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Although the noncovariance of two-dimensional gauge theories in the Coulomb gauge has been established
by formal operator methods, no calculations have thus far been presented which display a failure of Lorentz
invariance within the framework of perturbation theory. In order to make credible such operator results, the
mass of the particle coupled to the gauge field is here computed to order g ‘N2, where g is the coupling
constant and the symmetry group is U(N). The calculations are carried out for both the spin-0 and spin-
1/2 cases, with the result being that, independent of the spin, the mass is seen to exhibit a dependence upon
the spatial momentum incompatible with Lorentz invariance. As a secondary result, some earlier

calculations for the spin-1/2 case are corrected.

I. INTRODUCTION

The considerable esteem in which gauge theories
lately have come to be held has served amongst
other things to stimulate a number of investiga-
tions of their more tractable two-dimensional
counterparts. Because of the fact that the gauge
field in two dimensions becomes a function of the
fields to which it is coupled when quantization is
carried out in the Coulomb gauge, the latter is
perhaps the most physically interesting frame-
work for the discussion of such theories. The
present work is consequently concerned exclu-
sively with the non-Abelian gauge theory as for-
mulated in the Coulomb gauge.

Despite the advantages inherent in a two-dimen-
sional calculation, there is at least one aspect in
which the four-dimensional theory appears to be
much simpler to handle. This is the matter of
covariance, which appears to have been resolved
satisfactorily by Schwinger’ in four dimensions,
even though the Abelian version with zero fermion
mass in two dimensions (i.e., the Schwinger mod-
el?) is known to violate covariance in the Coulomb
gauge.® Although the solubility of the model (which
is a consequence of the vanishing fermion mass
and the Abelian nature of the gauge group) is es-
sential to the rigorous demonstration of nonco-
variance, it is difficult to see how Poincaré in-
variance could be restored by giving the fermion

a mass and/or by using a non-Abelian gauge group.

In the Abelian case the commutator of K, the gen-
erator of Lorentz transformations, with the Ham-
iltonian H yields for a system quantized in the
domain (-7, +1,) the result '
[K,H=iP+3 ig?LDo R, (1.1)

where P is the momentum operator and @ and D
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are defined in terms of the charge densities j%(x)
by

Q= fj“dx,

D= ijodx.

Although the non-Abelian case is somewhat more
involved, one finds a similar breakdown of the
structure relations of the Poincaré group* so that
one must expect the failure of covariance in all
two-dimensional gauge theories (at least in per-
turbation theory for nonsinglet sectors).

In view of the fact that no claims for evidence
of noncovariant perturbative effects in gauge the-
ories have thus far been advanced, it is of some
interest to display such results. In the present
paper a gauge field theory with U(N) symmetry
is considered in the limit of large N. The mass
and wave-function renormalizations are calculated
for scalar and spinor fields, respectively, cou-
pled to the gauge field. Since the mass squared
is the eigenvalue of the observable —P,%, one will
have a clear demonstration of the breakdown of
Lorentz invariance if the mass renormalization is
a function of the spatial momentum. This is, in
fact, the result obtained. In Sec. II the structure
of the scalar propagator is considered and cal-
culations are carried out to include terms of or-
der g°N and g*N®. Section III extends the analysis
to the somewhat more involved spinor case. In
each instance the mass renormalization is found
to be noncovariant and of very similar form. An
earlier calculation in the fermion case by Hanson
et al.® (who made no conclusions concerning co-
variance) is shown to be in error as a result of
an omission of a pole in a contour integral. A
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brief conclusion summarizes the results and some
implications.

II. THE GAUGE FIELD COUPLED TO A SCALAR FIELD

The system to be described consists of a set of
scalar fields ¢ which transform according to the
fundamental representation of U(N) and are cou-
pled to the gauge fields AY. An appropriate La-
grangian is

L=0""0,0- ¢ 00" +pLo"~ WO+ IFLF,
—3F%(5,A% - 8,A%+ig A, t°A )
—ig((b”TTad)— (bfTa(bu)AtL
32T T0 9, @.1)
where the matrices 7% and {%, are, respectively,
the fundamental and adjoint representations of the
generators of U(N). In writing (2.1) the usual me-
son-meson scattering term has been included so
that disagreeable divergences can be eliminated
by appropriate choice of the dimensionless pa-
rameter A.

