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Confinement in SU(N) lattice gauge theories

15 MARCH 1980

Laurence G. Yaffe
Joseph Henry Laboratories, Princeton University, Princeton, ¹wJersey 08544

(Received 26 October l979)

The behavior of the Wilson and 't Hooft loops, and of the electric- and magnetic-flux free energies, is
examined in weak-coupling SU(N) lattice gauge theories. The ability of thin tubes of magnetic flux to
spread into thick flux tubes is emphasized as the key feature which is required for confinement, While
control over the energetics of these fluctuations sufficient to prove confinement is still lacking, we are able
to prove that if constraints are inserted which prevent this spreading of Z(N) magnetic flux then
nonconfining behavior results.

I. INTRODUCTION

Hopefully, quantum chromodynamics (QCD)
may be defined nonperturbatively as the limit of
a lattice gauge theory in which the lattice spacing
is taken to zero. ' ' In order to recover an
asymptotically free continuum theory the bare
coupling must vanish as a function of the lattice
spacing in such a way that physical masses are
held fixed. For such an approach to succeed,
one must prove that the confining phase of the
theory, known to be present for strong coupling, ' '
persists all the way down to zero coupling. Un-
fortunately, there exists very little direct evi-
dence showing this to be the case. (Numerical
calculations at best support the assumption of
no phase transition. ")

We assume that confinement is a property which
characterizes the pure gauge theory since vac-
uum polarization effects due to quarks appear to
be unimportant in physical hadrons. Hence, we
will study the SU(N) pure gauge theory without
matter fields. However, having eliminated the
quarks, one obviously cannot see quark confine-
ment directly and must instead introduce a pure
gauge criterion for confinement. Wilson pro-
posed the first such criterion, now called the
Wilson loop. ' It is easily related to the heavy-
quark potential governing the effective force be-
tween nonrelativistic heavy quarks. The Wilson
loop is the most natural order parameter to use
for characterizing the phases of a pure gauge
theory.

Later, 't Hooft introduced a topological disorder
parameter which we will call the 't Hooft loop. '
The Wilson and 't Hooft loops satisfy a remarkable
commutation relation, and in a sense they may
be regarded as conjugate order and disorder
variables. 't Hooft argued that his disorder pa-
rameter could be considered as an alternative
confinement criterion which mightbe calculational-
ly more convenient than the Wilson loop. How-

ever, the behavior of the Wilson loop may not be
directly deduced from corresponding knowledge
of the 't Hooft loop.

Recently, 't Hooft also introduced a different
set of observables which we will call the electric-
and magnetic-flux free energies. ' They are de-
fined by imposing twisted periodic boundary con-
ditions on the theory in a finite volume in such a
way that configurations with a specified electric
or magnetic flux flowing through the periodic box
are projected out. - The electric and magnetic
free energies satisfy an exact duality relation
which essentially shows that they are Fourier
transforms of each other.

After reviewing our notation in Sec. II, we ex-
plicitly define each of these observables in the
lattice gauge theory in Sec. III. We discuss the
expected behavior of the observables and their
interpretation as equivalent confinement criteria.
In Sec. IV we consider the weak-coupling limit
of the theory and argue that the expected confining
behavior of all our observables may be under-
stood as a consequence of a single mechanism,
the spreading of magnetic flux possible in an
SU(N) theory. While we do not have sufficient
control over these fluctuations to prove confine-
ment, we are able to prove that if confinement
occurs then it must be due to this mechanism.
Specifically, in Sec. V we insert constraints into
the SU(N) theory which prevent this flux spreading
and then show that nonconfining behavior of our
observables results. A few concluding remarks
are contained in Sec. VI, which is followed by
three appendices. Appendices A and 8 present
technical bounds needed in Sec. V. Appendix C
briefly considers the strong -coupling limit and
shows how the same methods used earlier may
be employed to provide a simple proof of the con-
vergence of the strong-coupling cluster expan-
sion. The equivalence of the Wilson loop and the
electric-flux free energy is demonstrated in this
limit.
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This paper was largely motivated by recent
work of Mack and Petkova and may be con-
sidered as an extension and explanation of their
results. They considered a modified SU(2) theory
and proved that the 't Hooft loop has area-law
(i.e., nonconfining) behavior. ' We consider the
magnetic-flux free energy as well as the 't Hooft
loop and extend the analysis to any SU(N) gauge
group. We explain at some length why the con-
straints which modify the theory are expected to
produce such nonconfining behavior and then
rigorously prove this result. In their second
paper, Mack and Petkova found a simple bound
on the expectation of the Wilson loop based on the
behavior of "thick vortices. "' We use essentially
the same procedure in Sec. IV in order to relate
the behavior of the Wilson loop to the properties
of magnetic Qux. Finally, in a third paper Mack
and Petkova discussed how the standard SU(2)
theory could be interpreted as a Z(2) gauge theory
with fluctuating coupling constants in the presence
of magnetic monopoles produced by the SU(2)/Z(2)
dynamics. ' (In their modified model these dy-
namical monopoles are eliminated. ) This result,
which emerges naturally from the Z(2) dual trans-
formation use'd by Mack and Petkova, may be
easily generalized to any SU(N) theory. However,
in the present paper we will not discuss this Z(N)
dual transformation, simply because we have not
found it particularly helpful for understanding the
SU(N) theory. [If N& 2 then the dual measure is
complex which makes it rather inconvenient for
proving rigorous bounds. Furthermore, we have
found it useful to emphasize the spreading of
magnetic-flux sheets which is possible in an
SU(N) theory, instead of stressing the dynamical
monopoles which simply give the boundaries of
these flux sheets. In this way all of our observa-
bles may be discussed from a unified viewpoint. ]
See Ref. 10 for an application of a Z(N} dual
transformation to the SU(N) theory which does not
explicitly separate the SU(N)/Z(N) magnetic mono-
poles.

II. NOTATION

We will consider the standard SU(N) lattice
gauge theory defined on a d-dimensional simple
cubic lattice A of size Apx xAg y d + 2. For
convenience we will choose A& =2 ~, for integral
(n„J. The size of the lattice will always be in-
creased in a "power law" fashion: I et n„=l~„
+ n'„ for a fixed choice'of integer exponents 6„&0,
and k = 0, 1, 2, . . . . Then A - Z" as l -~. We will
make frequent use of boundary and coboundary
operators and so begin by introducing the ap-
propriate notation. "

The lattice A contains sites [s], bonds [b],
plaquettes [p], cubes [c], etc. , generically re-
ferred to as r ce-lls [c„], r=0, . . . , d. Each r-cell
is assigned a standard orientation; -c„will be
understood to label an ~-cell with the opposite
orientation. When necessary, sites will be labeled
by their lattice position n (n& =integer). This
implies the partial ordering s(n) & s(n') iff n„
&n& v p. Higher r-cells may then be labeled by
the smallest site they contain plus the positive
directions they extend in: b&(n), P&„(n), c„„i(n),
etc., p & v&A. & ~ ~ ~ .

