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Conservation-law violation at high energy by anomalies
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The time evolution of a quantum Fermi field is investigated in the background of a Minkowski-space,
Yang-Mills field configuration with nonvanishing topological charge. The Fermi system is assumed to
possess a current j„(x) conserved up to an axial-vector anomaly: a"j„=(g '/32m')N&F~g'"". It is shown
explicitly that the time-dependent Yang-Mills field A„(%,t) creates and destroys fermions in such a way that
the total fermionic charge jjo(%,t)d x present in the final state difFers from that in the initial state by
precisely the amount predicted by the anomaly equation. If A„(x,t) approaches a gauge transformation
sufficiently rapidly for large t, this change in charge can be identified with the number of zero crossings
present in the energy spectrum of the time-dependent Dirac Hamiltonian. Finally, it is demonstrated that
the change in the charge carried by the fermions wi11 differ from that predicted by the axial-vector anomaly
if the large-time limit of A„contains physical radiation.

I. INTRODUCTION

B
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Here p/~ is the number of left-handed SU(2) bary-
on doublets, E,', „, 1~i ~3, and/'„, are the four
weak SU(2) x U(1) field strengths and g„' „, p', are
their duals, e.g Q zE' p P Thus one
might expect a violation of (Ns/3) 0 units of bary-
on number associated with a weak Yang-Mills
field configuration with topological charge:

4 (1.2)

In the papers mentioned above 't Hooft outbnes a
calculation of deuteron decay through semiclassi-
cal "barrier" penetration using Euclidean, instan-
ton field configurations. The necessary neglect of
the Higgs couplings requires that these configura-
tions exist for very brief periods of time.

In a Euclidean-space calculation of that sort,
the connection between the change in total baryon
number and the topological charge k required by
Eil. (1.1) is realized as a conseiluence of the
Atiyah-Singer index theorem: The change in bary-
on number is directly related to the number of
solutions to the Dirac equation obeyed by the weak-

It has been known for some time that in gauge
theories containing axial-vector currents the usua1
Ward identities may contain new anomalous terms. '
More recently, 't Hooft' observed that gauge field
configurations with nonvanishing topological
charge can actually cause explicit violation of the
conservation law corresponding to an anomalous
Ward identity. As a striking example, 't Hooft
considered the baryon-number current j„(x) which,
in the conventional Weinberg-Salam model, con-
tains such an anomaly'

ly interacting Fermi fields in a background Yang-
Mills field. The number of these solutions is de-
termined by the topological charge of the Yang-
Mills field using the Atiyah-Singer theorem.

Let us now consider the complementary physical
situation —a collision process of sufficiently high
energy that the masses of the Yang-Mills quanta
can be neglected. Under these conditions a semi-
classical calculation of baryon-number violation
should be performed in Minkowski space and de-
scribes passage over the barrier referred to
above. This Minkowski-space calculation may be
separated into two parts: first, the creation of a
classical Yang-Mills field by the collision of very
energetic particles with weak interactions (this
radiation field dissipates with the passage of time);
second, the creation of weakly interacting fermi-
ons by this background Yang-Mills field.

In this paper we study the second part of this
Minkowski-space calculation, the creation of
fermions by a time-dependent background Yang-
Mills field. We begin in Sec. II by determining
the time evolution of the second-quantized fermi-
on vacuum in terms of the g matrix obtained from
scattering solutions of the Dirac equation in the
presence of the time-dependent Yang-Mills field.
In particular, if we divide the scattering matrix
$ into four blocks corresponding to transitions
between asymptotic eigenstates of initially and
finally positive or negative energy,

A 8'
(1.3)

then at g =+~ the initial vacuum state becomes a
superposition of particle and antiparticle states
with a net charge that can be determined explicit-
ly:
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aq=tr(P„„q)- tr(p„„,q)
= tr(P „„q)-tr( „,q}. (1.4)

the situation where physical radiation. is present.
In that case, the slowly dissipating radiation field
invalidates Eq. (1.7) and shifts the charge of the
final vacuum state by an amount

2
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can be any charge conserved by the original Dirac
equation while P „„~is the projection operator on-
to the kernel of the operator 0.

In Sec. III we show that if the quantum-mechan-
ical current operator j„(x)corresponding to the
charge Q obeys an anomalous conservation law

2

8 g„(x) N;) 22
—2F~„F (1 8)

and if A„(%, i) becomes a pure gauge transforma-
tion for sufficiently large t then the elements of S
obey the further constraint

=tr(QC C) tr(QBt-B) ~ (1.7)

It is then demonstrated, using the unitarity of $,
that the right-hand sides of Eqs. (1.4} and (1.7}
are equal so that the total charge of the fermions
produced is precisely that expected from the ano-
malous conservation law.

Furthermore, the quantity tr(P„„„Q)-tr(pk, „~q)
on the right-hand side of Eq. (1.4) is shown to have
a simple connection with the time-dependent ener-
by spectrum of the fermion Hamiltonian H(t). Con-
sider only those eigenstates of H(t) with charge q,
and define n, as the number of times the corre-
sponding energy eigenvalues cross zero from be-
low minus the number of zero crossings from
above. Then, as is demonstrated in Sec. III,

Q=d Q=tr(P„„Q)-tr(P„„&q)

(1.8)

This relationship between the topological charge
and the "spectral flow" of H(t) was recognized pre-
viously in the adiabatic approximation by Callan,
Dashen, and Gross, ' and in fact is a direct con-
sequence of a generalization of the Atiyah-Singer
index theorem by Atiyah, Patodi, and Singer. '
The relationship between this mathematical result
and the Minkowski-space conservation-law viola-
tions considered here is in close analogy with the
role of the Atiyah-Singer theorem in the original
Euclidean-space tunneliog analysis mentioned
above.