The calculation of the meson mass involves the
scalar two-point function

§(c —x)=i (O|(¢p(x) (")), ]0), (2.2)

where the plus subscript denotes time ordering.
In the case of a manifestly covariant theory it is
well known that the Fourier transform of (2.2) ad-
mits a Lehmann representation.® In the case of a
gauge theory which is presumed to be covariant
(though not manifestly so), the generalized Leh-
mann representation is”

Z,(99) N f‘” B(k, b?)

p2+u2.—i€ 02 Di+ K —je

8(p)= dr®, (2.3)

dk

~ _Q O

(a) (b) (c)

FIG. 1. Second-order contributions to §~(p).

where it has been assumed that a stable single-
particle pole exists. Thus (2.3), through the
requirement of a normal excitation spectrum, im-
poses a severe restriction on the form of g(p),
namely, that the position of the single-particle
pole (if any) should be independent of the Lorentz
frame, even though the residue or wave-function
renormalization will generally depend on p, the
spatial momentum.

Although the spin-0 covariance problem has not
been considered in the literature, it is easy to
verify that the techniques of Ref. 4 trivially allow
one to verify that covariance fails also in this
case. One thus looks for a breakdown of (2.3) in
fourth order. It is easy to see that (2.3) implies
for the inverse Green’s function the structure

§7H(p)=(p?+ )2, (0%)

£ 2
=~ (PP’ fz pg:l:’zp—)ie
KO N

di. (2.4)

From this point, however, itis possible to omit
the integral in (2.4) since in the limit N ~w, g®N
finite, g(p) hasonly a pole term and no continuum.

To second order in g? all contributions to §7(p)
are proportional to N and one consequently in-
cludes the standard diagrams as shown in Fig. 1.
Defining the mass operator P by

P(p)=8'(p) —p?,

one obtains for P(p) to second order

P‘z’(p)=u02-ig2Nf(2ﬂ)2 (D;(k)_

where D, (%) is the photon propagator

1
Duv(k)= —guogvofe? s

with the singularity in 1/2,% being defined by

1 _1[ 11
k2 2|k, +iey (&, —ic)|

The integral (2.5) can be evaluated by standard
techniques?® to yield

(2p —R)Dy, (R)2p—k) 1 )
(p=RV+pg ’

)\kz"'ﬂoz (2.5)
L}
1
P(2)=H02+g2N<(1—7\)D—77)
ﬂv_piguj( _ P, Exp
Yo ET o\ 2E1nE—‘p>’ (@-6)

where D is the covariant logarithmically divergent
integral

_ . dk 1
D=~—q f(zﬂ)z k_2+“‘02

and
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E%=p?4 “02.
By defining
Z(p)=e™,
Eq. (2.6) can be summarized in the two equations

N
BUD = 2@ 2202 (1 - )\)D_g_i_

@ = L E+p
w 2< ZElnE p>

Although all divergences in both second and fourth
order can be eliminated by the choice =1, we
choose to retain such terms to the end of the cal-
culation in order to maintain full generality. Re-
gardless of the value of x, however, one notes
that the mass renormalization is a constant and
thus no evidence of noncovariance is obtained to
this order.

Proceeding next to the fourth-order calculation,
one encounters terms which go as N2, N, and N°,

while the limit of N large has the advantage of re- k

@ LN 0l O O

(d) @ (e) @ {f) @
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oS

FIG. 2. Order-gn?

contributions to §~(p).

taining only the g%N? terms. Since the most com-
putationally involved graph with crossed photon
lines does not contribute to this order, significant
simplification results in the large-N limit. The
graphs which contribute are given in Fig. 2.