We will not distinguish between sets of r-cells
and the characteristic functions defined for each
set. For example, if S is a set of plaquettes,
then the function S [P] equals +I if +P c S, 0
otherwise.

Each r cell h-as a boundary of (r —l)-cells,
Bc„, defined with appropriate orientation so that
8' = 0. Explicitly,

Bs(n) =0,

Bb„(n) =(s(n) —s(n+e„)),

Bp„„(n)=(b„(n) -b„(n+e,)) —(b„(n) -b,(n+e„)),
I

Bc„„„(n)= (p„„(n) -p„„(n+ ei))
—(p„,(n) —p„i (n+ e„))

+(p,„(n) -p„„(n+e„)).
Each r-cell has a coboundary of ~r+ 1)-cells, Bc„,
defined as those (r+1)-cells whose boundaries

Pa

contain c„, that is, +c„+,c 0c„ iff +c„(=Bc„+,. Ex-
plicitly,

Bs(n) = g (b„(n) -b„(n-e„)),

Bb„(n}= Q (P„,(n) P„„(n —e,)), —

BP„„(n)= g (c„„i(n)-c„,i(n-ei)).
X. &p, v

Note that 8c& = 0, and ~'= 0. The boundary and
coboundary operators extend to arbitrary sums
of r cells (r-ch-ains) by linearity. To illustrate
these definitions observe that a set of plaquettes
S is closed, that is, BS= 0, if no bond is con-
tained in the boundary of an odd number of pla-
quettes. Similarly, S is coclosed, OS=0, if no
cube has a boundary which contains an odd num-
ber of plaquettes of S.

We will introduce numerous variables taking
values in Z(N), the center of SU(N). We will con-
sider Z(N) as the multiplicative group with ele-
ments(1, i, t', . . . , i" '),, where'=-exp(2@i/N).
This group is obviously isomorphic to the modN
additive group s(N) with elements(0, 1, 2, . . . , N —lj
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vrhere

C(U) =P astr(U)

and P = I/g' with g the standard gauge coupling
constant. The plaquette variable U[Bp] is the
product of bond variables around the perimeter
of the plaquette P. We will find it convenient to
define q[p] as the Z(N) part of U[BP], U[BP]
-=U[Bp]q[p], where - v/N& ragtrU[ pB]

& m/N. The
partition function Z is given by

Z = „,, dU b exp —I. U
b&A

where (fU[b] is the normalized Haar measure on

(2)

under L'(= Z(N)- k(= z(N). In order to freely use
this isomorphism without comment in what fol-
lows, we will standardize our choice of symbols
and use the greek letters (e, r, g, o, v, ((), . . . ) to
label elements of Z(N) and similar latin letters
(e, z, n, s, t, w, . . . ) to label corresponding ele-
ments of z(N). Hence, either element of anequiva-
lent pair, such as (v, f), will be used when con-
venient. The normalized Haar measure on Z(N)
is given by

N-1

(d
1

z(N) & ~=p

If (d [c„] is a Z(N) lattice field defined on r-cells,
then (d[-c„]=- &u[c„] '; if S is any set of r-cells,
then we define (d[S] = +„,ze[c„].

The basic variables of the theory are the bond
variables U[b] (= SU(N), U[-b] =-U[b] '. If C is an
oriented path consisting of bonds b„.. . , b„, then

U[C] = U[b J U[b„]. The standard SU(N) lattice
gauge theory is defined by the (Euclidean) action

L (U) = Z -~(U[Bj]),

SU(N) (i.e., Js«» dU[b] = 1}. Boundary conditions
for U[b] will be discussed in Sec. III. Fur later
convenience define dv(U) = II„~dU[b]. Observa-
bles are functions &(U) of the bond variables
U[b]. Their expectation value is given by

(~) = f«(()W~)
(3)

du(U) =—e-""... , dU[f ] .

III. OBSERVABLES

In order to clearly define our observables we
will first rephrase the description of the standard
lattice gauge theory in terms appropriate to
quantum mechanics.

The Hilbert space of states consists of wave
functions 4'((U[b]]). They depend on variables
U[b] in an n, = t = constant "spacelike" plane Z.
A gauge transformation V[s] (= SU(N), s (= Z is
implemented by the operator Q(V), defined by

(Q (V)4') ((U [b]j) = 4((U' [bl)), (4)

where U'[b] =V[s]U[b]V[s']t if Bb =s —s'. The
scalar product is given by

(~,.~.) = f.... «(»~, («r»))~. («(»))

~exp — Z U BP
Peg

(The factor exp(- Z~, r 2(U[BP])] could be absorbed
in the wave functions. However, the choice (5)
is more convenient for our purposes. ) The par-
tition function Z is defined as Z = Tr (e r") where
T is the length of the lattice in the "time" direc-
tion (i.e., T =A,), and the transfer matrix e "
is given by

(' ~ "')= f -(» «. ...(».'(. .
'.
«. .." f."P'.(«(~)))~.(«'l»))~*a 2 &(~f. »))QeR PF g

(6)

Here Z' is the spacelike plane n, = t —1, one unit
before Z, and = is the open region t —l&np&
between l, ' and Z. (So = contains only timelike
plaquettes. ) Note that e " projects out gauge-
invariant physical states. Any gauge transforma-
tion acting on the initial or final states may be
absorbed by a change of variables in (6). This
definition of Z agrees with the previous expres-
sion (2) supplemented by the further condition
coming from the Hilbert-space trace which re-
quires us to impose periodic boundary conditions
in the time direction.

The Wilson loop'A [C] is defined for a closed
curve of bonds C lying in 2 as the multiplication

l

operator

(A [C]+)((U[b]j)=y (U[clg ((U[blj) .
Here E labels a representation of SU(N) with
n-ality e, that is X ((,) = ('. Definingthequantum
expectation (A [C]) = Tr(e "A [C])/Z and com-
paring with Eq. (3), we clearly have

(A'[c)) =(x'(U[c])) . (6)

This expression may be extended to any loop
C ( A not necessarily lying in 2' for which the
operator form (I) may not be defined. We will
always take C to be a, simple closed curve so that
C =BS for some set of plaquettes S. (S is not
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unique. )
The expectation of the Wilson loop obviously

does not depend on which lattice direction is
chosen as "time." To interpret its effect it is
convenient to choose the plaquettes P E S to be
timelike. As a result, the timelike legs of the
Wilson loop modify the transfer matrix so that
at times which cut the Wilson loop, non-gauge-
invariant states are in fact propagating. In par-
ticular, if we perform a gauge transformation
V', which is equal to 1 at the position of the down-
ward leg of the loop but equals 7=&', some ele-
ment of the center Z(N), at the other leg, then
intermediate states acquire a phase,

II(V')4 =~'"4

This defines what we mean by saying that this leg
of the Wilson loop is a source of e units of elec-
tric flux. The other leg is similarly a flux sink.
In general, a Wilson loop may be regarded as
creating an electric loop which acts as a source
of electric flux spanning the loop.