Finally, in Sec. IV we briefly discuss the crea-
tion of the background Yang-Mills field and then
turn to the application of the previous analysis in

i y'((), —igA,'T')(=0, (2.1}

where A„'(x) is a specified classical Yang-Mills
field and g«are the Hermitian group generators
for the representation to which g(x) belongs. In
this section we will compute explicitly the particle
creation implied by Eq. (2.1) in terms of the solu-
tions to the unquantized version of that equation.

A. Description of the classical solutions

For simplicity we will treat the three spatial
variables, 'R, as lying within a large box on whose
boundaries the fields A,' and g are required to be
periodic (up to a gauge transformation). The time
variable t of course runs from minus to plus in-
finity. In addition, the gauge field A, (x) is assum-
ed to reduce to a time-independent gauge trans-
formation for t-+~:

'iim A(.(x ])T( HDll((ill)(x)S Boll((ill)(x)

(- )
(2.2)

Thus, we can define two complete orthonormal
sets of functions g„'"'(%, i) and g„'""(%,i) which obey

iy'(s„-ig A,'7')$'„"" "(x)= 0 (2.2)

lim g„'(X, i)=H (X)g„'(R)e"s~',
g -+ ao

lim g'""(% i)=A'"'(X)(I)„'(%)(,"'
(2.4}

where the functions (I)„'(x) are eigenstates of the

where f"' are the structure constants of the gauge
group. This equation for qo~f is valid in any gauge
for which the Yang-Mills fieldA„(t, t) approaches
zero for large time. In the familiar case of ordin-
ary Abelian electromagnetism where topological
charge can be easily produced by the interference
of electric and magnetic radiation, this final vac-
uum charge accounts for the total anomalous
charge creation. There is no anomalous produc-
tion of particles by an Abelian radiation field. In
general, this will not be true in the non-Abelian
case.

II. FERMION CREATION IN A BACKGROUND FIELD

Let us consider a fermion field operator ((x) in
the Heisenberg representation which obeys the
equation of motion
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S
A B

(2.5}

where the matrices&, B, C, and D are defined by

(2 6)

with, for example,

free Dirac Hamiltonian ct ( i-"7) with positive- or
negative-energy eigenvalue +g„. We will include
with the eigenfunctions g„'those with zero energy.
Next, define a scattering matrix S for the Dirac
Eq. . (2.1) from the overlap of the solutions g„'" ',

Ollt~ n

n

,

i +in &A B i t +out
mn mn

'

n

(2.12)

Thus in terms of out operators, the definition
(2.11) becomes

(A ~ut+p bout t )
~

pin& p

(a ""c' +b'"fl'. }~
0'"& = o.

(2.13a)

(2.13b)

These equations can be used to uniquely deter-
mine ~(f & in terms of out states F.irst observe
that conjugation with the operator exp(au~M» bt~)

tr anslates g„.

exp(-au~Mutbt)a„exp(+a, M»b~t)=a„+M„the. (2.14)

Thus, if we use this operator to define a Bogoliu-
bov-transf ormed state

(2.7)
~
e&=exp(-~ ""M b "")~O &, (2.15)

AA'+BB'= &,

CA +DB =0,

AC +BD =o,

CC +DD =&,

AA+C C=&,

B~A+D'C=0,

A B+C D=o,

B B+D D=&.

(2 8a)

(2.8b)

(2.8c)

(2.8d}

(2.9a)

(2.9b)

(2.9c)

(2.9d}

The unitarity of the matrix S implies the following
relations betweenA, B, C, D:

then Eqs. (2.13) become

[A.„a'„"t+(A„,M„„+a.„)b'„""]
) & = 0,

[a'""(C' -M D' )+b'"'D' ]~3&=0

(2.16a)

(2.16b)

We will now try to choose M and ~$& so that each
of the two terms on the left-hand sides of Eqs.
(2.16a) and (2.16b) vanish separately.

Let us first examine the vanishing of the second
term in Eq. (2.16a}

(A„„M„„+a„)b'„""~e&=0 (2.17)

If we consider linear combinations of this equation
for various m which lie in the image of A and re-
quire the vanishing of the coefficient of each b„,
the resulting equation for M,

B. Evolution of quantum-mechanical states A M+P, m „B=O, (2.18)

It is now a straightforward matter to express the
particle production in the second-quantized theory
in terms of the matrix S defined above. First, de-
fine the annihilation and creation operators go„«&1»,

b'"""'t by expanding the fermion fieM operator
tti(X, t) in terms of the two complete sets of solu-
tiOnS gout(in)t:

has the solution

M=-A 'P,. ~B. (2.19)

Here P,, „ is the projection operator onto the
image of A. Because the operator A may possess
some null eigenvectors, the expression (2.19) for
M is not well defined. It is actually only the com-
bination P,. „gM which is determined by Eq. (2.18)

(Q)—g [ttintjiin+(g t)+,bin1'tjiin-(g t))

