')'

1
(1 -x)(l -x')(2 -x -y)'(2- x' -y')'

jp-l-ki

pp-k+kl

a r

kp 2p- k'-~'-k
p'-g'-k

2p-6 k- kl- kp 2p - k -g- kl- kp

Bp- k&
-

k& 3p'- k, - k&

(0)

p'-L'

p'- k'

p+L+k

R ( l+~R)- 1- 2-
(5.6)

Let us now look more closely at the integration
range in Eq. (5.6). The original limits dictated by
8 in (5.4) were say, for k„

(b)
FIG. 16. (a) Momentum routing for a two-loop contri-

bution to I'. (b) y-matrix structure for dominant contri-
bution to graph of (a).

2p
I 2- ((p

2
«p'

2p
2t +y

where

and with a similar formula for &,'. Now

Thus in terms of k', the limits become

2 2
&()p &&P

2pt 2 P ~ 2

An identical limit holds for k, . One then can
easily evaluate (5.6) to get

1
2'v' {p p')'(1-x)(l-x')(2-x-y)2(2-x'-y')2

Q'rn'
x J,n

1 2

The peculiar thing about the logarithm in (5.V) is
that the internal mass m' appears even when the
external particles are off-shell. In the purely
zero-mass theory the above logarithm wouM not
even appear. This clearly means that the loga-
rithm appearing in (5.7) cannot arise in any
straightforward way from a Callan-Symanzik
equation. We believe that m2 in (5.V) should be
identified with a constituent rather than a current
quark mass, but of course we do not know how to

go about proving this.
The graph shown. in Fig. 16 does indeed factor-

ize even though there are momentum flows where
p ' k„p' ' k, are both large. The factorization of
(5.7) is apparent if one writes

@2~2 Q2 g 2 ~ 2

ln-- —-=ln ---ln ' —ln—'
m' m' n~' '

2

in which case the in(&, /m') term represents the
flow where P' ' 0, =O(Q'), the ln(a, '/nz') term
represents the flow where P " 0, =O(Q'), and the
in(@'/m') term represents the double momentum
flow (p ' 0 )(p' ' 0 ) =O(Q'm'). The mass-inserted
graph, with the mass insertion on the lines labeled
by k, and k„does not factorize in any way consis-
tent with dimensional counting. This appears to
be characteristic of any graph which ha~ a. large
momentum flow around a region where the mo-
mentum ls soft.

In higher orders it is very likely that the graphs
describing 6& continue to factorize into a part
which depends on Q' times a part which is wave-
function dependent, much as in the pion case.
%e have not attempted to prove this with any de-
gree of thoroughness, however.

Our conclusion then is that there is no straight-
forward use of factorization and the Callan-Syman-
zik equation which extends the Brodsky-I epage
result to all subleading logarithms in an asymp-
totically free theory.
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