The 't Hooft operator'B "[C*], 7c Z(N), is de-
fined for a set of bonds L* lying in Z as the op-
erator

(II'[C*je)((U[bjj)=e(f~'*'"'Ulb])) . (10)

Remember that w
I' -=(v if b (= L*, 1 if b g I *].

The relation between C* and L* is as follows:
Let Q* be the coboundary of L* restricted to Z,
Q*=BL*RZ. Note that Q* is coclosed in Z. Let
S*be the set of plaquettes protruding from L* one
unit in the positive time direction, S*
=(Pc&(n)~b&(n) (= Lj, and similarly let C* be the
set of cubes directly above Q*. Then C*=BS*is a
closed set of cubes in A (see Fig. 1). Defining
the quantum expectation (B'[C*])= Tr(e "B'[C*])/
Z, one finds that'"

since B' [C*] inserts the twist r in each of the
timelike plaquettes of S* extending from L*. This
expression is in fact independent of the particular
choice of S*; it only depends on the coboundary
C*. [If BS*=C*and BS*=C*, then B(S*-S*)=0
so there exists a set of links K~ such that 8&*
=S*-S*. The change of variables U[b] - rU[b]
for b (= E* moves S* to S~ in the right-hand side
of (11).] Clearly, expression (11) may also
be extended to any coclosed set of cubes C~
=BS*for some set S~&A.

As a consequence of the definitions (7) and (10),
the following commutation relation ('t Hooft alge-
bra) holds for C, L*C:Z:

B'[C*]A. [C] =7' "@'A [C]B [C*], (12)

~ rHP(8f~
(a)

FIG. 1. (a) The 't Hooft loop in three dimensions.
Heavy lines are links L,*, light lines are plaquettes Q*.
Plaquettes S* are shaded while the cubes C* are shown
at either end. (b) t = 0 plane of the 't Hooft loop in four
dimensions. Links L* and plaquettes Q* are shown. A
cross section cutting through the loop will appear for all
t, as in (a).

where L*[C]-=Z&,c I *[b].
We will be primarily interested in sets C* of

the form shown in Fig. 1. In four dimensions, C
is a loop of cubes (or a closed curve in the dual
lattice) and L*[C] is simply the linking number of
the two loops. In three dimensions, C* is just
two separated cubes (of opposite orientation) and
L*[C] counts the number of cubes of C* (or rather
plaquettes of Q*) inside C. For convenience we
will refer to B'[C*] as the 't Hooft loop regard-
less of dimension even though this name is only
really appropriate in, four dimensions.

The 't Hooft operator may be regarded as
creating a magnetic loop which acts as a source
of magnetic flux. The action for plaquettes P c=- S*
is changed from exp(2 (U[BP])j to exp(2 (vU[BP])].
Thus, instead of favoring the classical vacuum
configuration U[BP] = 1, the action is now mini-
mized for configurations with magnetic Qux

U[BP] = 7 ' for P c S*. So the twist introduced by
B'[C*] acts as a Lagrange multiplier for magnetic
Qux analogous to the conventional sources used
in, e.g. , symmetry breaking. Because the pla-
quette variables U[BP] are not independent,
(B'[C*]) does not depend on the precise location
of S* except for its coboundary C*. Hence C*
may be thought of as a magnetic source, with S*
a Dirac sheet of magnetic flux. (In three di-
mensions, S* is a Dirac string. )

Using the Wilson (or 't Hooft) loop to explicitly
insert a flux source is not the only way to satisfy
Gauss's law (or the Bianchi indentities) in order
to study the energy of electric (or magnetic) flux.
To avoid the introduction of a source coupled to
the boundary of a flux sheet, we may instead con-
nect the ends of the flux sheet by imposing
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periodic boundary conditions. This allows the
formation of topologically stable closed flux lines
which wind about the lattice. This is the approach
recently suggested by 't Hooft. '

Specifically, we will modify the transfer ma-
trix [Eq. (6)] by requiring the timelike bond varia-
bles on opposite sides of the cubic spatial lattice
to be equal. Physical states, that is, states
propagated by the transfer matrix, are now in-
variant under "proper" gauge transformations,
ones where V[s] satisfies the periodic boundary
conditions. However, we may now in addition
consider the behavior of states under "improper"
gauge transformations, those with nonperiodic
V[s]. In particular consider a set of gauge trans-
formati ons V ', t = (f„.. . , f„,), f& (= z (N) given
by

Vt [s (+)] L('( 'N Is])

where N*=(N,*, . . . , N~ ~), and N,*
=fs(n) c Z~s(n —e, ) g2 }. In words, N;* is the set
of sites in the first plane normal to e, in the spa-
tial lattice Z. V'[s] is equal to one except on N,*
where V' = T, (except on Nf PN~* where V'
= v;v„etc.).

Thus, V' varies by v, from one side of the
lattice (N,*. ) to the other. These gauge transfor-
mations commute with each other and conse-
quently may be simultaneously diagonalized.
Physical states need not be invariant under Q (V').
Therefore, if a state 4 transforms as

Q(V')e=~&'"e, ecz(N),

then 0 has e& units of electric flux flowing through
the periodic lattice in the jth direction. [Com-
pare with Eq. (9).] We may separate the con-
tribution of states of a given global flux to the par-
tition function by introducing the projection op-
erators

p(e) = f dpi "'D()").
Clearly Z-,P(e) = 1. Notice now that

(Q(V')~)((U[f]})=q(f~" " ""U[t1}),
where L) is the set of bonds in the jth direction
which begin at NP, that is, I &=(b~(n)~s(n) (= Nfl
But, comparing with Eq. (10) we see that Q(V') is
nothing but a product of 't Hooft operators (one
for each spatial direction j) defined on the sets
of links L& Since L'f is. coclosed in Z (it com-
pletely winds about the periodic spatial lattice
once), Q(V') may be thought of as creating mag-
netic flux which winds about the lattice without
sources or sinks. (Once again, we emphasize
that while V' is simply a gauge transformation,
it is not a proper gauge transformation so that

it need not have trivial physical consequences. )
Equation (15) says that P(e), which projects out
states with a given electric flux, is simply the
Fourier transform of Q(V'), which creates mag-
netic Qux. This is the precise connection be-
tween electric and magnetic flux that we need.