(2.10)
(2.20)

tj(x)= +[a "'tj'""(X t)+b'""p'"' (T t)]-
We can then determine the initial vacuum state
)0'"&, defined by the requirement

(Recall that the image of A~ is the orthogonal com-
plement of the kernel of A.} Similarly, the vanish-
ing of the first term in Eq. (2.16b)

a'„""(c„'„-M„,D', „)~e &
= o (2.21)

atn~p, „)=bin~0'"&=0 for alln, (2.11}
becomes

in terms of out states by using the relation be-
tweena'", b'"~ and a'"', b'"' provided byS and the
orthonormality for fixed g of each of the sets
(pout. n] ~d (gin

MP,„~g=C~P, ~(D ) 'P, tie, (2.22)

where this time we have taken linear combinations
of Eq. (2.21) for various values of m orthogonal to
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A a'„"') ts) =0,

boutDt'
~
tS) 0 (2.2V)

then determine the state ~t8) uniquely, such that

n& A

][[att+fl boutt'] [aouttgt' vt
]~

0outi

the kernel of D~ (i.e., lying in the image of D).
Thus Eqs. (2.20) and (2.22) are two constraints
which M must obey. They are consistent if

P,.„t[C'P ...(D') 'P ...t]
=(-P,.„tA 'P,.„If)P ...t (2.23)

and this equation is a direct consequence of the
unitarity condition (2.8c). Equations (2.20) and
(2.22) do not determine M „uniquely; it contains
undertermined terms of the form

(2.24)

where s lies in the kernel of A. and t in the kernel
of D,

(2.25)

However, we have considered only special linear
combinations of Eqs. (2.1V) and (2.21). To ensure
their general validity we must also require

u'*B bout t ~e) =0, 1 ~k~n„

a'""C' v'~ts)=0, 1 ~i ~n„,
(2.26)

where the vectors fu", 1 ~ k ~n„f and (v', 1 ~ l ~nv[
form a complete orthonormal basis for the kernel
of g~ and the kernel of D~. This requirement and
the vanishing of the first term in Eq. (2.16a) and
the second term in Eq. (2.16b),

imply that the vectors B~u' and p~p' span the ker-
nels of D andA. , respectively. Consequently, the
ambiguous particle content permitted by Eq. (2.27)
(because of the nonvanishing kernels of A and D) is
completely determined by the conditions (2.26).
Similarly, the undetermined terms in the operator
a M b„, following from the ambiguity (2.24) in
our solution for M, vanish when applied to the
state ~Si) in which all particle states with wave
functions in the kernel of g and antiparticle states
with complex-conjugate wave functions in the ker-
nel of D are filled.

Thus we can express the state which corresponds
to the ground state at t =-~ in terms of states
with a definite number of particles at t =+~;

n+

)0 )=&exp(at M „bt) [u~ B„b'u't]

nd
' '

[a out 1'g1' vt ]~0

(2.30)

where the normalization factor X is given by
det(P„„„+A A, ). This result can be combined
with Eq. (2.12) to express any state containing
a specific configuration of incoming fermions as a
linear combination of states each with a definite
number of particles at t =+~.

As will be shown in Sec. III the exponential fac-
tor in Eq. (2.30) is completely consistent with the
classical conservation laws. However, the opera-
tors enclosed in square br aekets allow' for the
anomalous production of particles as required by
the axial-vector anomalies present in the quantum-
mechanical version of the conservation laws.

(2.28)

Equations (2.2V) require that
~
ts} can only contain

particles which lie in the kernel of A and antipar-
ticles the complex conjugate of whose wave func-
tions lie in the kernel of D. However, Eqs. (2.26)
require that all the particle states corresponding
to the vectors &tv' and antiparticle states corre-
sponding to the complex conjugate of the vectors
B u" be filled. Fortunately, the unitarity Eqs.
(2.8b) and (2.8c) imply

DB~u =-CA~u =0

ACtv'= -aD~v'=0, (2.29)

where the right-hand sides of Eq. (2.29) vanish by
the definition of the vectors u" and 5'. Thus jg~u~

and C~g' lie in the kernels of D andg„respective-
ly, so that the choice (2.28) for ~di} is consistent
with the requirement (2.27). Furthermore, the
unitarity Eqs. (2.8a), (2.8d), (2.9a), and (2.9d)

m. IMPI.KATIONS OF THE AXIAI.VECTOR
ANOMALY

We will now assume that the differential equation
(2.1) implies a classically conserved fermion cur-
rent

j,(x)=(y,gl, (3.1)

where Q is a Hermitian matrix which acts on the
multicomponent Dirac spinor ( but commutes with

proper Lorentz transformations and the gauge gen-
erators T',

(3.2)

In general, when this classical Dirac field theory
is quantized, the operator current j,(x) acquires
an anomalous divergence

s.j.(x)=Ã;, 3g2.Fl,(x)F~""(x),'' 327r2

provided j„(x) is defined to be invariant under the
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non-Abelian gauge transformations of the back-
ground Yang-Mills field. The matrix&, , is given
by

It is precisely this quantity which is given by the
space-time integral of the anomalous operator Eq.
(8.3). Defining the axial-vector anomaly

¹J=-,' tr[y, QT,T,], . (3.4)

A. Definition of the charge operator

where tr indicates a trace over Dirac and group
indices.

2 t'

„d'xF' (x}Z'""(x)il 32+2 g PV

and combining Eqs. (3.8} and (3.10}we find

a=tr(Q CC )-tr(Q'BB ).