Of the ten graphs shown, (a), (b), and (c) repre-
sent second-order corrections to the propagator
and (d), (e), and (f) are similar second-order
propagator corrections to the meson-meson inter -
action. Including all factors the complete expres-
sion for P(p) in order g*N? is thus

PO (p)=igN [ (—2"%5 DHE) 2D~ B),(2p ~ ), 8P (p— k) +irg®N f (;f)zg‘z)(k)

o [ dk Al (o " ,
+gN f (‘27175(27,)2{1’ (k)Duv(k)(———:z——f D (R)D,, (¥

(2p—F) [2(21; 2k -

(p—kY+uo

Following tedious but essentially straightforward
manipulation one extracts su**® and w'® as

o2 2(2) 2
suz®=(—1) [_Aii_pz_+ i{%] SN2

4N2§ gNz(1+7\)
T 87% 1

g‘*z\rzfgl(n) 2.7
and

p 9
wP =322+ g N op>® ‘Bsz—g

2 ) 2p 1 E+p)
—eN' gz ap( z E31E—p

&l<p5;+1>z<p) (2.8)

where we have defined
= w®/g®™N

and

dq P 1nE'+q
E14 q— D E’ —q
where E'2= 97+ Uz
The results (2.7) and (2.8) have been written in

I(p)

Y (2p—H) }}
B—F=FP+pg (p-RP+uglf”

[

terms of J(p) inasmuch as the earlier work of Ref.
5 on the spinor case has explicitly computed that
nontrivial integral. In the process of evaluating

it they reduce it to

2 - 27i)dz
I(p= p sinh) = 161r3u2 j; coshz (sinhz — sinh¢)

where the contour is taken over the boundary of
the domain 0< Imz<27. Unfortunately, Hanson

et al. have overlooked the pole at z=- ¢+mi and
consequently obtain an incorrect result. Inclusion
of the omitted pole leads to the form

_ 1 TTM _y___ 2E+p
I=-7==2 (1 +4E21 Fp) (2.9)

which upon insertion in (2.7) and (2.8) yields, after
a number of cancellations,

2
202 _ (1 R EN
U (1 )&) 4_"“.2D

843]2(1 -y (2.10)

16E4

and
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&  g'N?
(4) - 2 I A
w®=g"N?(1 )x)D8 Ry

2 2 2 2
R SRR z(.&.-l) ¥
X[(ILEZ 2E2)lnE—p +7 %5771 +2 |
Particularly of interest is the case x=1 for which
the mass renormalization to fourth order is

pre €N _ENYE

T 1654’
a result which, despite its simplicity, displays
the lack of covariance of this theory in perturba-
tion theory. This conclusion is, however, inde-
pendent of the value of A inasmuch as the addition-
al terms in (2.10) are of covariant form.

III. COUPLING TO A SPINOR FIELD

Having computed the fourth-order results in the
scalar case we now take up the somewhat more
interesting situation in which the gauge field is
coupled to a spin-; field y. As before, the fermi-
on transforms according to the fundamental rep-
resentation of U(N) with a Lagrangian description
being provided by

£ =i$y“8u2[) —m—lﬁ¢+%Fa""FS"
—5F (8, A = 8, A}, + ig At °A)+g Py TP AL.

Inasmuch as this case has already been consider-
ed by Hanson ¢f al., it is necessary only to correct
their result in the light of the comments previously
made concerning I(p) and to prescribe a procedure
by which we obtain the mass renormalization.
Although this latter problem has been solved in
the literature,® it is appropriate to present a brief
review of the procedure to be followed in view of
the considerable confusion which seems to exist
on the subject. As in the case of spin-0, the
continuum contribution to the two-point function

Glx —x")=ielx —x"XO0|(¥(x)P(x ")),| 0y

vanishes and thus we shall not deal with the most
general case discussed in Ref. 9 but shall consider
only the pole term.
In the case of a free particle, the Fourier trans-
form of G has the form
1 2m <m -y p)

G°(p)='y-p+m=pz+m2 2m

Since the sum over the free-particle spinors is
Sulprp)=tZLL, (3.1)

one sees that the residue at the single-particle
pole is essentially just the sum of the products of
the single-particle matrix elements of ¥. Couched
in these terms it is relatively straightforward to

interpret G(p) in the case of a coupling to a gauge
field.