Repeating the steps leading to Eq. (11), we find

where S&~ is any coclosed set of plaquettes which
winds once through each [Oj] plane of A. Finally,
we note that such a twist may be defined for each
plane direction [i] v]. Thus, we define the mag-
netic-flux free energy &„(f„„),ti„,](=z(N) by

exp & g v&„U eP -g U ep
E j'~ Sp+v

and the electric-flux free energy &, (e&„),
ei „](=z(N) by the Fourier transform

(16)

&~~8/ &~ — /7' g-~~' &~ e-~m(&P iji
~y vj

Here (e f) =Z&,„e&,t&„and S&, is any coclosed
set of plaquettes which winds once through each
[V])] plane. (For example, Sg, = ]p„„(n)~n„=n„
= 0}.)

Henceforth, the lattice A is to be regarded as
periodic in all directions. Equation (IV) may of
course be inverted to read

e -E~(t P u) — g(e t~ -&e(e P Ij)

ey &]

These formulas exhibit the dual symmetry be-
tween electric and magnetic flux. See, Ref. 6 for
various applications of this duality.

%e would now like to discuss the interpretation
of each of our observables as a confinement cri-
terion. Consider the Wilson loop for a large,
rectangular contour of length 7 and width B. By
examining the propagation of arbitrarily heavy
quarks in the representation E, one finds that'
(A [C])- exp[-TV~(A)] as T-~, where V (R)
is the nonrelativistic heavy-quark potential. If
V (R)-~ as B-~ then (heavy) quarks in the
representation E are confined. This is the basis
for the use of the Wilson loop as the standard
quark-confinement criterion. For large T, the
Wilson loop is sensitive to the states of lowest
energy which have electric Qux connecting a point
source and sink a distance A apart. If the electric
flux is focused into a physical flux sheet, then the
Wilson loop will obey the area law

(A [C])- exp[-p(e)A]
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for large loops C spanned by a surface of minimal
area A. . This implies a linear confining potential
with string tension p(e). [One expects p to only
depend on the n-ality e since any representation
of SU(N)/Z(N) may be screened. This produces
only perimeter terms. ']

Similarly, the electric-flux free energy probes
the states of lowest energy with a specified global
flux. Therefore, if electric flux forms physical
flux sheets, then one expects that

exp[- E,(e„,)]- A~&, exp[- p(e& „)A„„]
[P 1 ]

(B'[C*])- exp[- o.(v) ~C*~] . (21)

(That is, (B'[C*])- const if d = 3, and (B'[C*])- exp[- (perimeter)] if d = 4. We will call this
perimeter-law behavior of the 't Hooft loop re-
gardless of dimension. )

Finally, the duality relation (18) and electric
confinement (20) imply that the magnetic-flux
free energy behaves for any power-law growth
ofh as

exp [-E (t„,)]- 1 as (A
~

-~ (22)

with exponentially small corrections.
If in place of a confining phase we have a Higgs

phase such as would be produced by a condensa-
tion of electric objects, then electric flux will
be free to wander through the lattice and mag-
netic flux will be strongly focused. Then one
would expect

(A [C])-exp[- n(E)~C~],

e "8'»'-X-~'-" ' as ~Ai-~,

(B'[C*])- exp[- p(r)A*],

(23)

(24)

(26)

(20)

Here A&„=A&A.„is the minimal size of the global
flux sheet, and the factorA*„„=—gq „„Ay ls
present because the Qux sheet may be located
anywhere in the transverse directions. This pre-
dicts that E,(e„„)-~for e„,e0 as ~&~-~ in any
power-law fashion. For a finite-size lattice,
contributions from multi. pie flux sheets will es-
sentially exponentiate the above expression.
Furthermore, Qux sheets in different directions
may interfere giving rise to additional contribu-
tions.

Standard folklore suggests that the focusing of
electric flux needed for linear confinement (19)
will be the result of a dual Meissner effect if
magnetic monopoles or solitons have condensed
in the vacuum. In such a state the magnetic flux
produced by the 't Hooft loop should be completely
defocused, so one expects that

P

E~(~p 7J) „., A „„exp[-P (t„„)A*„,] as JA [
-~ .

IP 1 1
tp p&P

(26)

Here A* is the minimal size of the set 8* (for
fixed coboundary C*). The constant in (24) is an
artifact of our normalization condition
Z, „e ~'i'») = 1. Note that (23) implies a mere
mass shift for heavy quarks. For more discus-
sion of this intuitive picture, see Refs. 5, 10,
and 12, and references therein.

This view of dual confining and Higgs phases is
very appealing. However, it obviously does not
prove that the 't Hooft loop or the flux free ener-
gies are equivalent to the Wilson loop as confine-
ment criteria.

One may argue that the electric-flux free energy
and the Wilson loop will exhibit equivalent behavior
in any phase with a mass gap since both probe the
properties of electric-flux sheets which are large
compared to the coherence length. Underlying this
argument is the assumption that the dynamics is
local so that the flux sheets produced by the free
energy and the Wilson loop are physically equiva-
lent. If the behavior of the Wilson loop depends
critically on the pinching of electric Qux at the
loop itself, then obviously this behavior will not
be reflected in the electric-flux free energy.
Such effects may lead to nonlinear confinement,
that is, V(R) —~, but V(R)/R- 0 as R -~, which
presumably is possible only in the absence of a
mass gap. Free Abelian theories in three di-
mensions provide an example of such a phase.
Note also that V(R) cannot rise faster than
linearly. "

In his original paper, ' 't Hooft tried to relate
(A [C]) and (8'[C*]) by considering the conse-
quences of the commutation relation (12). He used
cluster decomposition of (A [C]B'[C*])to argue
that in the presence of a mass gap, perimeter-
law behavior for both the Wilson and 't Hooft
loops is incompatible with the commutation re-
lation. He therefore concluded that one or both
types of loops must have area-law behavior with
the consequent formation of physical flux sheets.
He suggested that perimeter-law behavior (21)
for the 't Hooft loop could be used as an alternate
confinement criterion. Unfortunately, there are
a number of potential difficulties with this pro-
posal. First, since the separation of two inter-
locked loops cannot be greater than their perime-
ters, it is not obvious that exponentially small
corrections to clustering are less than the ex-
ponentially small product of expectation values.
Second, the assumption of a mass gap is re-
quired. Thus, perimeter-law behavior of the
't Hooft loop is, by itself, insufficient to prove
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confinement. And third, since the possibility of
simultaneous area-law behavior of both Wilson
and 't Hooft loops could not be eliminated, area-
law behavior for the 't Hooft loop is insufficient
to disprove confinement.