(3.11)

(3.12)

Because the current j,(x) is conserved classical-
ly, the classical charge Q(t} obtained by integrat-
ing the zeroth component of Eq. (3.1}over space

k(t)= d'xttt~(x, t)q&(x, t)

is independent of time if tel(x, t) is a classical solu-
tion to the Dirac equation (2.1}. More generally,
the expression on the right-hand side of Eq. (8.5)
remains time independent if tIt'(x, t} is replaced by
the Hermitian conjugate of a second classical
Dirac solution ttt'(x, t). Using

tel~

"t (x, t) for tel and

(x, t) for tt
' and equating the limits t =+«, we

deduce that Q commutes with the scattering ma-
trixs or, in the notation of Sec. II,

It is shown in Appendix A that the two traces in
Eq. (3.12) are each well defined if the classical
background field obeys appropriate conditions.

I(-«}l(P)=0. (3.13)

Similarly, we can find the charge of
l

0'") at t
=+« if we use Eq. (3.9) for g (+«) our expression

B. Consistency of the operator and state-vector analysis

Next we should relate the quantity tr(Q CC~)
—tr(Q'BB ), which appears naturally from the
charge operator, with the actual difference in the
charge of the state lo'") at t =+« implied by the
analysis of Sec. II. Clearly, the definition (8.8) of
the charge operator k(t) yields

[a, q']=[D, Q-]=o,

BQ -O'B=CQ' -Q C =0

where

(3.6a)

(8.6b)

flg
lo'")=Xexp(a„"'tM „tt'„"'~) [u'*B b "'t]

k=&

n~ '[a.""c'~.']l o'"'&

q,', = d'xtt, '(x)tqtct,"(x). (3 'I) (2.30}

Next, let us relate the axial-vector anomaly pres-
ent in the second-quantized current j,(x) to the
elementsg, B, C, and D of the S matrix. If we
define the operator j (x, t} by the usual normal-or-
dering procedure at t = -~, then the correspond-
ing charge operator at t =-~ is a simple combina-
tion of the g, and bk" operators

im &(t)= Q(a,'qt, a„-&t 'q, „&,'").
g -+ co l, k

(8.8)

lim tf (t) Q (aoot tq1 goUt t oot tq I oot) (8 9)

Now we can use S to relate these two quantities.
If Eq. (2.12) is used to express the in operators
of Eq. (3.8) in terms of out operators and the two
limits subtracted, one obtains

b, q= lim k(t)- lim tf. (t)
g -++oo

=tr(Q CC ) tr(q'BBt). - (3.10)

However, the situation at t =+~ is completely sym-
metrical with that at t = -~ if the operators gk'"

and b, are replaced by a,'"' and b„'"'. Thus, the
same subtraction which gives tf, (t) the simple lim-
it (3.8} at t = -«also yields

~q=tr[Q I'...,t]-tr[Q'P „„„t]. (3.15)

It is not difficult to see that this expression for
Aq equals the quantity (3.10) obtained directly
from the charge operator and given by the axial-
vector anomaly (3.12). One begins by observing

for lo'") in terms of outgoing states. Recalling
that u" and g' span the kernel of A. ~ and D~, re-
spectively, and that Q' commutes with A and Q
with D we can choose the states u' and v' to be
eigenstates of Q. Then Eq. (3.6b) can be used to
show that the states

a'"' ~C' tt' lO'"')

(3.14)

ltd I oot 1' lo«t)
m t1in n

have the same charge at t =+~ as g' and minus the
charge ofu, respectively. Finally, the definition
of M, Eq. (2.19), and the commutation relation
(3.6b) imply that the exponential operator in Eq.
(2.30) does not affect the charge of the state.
Thus we can deduce directly from the explicit
formula (2.30) that between t = -«and t =+« there
has been a net production of charge
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that the unitarity equation (2.8a) implies that,
when restricted to the kernel of g~, the operator
BI3~ becomes unity. Consequently,

q„[A], . Thus,

tr[Q'P „„~l-tr[Q'P „„g)= p q, index[A], ,

=tr[Q'BB~)-tr[Q'BB~P,. „],(3.16)
where

(3.22)

where we have used the fact that

P kefA. I Pl~~ (3.17)

tr[Q C'C]-tr[Q P „.,„],
so we obtain

(3.19)

tr[Q'P &., ~1- tr[Q'P ...„)= tr[Q'BB') - tr[Q-CC'] .
(3.20)

The unitarity Eqs. (2.9a) and (2.8d) imply that the

operators Q and C~ put kerA and kerD~ in one-to-
one correspondence so that, using the commuta-
tion relations (3.6b}, we have

tr[Q'P„„,l=trlQ P „„,~1.

Equations (3.20) and (3.21) then demonstrate the
equivalence of the two expressions (3.10) and

(3.15) for b, Q. Again in Appendix A it is shown
under what conditions the above manipulations
are well defined. Thus, we have shown that the
nonconservation of the charge k(t} inherent in the
relation between in and out states determined in
Sec. II is precisely that predicted by the anomal-
ous conservation Eq. (3.30).