Because of the lack of manifest covariance, the
single-particle matrix element will not be the free-
particle spinor u(p), but rather exp(wy - D)u(p).
This means that the sum (3.1) becomes

TP Y ulpya(p)e =g T FEZLL T

and one thus infers for G(p) the form

3L (pz) wyP

G(p)=e*7 p;.;_:r.n_e 75,
Although allowance has been made for a residue
function Z,(p?) in addition to w(p?®), it will hence-
forward be dropped since one finds in the model
under consideration that Z 2(;,2)= 1. With this ob-
servation the task of interpretation then becomes
the reconciliation of the perturbative calculation
of G™'(p) with the form

G (p)= e"”?’5(y prmgtom)e VP,

To second order, one calculates the diagram of
Fig. 1(a) obtaining for the mass operator M (p)
M(p)=GHp) —y -p
1

. dk
=mo—zg2N J‘—_-E(Z'rr) Duv(k)'yuy.(p_k)+m07v’

One readily obtains from this integral the results

om® == g?N/2mm

and
PN 1(1 m . E+
where
E?=m?+p’.

It is of interest to compare this with the spinless
case and one thus observes that (3.2) implies

6m2(2)= _gZN/,‘T’

a result which is identical to 5u%® for the pre-
ferred value x=1.

The terms of order g“N? are readily obtained
from the graph of Fig. 2(a) with the result

1 3
M(p)P=g*N* o~ [1+ (p =my,) 51],

where 1 (p) is identical to that of the preceding sec-
tion provided that p is replaced by m. Using the
corrected value of this integral one obtains
&*N?*m?

16E*

2(4) -

om

and
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oo (L) (i 3.5 ).

4nE* F—l E-p m m® E°

There are again remarkable similarities to the
spin-0 case as the mass renormalizations differ
only by a factor of — (p?/m?2) and in the w functions
the single logarithm terms have each dropped out.

IV. CONCLUSION

The mass renormalizations computed here in
fourth order have confirmed the predictions of for-
mal operator techniques that covariance should
fail in nonsinglet sectors beginning in that order.
This is the first perturbative calculation to dem-
onstrate that a gauge theory can suffer a loss of
covariance in an appropriate gauge.'®

One may be tempted to argue that the absence of
a “normal” pole (of the type p*p,+m?>=0) in the
fermion two-point function indicates the absence
of a physical fermion in the theory—in other
words that the fermion is “confined.” The fact,
however, is that there is a pole and, insofar as
poles in two-point functions represent particles,
the only interpretation of this would be the exis-
tence of a particle whose energy and momentum
do not lie on a mass hyperbola. In other words,
the theory is noncovariant.

There is at least one other aspect of the results

L. P. S. SINGH 21

obtained here which should be emphasized. We
refer here to the fact that the spin-4 case when
quantized on the light cone is the same as the

’t Hooft model.’* It has been shown by one of us!?
that the latter has an internal inconsistency be-
cause of the breakdown of current conservation.
Since, however, the usual quantization on a space-
like surface involves no such contradiction, it is
clear that the two quantization schemes cannot be
equivalent. The work described in this paper pro-
vides, however, a more explicit demonstration of
this result. Since the mass renormalization of the
’t Hooft model was found in Ref: 12 to be —g°N /7
to dall orders, the fourth-order calculation for
spacelike quantization presented here gives a di-
rect proof of inequivalence. Finally, note should
be made of the fact that similar fourth-order cal-
culations in four dimensions in both Coulomb and
axial gauges would be of considerable interest.
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