We will argue in the next section that the equiva-
lence between the behavior of the 't Hooft loop or
flux free energies and the Wilson loop may be
selectively destroyed by inserting certain con-
straints in the theory. Thus any model-indepen-
dent argument relating the various observables
is bound to leave certain loopholes.

IV. FLUX SPREADING

In this section we would like to understand
qualitatively how it can be that the standard SU(N)

lattice gauge theory confines for weak coupling.
In particular, we want to determine what sort of
fluctuations can give rise to the expected behavior
(19)-(22) for our observables.

Consider first the expectation of the 't Hooft
operator

(de'[(. "]) =.
—f d ((() pe] Pex))(x . '@[ed])) .

(27)

It may be regarded as creating a thin string
(d=3) or sheet (d=4) of magnetic flux on the pla-
quettes S*. Consequently (8'[C*]) may be thought
of as probing the response of the theory to the
extern@1 introduction of magnetic flux. This situa-
tion is analogous to the use of the operator
T])(x)exp[ J„' A. dx]g(y) for studying the Coulomb
potential in QED. There one introduces a thin

string of electric Qux and subsequently finds that
the dominant fluctuations are those which exactly
cancel the thin string and replace it with a
spread-out dipole field. Similarly, we need to
find the dominant fluctuations in the presence of
the 't Hooft loop.

Consider for the moment a Z(N) gauge theory,
where U[b] (= Z(N). As P-~ (weak coupling),

exp[2 (U)] becomes highly peaked about U= 1.
Therefore, the integrand for the 't Hooft loop (27)
is maximized when

(28)

However, no fluctuations, exist which satisfy this
condition in a Z(N) theory. To see this, note
that the identity

is automatically satisfied in the Z(N) theory for
any closed surface S. (1'his follows since
]7 [p] = U [ap] = g „z~U [b] and each bond appears

twice (with opposite orientations) in the product
in (29).) If we consider any closed surface S
which wraps around the 't Hooft loop C*, then
(28) would imply ]I[S] = v ', in contradiction with
(29). (S wrapping around C* means S[S*]= 1. In
three dimensions this implies that 8 surrounds
one of the cubes of C*, whereas in four dimen-
sions a two-surface S may wrap around the closed
loop C*.) Hence, in a Z(N) theory no fluctuation
can remove the magnetic flux introduced by the
't Hooft operator. In particular, every possible
configuration must violate (28) on some set of
plaquettes S*whose coboundary is C*. Since each
such plaquette contributes a finite action (at least
P [1—cos(2v/N)] above the minimum) we see that
(8"[S*])will have the area-law behavior (25) in-
stead of the perimeter behavior we need. (This
argument, while correct if d & 2, is not really
complete since we have not considered entropy
effects. We will show how to prove the result
rigorously in the next section. )

So we see that Z(N) fluctuations are unable to
cancel the localized magnetic flux introduced by
the 't Hooft loop, and because localized flux
possesses a large energy this leads to the wrong
weak-coupling behavior. Fortunately, new fluc-
tuations are available in the SU(N) theory due to
the continuous nature of the group. In particular,
]7[S] need not equal 1 so that many configurations
exist which cancel the Z(N ) flux sheet produced
by 8"[C*]and replace it with spread-out magnetic
flux. (We will be more explicit about how to con-
struct such configurations later. ) Such flux
spreading will lower the action of the dominant
fluctuations since exp(Z (U[sp] ~ ~~)] will be close
to its maximum for nearly all plaquettes. If the
average action per unit length (or area) of S* of
such configurations is reduced to zero, then, at
most, end-point effects will contribute so that
the 't Hooft 1.oop will have the desired perimeter-
law behavior (21).

The magnetic-flux free energy

e e '"" = — di (U) exp] d(e „*e"XjU[ep]))
Z

(30)

may be discussed in exactly the same terms. It
creates thin strings (or sheets) of magnetic flux
on the sets S&,. This sourceless flux is topo-
logically stable since it runs completely around
the periodic lattice. If only Z(N) fluctuations are
considered, then these flux sheets cannot spread
out. To see this consider any closed surface 8~8
which wraps once around the lattice in the [c]P]
direction. (For example, S„a=Q„s(n) ~n~ = 0,
A, o o., ]3).) Note that S„~[Sf„]=5» since the co-
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closed surface S„*„runs once through every closed
surface S„„. Since rI[S 8] is identically equal to
one for Z(N) fluctuations, every surface S„r) will
contain at least one plaquette with a localized
Z(N) flux (i.e., q[P]v„„~»+It 1) when t„soO.
Hence, if only Z(N) fluctuations are considered
then the magnetic-flux free energy will exhibit
the area-law behavior (26).

Therefore, in order for magnetic flux to be
".light, " that is, e ™d](']-1as ~A~-~, it is es-
sential that the magnetic flux be able to spread.
Specifically, the dominant fluctuations will satisfy
ri [P] = v&„])p ~~ and thus exactly cancel the Z(N)
magnetic flux. If the Qux can spread sufficiently
rapidly so that the average action per unit length
(or area) of Sg„drops to zero, then e "~i'])P] will
approach 1 as ~A[-~. Notice, however, that in
order to produce area-law behavior for the elec-
tric-flux free energy (20), e ]'" must approach
1 exponentially rapidly. In other words, the aver-
age action of a magnetic-flux sheet must decrease
exponentially as the transverse area through which
the flux can spread increases.

Finally, we would like to show that the behavior
of the Wilson loop (A [C]) may also be understood
as a consequence of the behavior of magnetic flux. .

This discussion closely follows the treatment by
Mack and Petkova. '

Let us consider a coclosed set of plaquettes
I'* which winds once about the Wilson loop C.
Since 8P*=0, there exists a set of links L* such
that P*=BL*. Note that L*[C]= 1 since P* winds
around C. I et us insert 1 = Jckr, where o (= Z(N)
and then make the change of variables U[b]
-(r ~'IU[b]. The Wilson loop becomes

(d [C])= f«" —' fde(C))p(C[C])

&& exp] P 2(cr~ +'U[aP])

(31)

FIG. 2. A vortex container in three dimensions.
Shown is a segment of the Wilson loop C threading the
center of the vortex container A', inside of which is the
thin vortex at P*.