(3.21)

C. Time-dependent Hamiltonian spectrum

It is interesting to note that the quantity
tr[Q'P„,„„]—tr[Q'P„„„t]appearing on the left-hand
side of Eq. (3.20) and equal to the anomaly Q is
essentially the charge-weighted dimension of the
kernel of A minus that of its adjoint. If we had re-
stricted ourselves to solutions of the Dirac equa-
tion (2.1) with a single charge q„ that quantity
would have been simply the index of the operator

A restricted to eigenstates of Q' with eigenvalue

Next rewrite the second term on the right-hand
side of (3.16) using sequentially Eqs. (2.9b) and
(2.8c}:

tr[Q'BB AP,. ~gA 'P,~~)
= —tr[Q'BD CP, „tA 'P; „]
= tr[Q'AC CP; „t A 'P,
=tr[Q'C~CP, „t), (3.18)

where the final step requires commuting A past Q'
and using the cyclicity of the trace to move A from
the left to the right. Finally, we can use Eq. (3.17}
and the unitarity condition (2.9a) to rewrite the
last expression in Eq. (3.18) as

index[A), = dim ker[A]„—dim ker[A~), . (3.23)

As is well known the index of an operator has
the important property of being unchanged by con-
tinuous variation of that operator. We can employ
this property in the present case to relate the
anomaly Q with the spectrum of the time-depen-
dent Hamiltonian.

The Dirac equation (2.1}can be rewritten

8
i

&=apt,

—
t (3.24)

where the Dirac Hamiltonian is given by

a, =n, (-is, -gA, . ~/2)+A, .~/2, (3.25)

~, , 1&j &3, being the usual 4&4 Dirac matrices.
Let us define eigenstates g,'„(x) of II„

labeling separately those with positive (E; „&0)
and negative (E, „&0) eigenvalues. We can define
a time-development matrix in analogy with Eqs.
(2.5) and (2.6),

(3.26)

w, a,
U(t)=

t t
(3.27)

where', „B„Q„andD, are defined by

t, mn

Clearly, the Q.me-dependent eigenstates can be de-
fined so that

lim U(t)=S,
g ~+oo

lim U(t)=I.
g -+ oo

(3.29)

The invariance of the index of [A,], under continu-
ous changes. in'. , can now be used to relate the in-
dex of [A„],= [A],with the index of [A „]',which is zero
(the identity operator lias no kernel). The only chan-
ges in the index of [A,],occur when an eigenvalue of
H, crosses zero, nece'ssitating adiscontinuous re-
labeling of the eigenvectors g; „and an addition or de-
letion of the corresponding state from the domain of
A, . It is easy to show (see Appendix B) that the index
of an operator is increased by one if a vector is added
to its domain and dec reased by one if a vector is
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removed from its domain. Therefore, define g
as. the number of times a negative-energy state
$, „of charge q, becomes a positive-energy state
minus the number of times the reverse occurs as
t varies between minus and plus infinity. Ne can
then conclude that

index[A], = g (3.30)

(3.31)

Thus, there is a very simple relationship between
the axial-vector anomaly and the signed, charge-
weighted number of zero crossings found in the
spectrum of the time-dependent Dirac Hamiltonian.
This conclusion is closely related to tmo previous
results.

First, Callan, Dashen, and Qross' considered
the violation of chirality in a background SU(2)
Yang-Mills field with topological charge k. For a
single Yang-Mills doublet of massless fermions
the axial-vector anomaly predicts a violation of
chirality equal to 2k. Callan, Dashen, and Qross
observed that in the adiabatic approximation the
time evolution of the vacuum can be seen by sim-
ply tracing the time development of the originally
filled Dirac negative-energy sea and the empty
positive-energy states. As time involves each
negative-energy state whose energy becomes posi-
tive becomes a filled particle state while a posi-
tive-energy state crossing zero would be interpret-
ed as creation of an antiparticle. Thus, if in total
the energies of k right-handed states cross zero
from below while the energies of k left-handed
states cross zero from above, there will be a net
violation of chirality by 2k units. We have seen
that this is generally the case even when the adia-
batic approximation does not apply.

Second, the relationship betmeen the topological
charge and the signed number of zero crossings
found in the energy spectrum of the Dirac Ham-
iltonian which we have established can also be de-
duced from a generalization of the Atiyah-Singer
index theorem by Atiyah, Patodi, and Singer. '
For simplicity consider a SU(2} gauge theory con-
taining only right-handed fermions. Furthermore,
we must specialize to the gauge 40=0 and examine
a variant of the Dirac equation in mhich the Min-
kowski "z" multiplying the time derivative has
been removed:

~

~ ~
8 8

H, (t= —-n,.(-(3g —3A,. 3/-3)) 3=0. (3.33)

Here A,.(~} is the original, Minkowski-space back-
ground gauge field (in the A,=O gauge).

Atiyah, Patodi, and Singer consider the index

of the elliptic operator s/Bt -11, with the following
boundary conditions imposed on g(%, t):

k=32 2 II d x, (3.34)

the topological charge of the gauge fields. . How-
ever, it is not difficult to show that for the bound-
ary conditions (3.33}the index of the operator
s/st -II, is precisely the number of times an eigen-
value of IIt crosses zero from below minus the
number of times an eigenvalue crosses zero from
above. ' Atiyah, Patodi, and Singer call this quan-
tity the spectral flow of II,. Thus in analogy with
the Euclidean-space tunneling calculations we
could deduce the consequences of the axial-vector
anomaly by referring instead to this result of
Atiyah, Patodi, and Singer. For example, in the
case of a single doublet of right-handed fermions,
we have shown directly that the net number of
fermions created is given by the index of A which
in turn is equal to the spectral flow of JIt. Then
the theorem of Atiyah, Patodi, and Singer can be
used to conclude that this quantity is in fact the
topological charge (3.34).

Finally, we should note that our division of the
asymptotic states into two groups, those with E„
~0 and those with E„&0, is really quite arbitrary.
(Our particular choice makes a discussion of the
vacuum simple and agrees, for those states with
zero energy, with the conventions of Ref. 7.) All
of the arguments presented above mould work
equally well if the asymptotic states were divided
for example, into the two classes Pr„')»& and

&, where g~0. The state in which the en-
ergy levels 0&F.„~$are filled would simply re-
place the vacuum state in our quantum-mechanical
arguments. Similarly, the net flow of eigenvalues
between the two groups F.„&g and g&g„ is the same
as the spectral flow defined before: the difference
between these two definitions of spectral f lorn is
the net number of states flowing out of the region
0&8„&$which is automatically zero because the
initial and final spectra are the same.

IV. CONCLUSION

The main objective of this paper has been to
further study the anomalous divergence E(l. (1.6)

lim g„'~ (x)g(x, t)d Sx
t M~DO

= lim ~( ii) t(x)g(x, t)d'x =0, (3.33)
t ~+~

where g„'(%} are the positive- (or, more accurate-
ly, non-negative) and negative-energy eigenfunc-
tions of the free Dirac equation. In our case,
where A,.(x, t) becomes a gauge transformation at
t =+~, their result for the index is simply
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by examining its consequences in a new physical
domain. An actual prediction of the baryon-num-
ber nonconservation in very-high-energy colli-
sions implied by Eq. (1.1) in the Weinberg-Salam
model has not been made. Such a prediction re-
quires an estimate of the production probability
for weak Yang-Mills field configurations with topo-
logical charge. Furthermore, the problem of fer-
mion creation by a physical radiation field is
somewhat more complex than the situation analyz-
ed in Sees. II and III where the gauge field A„(%, t)
was assumed to reduce to a pure gauge transfor-
mation for sufficiently large t. We will now brief-
ly discuss both of these questions.

Let us consider the production of topological
charge semiclassically in a very-high-energy col-
lision in the Weinberg-Salam model. The scatter-
ing particles can be represented by a time-depen-
dent SU(2) current density g„'(x} and the radiated
Yang-Mills field obtained by solving

F~"+gA &( F v J u(x)
Bx

(4.1}

This approximation requires sufficiently high en-
ergy that the recoil of the scattering particles
from the radiation of weakly interacting ~', p,
and y bosons can be ignored. Also, the radiating
particles should, in principle, belong to large
representations of the weak SU(2} group so that
the change in weak quantum numbers caused by
the radiation of 8"', Z, andy quanta can be neg-
lected.

A. Nonperturbative radiation

The usual perturbative solution to Eq. (4.1}is a
gauge field of order g and the perturbation-theory
calculation of the corresponding fermion scatter-
ing matrix $ will yield matrices A. and D with van-
ishing kernels so that there will be no net change
in the number of baryons. Clearly, a perturbation-
theory calculation always gives baryon-number
conservation. Since this perturbative calculation
of S should be quite reliable (g2/4@= ~/sinag„
=O.03}, we may expect baryon-number violation
only under unusual circumstances: (i) It is
conceivable that the nonlinear equation (4.1)
may have other solutions in addition to the
perturbative orie. Making an analogy with one-di-
mensional scattering by a potential barrier, we

B. Abe1ian production of topological charge

Next we examine the case in which, for a ski.t-
able gauge, the source J„(x) and the solution A (x)
in Eq. (4.1) point in a fixed SU(2) direction

J*„(x)=n„J,(x),

~„*( )=~,,~,(x). (4.2)

Furthermore, in this simplified situation, let us
relax the requirement that A„'(x, t) becomes a pure
gauge transformation for sufficiently large t, in-
sisting only that the current Z,(x) be localized in
space and time. ' Thus the integral of the topologi-
cal charge density E',8, over the space-time re-
gion -T &t &Z' can be written as a surface inte-
gral of the radiation fields in a source-free re-
gion, i.e.,

2 f T
a=g ~ d'x i dts, a,.87]2 ~

2 f'

=-&g, J d'xW, (x, T)ft, (x, Z).. . (4.3)

Here g,. and 8,. are the usual components of the
Abelian field strength tensor B,A.,-B„A,. For
simplicity we assume A„(%, t) vanishes for suffi-
ciently negative t so that only the t =+T surface
contributes to Eq. (4.3}.

Somewhat surprisingly, the Abelian topological
charge given by Eq. (4.3) is not, in general, zero.
If we follow Jackson's' conventions to define the
electric and magnetic multipole moments of J (x),

might speculate that such nonperturbative, topo-
locially charged solutions should exist represent-
ing passage over the barrier that was tunneled
through in 't Hooft's instanton calculation of deu-
teron decay. Presumably, if they exist, such non-
perturbative solutions would have much more drama-
tic effects on high-energy scattering than the crea-
tion of a few baryons. For example, one might
expect to see a significant fraction of the collision
energy radiated by weakly interacting particles—
considerably greater than the fractional o /sin~g„
predicted by perturbation theory. (ii) Another
direction which might be chosen to avoid the un-
interesting perturbative solution to Eq. (4.1) is to
consider the scattering of strong sources of the
weak gauge field, e.g., high-g nuclei or magnetic
monopole s.

t oo

a~(l, m, (o)=.;, 1„„, '~
dte'"'

~

' dxy(x) Jo(x, t) [rj, ((ux)]+i(u—[x J(%, t)] j,((ox),

2

a„(l,m', &u)=, , 1„,I, dte' '
~

dsxl',*„(x)('7 [% x J(%, t)]j,(kx) t ~

(4.4)
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v is given by subtle. Although we can choose a gauge where

(4.7)

(4.5)

Thus coherently oscillating electric and magnetic
dipoles will radiate topological charge.