Here, the twist o has been inserted in the action
for each of the plaquettes of I'*. In other words,
a thin vortex or loop of magnetic flux has been
created at I'*. This sourceless loop of flux is
topologically trivial and therefore may be re-
moved (as it was inserted) by a mere change of
variables. We are interested in effectively pre-
venting this possibility and therefore we proceed
as follows: Let us choose a vortex container,
that is, some sublattice A'&A which contains I'*
and which wraps around the loop C (see Fig. 2).
In other words C is contained in A the closure
of the complement of A'. We will first integrate
over bond variables on bonds in the interior of
A' and then integrate over the remaining outside
variables. Thus

l

(d'lc]) =—f . .dclelx'(v[c]) ." *p[p(c[ep])]l f«e f; dc[e] . . '*p(p.,(o'""c[ep])]]

de(c)x (c[c]fx e(e)expIZ P(c[eP])I,
1
g A, V

@~A

where
e

f (e)-=f«xe ]..:c. dp[el'. .., exP[&(e" 'Cled])] dc[e] ..., exp[P(C[edl))) .
a fA PgA

The subscripts indicate that fA rr(e) depends on
the vortex container A' chosen and on the fixed
values of the bond variables on the boundary of

However, fA rr(e) is independent of the loca-

I

tion of the thin Qux tube; I'* may be any coclosed
set of plaquettes which winds once around the in-
terior of A'. fA rr (e) is completely analogous to
the electric-flux free energy e "~'~, except
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that instead of being defined on a cubic lattice
with periodic boundary conditions it is defined
on a nonsimply connected lattice ~' with fixed
boundary conditions.

The interpretation of (33) should, by now, be
clear. We choose a vortex container A' and con-
sider the change in free energy upon the addition
of a thin tube of magnetic flux running through
the container. If the free energy is nearly inde-
pendent of the flux 0, then its Fourier transform
fA u(e) will be very small when e e 0 and will
suppress the Wilson loop (32). As before, Z(N)
fluctuations are unable to accomplish this since
they obey the identity U[C]p[S] '= 1 for any sur-
face S with boundary BS =C. SU(N) fluctuations,
however, may violate this condition and are
therefore able to spread the external flux through-
out A'.

To obtain the most control over the behavior
of the Wilson loop, we may introduce an arbitrary
collection of nonintersecting vortex containers
(A';} and repeating the above steps find

From this, one may trivially derive the bound

(35)

on the single plaquette P =S,*„PX„„. This flux
may be spread out by the following procedure:
Choose a bond in the boundary of p and set U[b]
= (T„',)' ' ~» on this bond. This reduces the flux
on P to (7„„)' ~~ and moves the remaining flux
in X~ „onto a plaquette next to P. Pick another
bond in the boundary of this plaquette and set
U[b]= (s~'„)' '~ "». Proceeding in this manner one
may move the remaining lump of flux completely
through the surface X„„in such a way that every
plaquette in X„„acquires the flux (r„„)' ~~. This
configuration is now replicated on every plane
parallel to X„„, and the same procedure is ap-
plied to each direction [pv]. We obtain a con-
figuration (which satisfies the periodic boundary
conditions) in which the external fluxes (r~, ) have
been spread completely through the lattice. The
action of this configuration (above the minimum)
is given by

, Hetr(1 7,'~„"») ~ Q (const)A,*„/A,
1

&v» IXI-~ Q v»

This is naturally the same result as one would
obtain in any free Abelian theory. If we attempt
to compute the free energy by expanding around
this configuration, then we will obtain the leading
semiclassical approximation

As noted by Mack and Petkova, if f& U(e) de-
creases exponentially with the transverse size of
the vortex container ~,'. for any set of boundary
conditions U, then one may choose a set of vor-
tex containers for which (35) yields the nearly
linear bound V (R) ~ (const)R/(lnR)' on the
heavy-quark potenti'al. This behavior of f~ u(e).
is characteristic of the presence of a mass gap.

We have seen how the behavior of any of our
observables may be understood in terms of a
single mechanism, the spreading of magnetic
flux possible in an SU(&) theory. Unfortunately,
the very features which make confinement possi-
ble also make standard weak-coupling approxima-
tions inapplicable. Consider, for example, the
magnetic-flux free energy (30).' One might try to
compute its weak-coupling behavior by expanding
about the minimal action configuration in the pre-
sence of the twists &~„. This configuration may be
easily found as follows. Choose any one parame-
ter subgroup which interpolates between 1 and t.
= e "~~. This defines a particular choice for
(.", -2N~ o'. ~ zN, and therefore for (7), T E Z(N),
0- IB = 1. Consider now any particular plane sur-
face X„„=(p„„(n)~n~= const, X+ p, , v} and begin
with the configuration U[b] = 1 for all bonds in X„„.
This configuration has a flux of 7~„concentrated

This illustrates how the magnetic flux can
spread and thereby lower the action; however, no
indication of the development of a mass gap is
seen. This is hardly surprising since the above
approach is nothing more than the usual massless
perturbative expansion. Notice that this result
indicates that the average action per unit length
(d =3) or area ((f = 4) of magnetic flux drops to
zero as the transverse area increases. We will
argue in a moment that the fluctuations which
have been neglected simply further decrease the
magnetic free energy. Consequently it seems
clear that the SU(N) theory will not have a Higgs-
type weak-coupling phase where magnetic flux
possesses a finite action per unit length (or area).
Therefore the bound (35) on the Wilson loop shows
that the existence of a mass gap is actually suffi-
cient to prove confinement.

The basic problem we are confronted with is the
following: For' weak coupling, the action becomes
highly peaked about U[sp] =1. In a Z(Ã) theory the
only configurations which satisfy this are in fact
pure gauge configurations. Therefore semiclassi-
cal methods are perfectly adequate and correctly
predict a Higgs phase. " However, in an SU(N)
theory U[BP] = 1 does not restrict the configura-
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tions to be small fluctuations about pure gauge
fields. A configuration may have arbitrarily
small flux on every plaquette (~ U[&p] —1

~

- &)

without being a small deviation from a pure gauge
field (~U[b] —V[eb] ~g E, for any V[s]) if the tiny
amounts of flux add coherently over a sufficiently
large distance. Such configurations can disorder
arbitrarily large Wilson loops, spread magnetic
flux, and invalidate the use of semiclassical me-
thods for large distance scales.

Since we do not have sufficient control over
these fluctuations we are unable to determine
whether or not they provide a mass gap and

thereby cause confinement. [Except in the ex-
actly soluble two-dimensional theory. There
semiclassical expansions predict, for example,
the power-law behavior e ~~"'-1+O(1l ~A ~)

while the correct inclusion of all fluctuations
yields e ~~"' = 1+0(e "'~') and thus indicates the
presence of a mass gap. ] We may, however,
proceed (somewhat circuitously) as follows.

We have argued that the important SU(N) fluc-
tuations which may cause confinement are pre-
cisely those which violate the Z(N) identities
preventing the spread of magnetic flux. There-
fore, if constraints are inserted in the SU(N)
theory which enforce these identities, then we

expect nonconfining behavior to result. This is
what we will prove to be the case. (This may be
thought of as justifying the qualitative arguments
presented in this section. )

It is important to note that while all our ob-
servables may be thought of as probing the be-
havior of magnetic flux, each one does so in a
slightly different and distinguishable manner.
Specifically, the 't Hooft operator creates mag-
netic flux with a source, while the flux free
energies examine the behavior of flux which runs
completely through the lattice, and the Wilson
loop probes the behavior of flux loops which cir-
cle the Wilson loop.

If we impose the constraint

g[&c]=1 for all cubes c, (36)

then this enforces the conservation of Z(N) flux
and eliminates all configurations which cancel
the external Z(N) flux created by the 't Hooft loop.
This constraint implies p[S]=1 for all topologically
trivial closed surfaces S. Notice, however, that
this constraint does not affect the conserved flux
loops probed by the flux free energies or by the
Wilson loop. Consequently, we expect this con-
straint to change the behavior of the 't Hooft loop
from the perimeter-law form (21) to the area
law (25) appropriate for a Higgs phase. However,
the behavior of the flux free energies and of the
Wilson loop should be qualitatively unaffected.

If we then add the constraint

q[S„„]= 1

for any particular set of closed surfaces (&~/
running through the lattice in each [p,v] direction,
then all configurations with Z(N) flux running
around the lattice will be eliminated. Equations
(36) and (37) together imply that the total Z (N)
flux flowing through any closed surface in the lat-
tice is zero. The external flux introduced by the
flux free energies will now be unable to spread out
so that we would expect the nonconfining behavior
(24) and (26). However, the behavior of the Wil-
son loop remains unchanged.

Lastly, (36) plus the new constraint

/
arg trU[C]q[S] '/ --~/N, (38)

for a particular loop C =88 eliminate the spread-
ing of flux vortices winding around the loop t".
This is finally expected to destroy the confining
behavior of the Wilson loop&s[C] and to produce
instead the perimeter law (23). To truly create
a nonconfining phase the constraint (38) would
have to be introduced for all possible loops C.

This illustrates how the equivalence between
our various confinement criteria may be selec-
tively destroyed by inserting constraints which
in effect couple directly to a particular observable.
Notice how this mechanism exploits the loopholes
mentioned in the general discussion in Sec. III.

In the next section we examine the SU(N) theory
in the presence of the constraints (36) and (37)
and prove that the 't Hooft loop and the magnetic-
Qux free energy exhibit the nonconfining behavior
(25) and (26). We discuss the effect of the addi-
tional constraint (38); however, due to technical
reasons (such as the need for a lower bound in-
stead of an upper bound) we are unable to prove
rigorously that the Wilson loop (tls[C]) exhibits
the nonconfining behavior (23).

To close this section we would like to explain
one final point. One may wonder why we have
placed so much emphasis on Z(N) magnetic flux
instead of considering general SU(N) flux. The
basic answer is simply that it is not necessary
to do so. Z(V) flux does not have a particularly
distinguished position in the SU(N) theory; we
could, for example, define a generalization of
the 't Hooft operator which would insert an arbi-
trary SU(N) twist. However, it is much more
convenient to deal with Z(N) variables since they
commute with all elements of the group.

A more deductive argument for emphasizing
Z(N) flux may also be given. Consider evaluating
the expectation of the Wilson loop by first in-
serting 1= J' dg6(gfr[C]) and then integrating out
the bond variables. This yields
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(~ [c)) f-d)(( (~)x (~ *)

where p, (g) is the probability that U[&]=g '.
has a character expansion in terms of represen-
tations of SU(N), p, =Z„„s,cs ZP (g). In order for
the Wilson loop to show area-law behavior, we
must have cs-O(e '"'"). However, we expect
all representations of nonzero n-ality to be con-
fined. This implies

p, (yg)= p, (g)+0(e '~'"), rc Z(N) .
However, by the same change of variables used
in (31) we see that p, (yg)/p, (g) simply compares
the Wilson loop with and without an extra thin
Z(N) flux vortex circling the loop. Thus we are
automatically led to the introduction of Z(N) flux
in exactly the manner described previously.

V. CONSTRAINED THEORY

The behavior of magnetic flux will now be
studied in a modified theory in which the con-
straints (36) and (37) are imposed. To implement
these constraints we simply change from the bare
measure dv(U) = Il,dU[b] to the constrained measure

dv'(U)= „,dU[f ] [][ 6(q[sc]},g 6(q[S,„])
5cA ccA [p, v]

(6(q)=-[l, q=l;O, q~»). (39)

We will use the following strategy to prove that
the magnetic-flux free energy and the 't Hooft
loop exhibit area-law behavior (25) and (26) in this
constrained theory. First we introduce a weak-
coupling cluster expansion based on the decompo-
sition

e '~)=e ' '[8(v/N- jargtrU~)+8(~argtrU~ —7[/N)].

(4o)

Thus, the contribution of U's which are not in
the Z(N) sector about 1 will be treated as a small
perturbation. This will clearly generate a reason-
able expansion as P -~ since exp[2(U)] becomes
highly peaked about U= 1.

We next resum the disconnected portion of the
cluster expansion and then apply the chessboard
estimates described in Appendix A. This auto-
matically extracts the volume dependence in a
uniform manner so that each term of the expansion
may then be bounded in a very simple fashion.
Next we bound the number of terms of a given or-
der in the cluster expansion. This results in a
proof that the cluster expansion converges for
sufficiently weak coupling. Finally, a determi-
nation of the first nonzero term in the expansion
(which is actually a by-product of the first steps)
yields a bound proving the expected magnetic

confinement.
~e will first detail the treatment of F (t, „) and

afterwards sketch the equivalent analysis of
(B'[C*]). The magnetic-flux free energy for the
constrained model is given by

e ~ " '=Z' dv'U exp NUap

(41)
Z= dv'U exp Z UBp

Inserting the decomposition (40) produces

e """'=I z ' dv'(ct)exp g)'(a[s( jv' * "'"))
QCA

x 5(n[P ]+ f„„S*,„[P])
&4'

x ", (I 5(n[p]+f„„S*„„[p])],
peg

(42)

where Q is any set of plaquettes in the lattice.
Each set Q consists of a number of connected
components, where two plaquettes p and p' are
defined to be connected if Bp p Bp' c0, i.e. , they
are in the boundary of a single cube. A connected
component is topologically nontax ivial if it contains
any coclosed surface S~z which winds through each
[o.P] plane. Thus we may decompose Q as Q u Q',
where Q is the union of all topologically nontrivial
components and Q' is the topologically trivial
remainder. Let I*~ be the number of distinct non-
overlapping surfaces S*~ contained in Q.