C. Conservation-law violation in the Abelian case

However, we cannot refer to our previous analysis
to argue that a net creation of fermionic charge must
accompany such creation of topological charge.
En fact, since this radiation of topological charge
can occur in a circumstance where perturbation
theory is accurate, such a conclusion is obvious-
ly wrong. What has happened is that the require-
ment (3.8) that I(—~) counts the charges of the
incoming particles no longer implies Eq. (3.9),
that 0(+«) simply counts the charges of the out-
going particles,

lim g(t}w Q(a,'"' ~Q' qo"t -b'"'~
Q, »b;" t), (4.6)

g ~+00 l, k

because the asymptotic gauge fields at t =+~ no
longer differ by only a gauge transformation. Of
course, this failure of Au(%, t) to approach a gauge
transformation as I; tends to infinity is somewhat

there nevertheless exist gauge-invariant, spatial
integrals of local polynomials inA„(%, t) and its
derivatives which do not vanish as t becomes in-
finite. Thus, more precisely, the inequality (4.6}
results from our inability to exchange the t-+~
limit with the spatial integral appearing in the de-
finition (3.5) of &(t}.

However, with some effort, we can correctly
evaluate the t-+~ limit of the charge operator
&(t) in terms of the out operators. One begins by
determining tl)„'"t by solving iteratively the Yang-
Feldman equations

(x)= tt)„(x)8" "— & (x, y)"' [gy "A„(y)]

x $ out (y)d y '(4.8)

obeyed by the outgoing Dirac solutions of Eq. (2.4).
Here h(x -y)' " is the usual advanced fermion
Green's function and the gauge field A„(x, t) must
obey the condition (4.V). The difference between
the right- and left-hand sides of Eq. (4.6}, q'"',
can be obtained by substituting these iterative
solutions for („'"t into the expression

q~~t = lim
g» +pC)

e*xQ t;"' tkee, t+e)x) exp,(txl, k

&x+e

A„dx" ~Qtkg»'"t (yt: t)
x i

I

ti (g+ k }lQ- tr)-(g) ei (Ek E i ) t e-iE& uP (4.9)

where the spacelike separation e, has been intro-
duced to regulate the ultraviolet divergence of the
sum over l and k and the symbol P( ) indicates the
path orderiag of the enclosed exponential. If we
let e,-0 and replace e"e "/e' by —,'g'", the quantity
(4.9) canbe calculated for the Abelian case (4.2) us-
ing tt)'"' obtained from the first two iterations of
Eq. (4.8) and expanding the path-ordered exponen-
tial in Eq. (4.9) to first order with the result

the entire conservation-law violation is accounted
for in the change of charge of the vacuum state.
Hence in the Abelian case there is no anomalous
particle production, as should be expected.

Following the procedure outlined above we can
compute the final vacuum charge in the non-Abel-
ian case for a general gauge group and anomalous-
ly conserved current [in this case Eq. (4.8) must
be iterated three times]:

q'«= lim N 2 d xB,A„
t +

(4.10) 2
qo"t = lim 3N,.&

d'x(A'"8 "A
t~+~ 32

where for SU(2) we have written N„=Nb, i. Thus.
we find

hatt) (t) ~out+ g (a out 1'Qe out
b

out i'Q- bout )
l, k

+ t
+AitefiktA»uA to)+

(4.12}

(4.11)

where qout, given by Eq. (4.10), is simply the
fermionic charge of the out vacuum. Since in
the Abelian case Eq. (4.10) implies q'"'= N&, -

With the necessary restriction (4.V} on possible
gauge transformations the right-hand side of Eq.
(4.12) is gauge invariant. Consequently, when
there is a radiation field present in t:he final state,
the net violation of the classically conserved
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charge Q as determined by comparing the number
of initial and final particles is not given by the in-
tegral of the appropriate axial-vector anomaly but
instead by Q-q'"' . Note, the anomaly Q can be
computed from Eq. (1.6} in any gauge and is actual-
ly given by the right-hand side of Eq. (4.12) in the

&0 0 gauge . However, the charge q «t of the final
vacuum can be computed from Eq. (4.12) only in a
gauge obeying Eq. (4.V) and the vanishing initial
conditions appropriate to this radiation problem.
Since the condition (4.V) may not hold in the Ao=o
gauge and Eq. (4.12}is not invariant under general
gauge transformations, q«t will in general differ
from 8.

Note added in Proof. Considerations similar to
some of those in this paper but in a cosmological
context appear in G. W. Gibbons, Phys. Lett. 848,
431 (1979}.
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APPENDIX A

(Al)

We will now show that with suitable restrictions on the time dependence of the background gauge field
Ap(x), the traces and indices considered in Sec. III are well defined. Physically, the quantities BB and
pQ~ should have finite trace and A and D finite kernels, if for sufficiently large energies the scattering
matrix S becomes the identity, as it should if the time dependence of A,(%, t) is sufficiently smooth.

This relationship can be made explicit if we consider the generating function

t t2
I

G(z)= lim e'""2)"2"&T exp i~ -H(t)dt e '""&"')'"
~+oo

Here T denotes the usual time-ordering operation. When G(g) is Taylor expanded in z it generates all
multiple commutators of the Hamiltonian with the scattering matrix S defined in Eqs. (2.5) and (2.6):

(AS)

t -+-oo
1

G()=S'+ie[H(+ )S'-S'H(- )]+ 2, fH(+ )[H(+ )S'-S'H(- )]-[H(+ )S'-S'H(- )]H(- )]+ ". (A2)
d

By redefining t, and t„Eq. (A1) can be rewritten

t t2 (-e)" d "H(t)G(e)= tile e'"" i'*T exp (Ji tt(t—-e)dt e '""" =T Steep -t g, dt
I

.
t ~+oo2 t 1

r& dt

C CA~=4; ~ (A4)

However, recall that with respect to the basis
used to define S, H(+~) and H(-~) both have the
form

0

0
(A5)

where the matrix g is diagonal

Equation (AS) implies that the nth multiple commu-
tator of H(+~) with S is a bounded operator if the
first n time derivatives of g, are bounded and,
when integrated over all time, yield a convergent
integral.

The boundedness of the multiple commutators
appearing in Eq. (A2) can be used to establish the
following results:

(i) The kernel of A is finite dimensional. Let
Q),.] be a set of independent null vectors of A.
Then Eq. (2.9a) implies that

(E)„„=6„„E„, (A6)

the E„being the free Dirac positive eigenvalues of
Eq. (2.4). Thus if the time integrals of IBA„/Btl
are finite, then the operator H(+~)S-SH(-~) is
bounded and its lower left-hand corner g-Q+CE is
also a bounded operator. When combined with Eq.
(A4) this implies that the quantities P, E(t),. are.
bounded,

Ey, =y', c. 'CE. y, yJC'(C. E-+Ec)y,

- IIEc+cE II (AV)

where IIEC+CE II is the norm of the operator EC
+CF. ~ This bound and the rapidly rising spectrum
of E then require that the set of independent null
vectors of A, ((t,.], must contain only a finite num-
ber of elements. Similar reasoning implies that
A. ~, D, and D~ also have finite-dimensional kern-
els.

(ii) The kernel of A, , is finite dimensional. This
is established by the same reasoning as above.
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One simply replaces the original time-dependent Hamiltonian H(t) by

(A8)

(A9)

t -+ oo
1

The scattering matrix defined by this new Hamiltonian is precisely the time-development operator U, intp

terms of which Atp was defined

1
U~& = lim e"2 &o«a'T exp i -l &, (t) e "&"& "&'

0 pt ~+oo t(

Thus, if the time integrals of ~sA„/bt~ are finite
then this remains true after the replacement im-
plied by Eq. (A8) and the argument in (i) implies
thatA«At~, D, , and D~t have finite-dimensionalp' 0
kernels.

(iii) The operators B and C are completely con-
tinuous and have well-defined traces. This con-
clusion follows if we assume that the first four
time derivatives of A,(x) have finite time integrals.
Then the fourth-order multiple commutator of B
and 5 is bounded, which implies that

Since C is completely continuous we can find a
subsequence &„so that C~Cco„. converges to a
limiting vector &d. Then Eqs. (A12) and (A13} re-
Quire

llm Q) =Q) ~n.~oo

. (A14)

Thus &„. is a sequence of unit vectors orthogonal
to the kernel of A with a limit annihilated by A:
A(d=0, a contradiction. We conclude that

P«„»A 'P, „is a bounded operator.

&a „& M(E +E„) (A10} APPENDIX 8

where M is a positive constant. Consequently the
sums

n, m

(A11)

lim A~„=O.
~oo

(A12)

Consider the unitarity Eq. (2.9a) applied to &d„:

A ~A(d„+C~Cv„= ~„~ (A13)

are convergent so that B, and similarly C, are
completely continuous and have a well-defined
trace.

Finally, we can combine this result with the
unitarity of S to show that the operator
P «„» A 'P, „, used in Eq. (3.18), is bounded
so that the trace manipulations appearing in Eq.
(3.18) make sense Assum. e to the contrary that
there exists a sequence of unit vectors (d„ in the
orthogonal compliment of the kernel of A with the
property that

In this appendix we show that the index of an
operatorA increases (decreases) if a vector is
added to (deleted from) the domain of A.

Assume that w'e are given an operator A mapping
a Hilbert space U into a Hilbert space V. Next we
add a vector g to U and extend the definition of A

by defining Ag= p, a vector in p'. Let us decom-
pose P into a piece in the original image of A and
a piece orthogonal to the original image

where (' is an element of U. Consider two cases:
(i) If P~=O, ( —g' is a new vector in the kernel of

A while kerA~ = (imA), is unchanged so the index
of A has been increased by one. (ii) If g, v0 then
the kernel of A is unchanged by the addition of g
while P, is a nonvanishing vector previously in
the kernel of At which is not annihilated by the
adjoint of the newly defined A. The dimension of
kerA ~ has been decreased by one and the. index of
A again increased by one.
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