We will first show that if g zc0 and I*&——0 then
the contribution vanishes. If Q contains no co-
closed surface S*~, then a closed surface S ~

al-
ways exists which winds about the lattice but does
not contain any plaquette of Q. The 5 functions of
(42) require n[p]=-t, „S„*„[p]on this surface.
Therefore n[S 8]= t„„S*,„[S ~]= f— woBand so t-he

constraints in dv'(U) are violated. Consequently,
if t,„t0 we may always, by a change of variables,
deform the particular surface S„*„in (42) so that it
lies within Q.

We may now resum over all topologically trivial
sets Q' for a fixed Q. Note that

- .... (6( [p])+&I —6(~[p])])=1

since the right-hand side, when expanded in pro-
ducts 5's and (1 —5)'s, contains the left-hand side
plus contributions from components which con-
nect to q or are topologically nontrivial. There-
fore,
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~-F~(t~ p)

where

I@~Z a dv' U exp C U 8~ z s»tt'

is that plaquette in z* which may be obtained from
p by reflections in planes of the lattice. Let 5 be
the number of plaquettes in s* contained in Q;
1 & 5 & I', ~, where I"„~=2" "'('„) is the number of
y-cells contained in a single s-cell, y ~ s. Now

with

x „.. [I —5(n[P]+ t,„S*,„[P]))
pc@

„... g~UBp (43)

x gP(,P)(U[sP])

~ Z-1 f+QN ] PI &0+ [cos(v/& )-Ll0| 1 &I 1,e e

(45)

i,, (U[ep])=',I 5(~[P]+I„„S+„[P])f
x exp[2(U[sp]7, „'»"')-Z(U[sp])].

For later convenience define gP,(U[BP])= 1 if P'gQ.
Note that

e&(U)i (U) ~ feB)t( eos(P/P)) tf P & Q eBs if P gQ].

To bound this expectation uniformly in IAI we may
use the chessboard estimates discussed in Appen-
dix A. Using (A6) and (A7) we find

(
)IIII ~ 1/I AI

i(U[sP]) -.... ....i .*(U[sP]) (45)
pe p,

Here s* runs over all dual sites (i.e. , d-cells)
which conta, in at least. one plaquette in Q. P'(s*)

Z= dv'U exp Z UBp

from below, we may restrict each integration

fdU[b] to a sufficiently small region about U= 1
so that ltrU[sP] I

-Ne ' and l»g trU[&P] I-"/N.
Let 7', be the volume of this region. Since the
constraints in d)P'(U) are now automatically satis-
fied, we find the bound

Z ~ & l J. I 8 Ne "~
j ~[

g (47)

I&I=-Z, ~~ I. Thus combining (45)-(4V) we find

where a = 5/I'2 ~ is the fraction of plaquettes of s*
contained in Q; IPI=-QP« l. Here we simply
bounded the integrand by its maximum using (44).
To bound the partition function

( g (U[sp]) ~, [~,~ exp (pN 2 d(d- 1)[(1—e P)+ a[cos(v/N) —I]])]
PRO g+, Q &0

= f~p exp[pN-,' d(d -1)(1 e-')] ) ) O*) (exp [pN-,' d(d —1)[cos(v/N) I]]))O) "& 2'",~

where IQ*I is the number of dual sites which contain plaquettes of Q, and I", „=2""(f,") is the number of
s-cells which contain a given x-cell, s & r Since I.Q*I» IQ II ~ „we find

i, c(p) ~i, -

where

c(P)=minexp(- PN[1 —cos(v/N) —(1-e )I", ~]]/(v~~) ' ~ (4S)

and c( P) - 0 as )S -~. :

We must now sum over all sets Q. If Q contains
I „PrfsuesacS*,„, then Q must contain at least I~„
plaquettes of any closed surface S„„. Let [X„„].be
a standard set of such closed surfaces of minimal
size A„„. We will first sum over all sets Q which
contain a specific choice of plaquettes x',„eX„„,
i = 1, . . . , I *,„. Each set Q contains some number
8 of connected components, 1~8- I*=~X.,„„,I„*„.
Each component Q. contains a particular subset
('x,'„, i =1, . . . , I&„of the plaquettes [x,'„j. I&„ is
some partition of I*,„, K~I~, =I*,„. We show in Ap-
pendix B that the number of connected surfaces of

size q which contain a given plaquette is bounded
by b', where I)= [10(d—2)]""". Thus the contribu-
tion of surfaces Q with J components each of which
contains the plaquettes ('x'„„] is bounded by

(P(P)P) &)
- () —P'(P)b)

q&=I~ A+

x (c(P)b)' »"pv

since I~„A*„„is the minimal size of the component
j. This holds for P sufficiently large so that
c()S)b &1. We must now multiply by the number
of ways of partitioning (x„'„] into any number of
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jl [exp(maA, „e '~») —j„„],
m=o em' I-~vl

e —= c(P)b, a = (1 —c(P)b) ', and j„„=1 —6,

So finally
P

A

e m "»' =- g exp exp ak»A»e '"&' —1
k~g =0, 1 [ll, V]

x [ [b,—j„,(1 —b„)]. (49)

This expression reduces to the area. law (26) as
~A~- in any power-law fashion. Note that the
second exponentiation was essentially a conse-
quence of the interference of flux sheets in dif-
ferent directions.

I et us briefly sketch the steps needed to bound
the 't Hooft loop (B'[C*]), Eq. (27), in an analogous
fashion. One may begin with the basic expansion
(40) and now separate from Q the connected com-
poneIlt g (if lt ex1sts) which 1ntel'sects the boun-
dary of an arbitrary single cube of C*. Qne must
show that the contribution vanishes if Q' does not
contain a surface S* whose coboundary is C*. This
is a consequence of the fact that if Q conta, ins no
surface S* with PS*=C* then a closed surface S
always exists which winds around C* but does not
intersect Q. [Winds about means S*(S)= 1, where
S* is the particular set of plaquettes which defines
the 't Hooft loop. 3 On tllis surface n[pj= tS~[p], -
so that n[S]= tt-0, which vio-lates the coxlstraints
in dv'(U).

Therefore the surface S* which defines the 't
Hooft loop may always be chosen to lie in Q'. One

may then resum Q' and bound the contribution of
a gi.ven set Q' in exactly the manner as above.
Summing over all connected sets Q' of a given
size q, one finds that their contribution is bounded
by 6(c(p)b)'. Finally summing over q starting from
the minimal size A*, one finds the bound

connected components. We show in Appendix B
that this number is equal to X~q—= (I/e)Z ~m /m!.
Then we must multiply by the (A,„)'~~/I,*„!dif-
ferent choices for b„'„), and finally we sum over
all poss ible I„*„. We find

e "~"'~g, II g ~, (maA„)'~"1 I*
m= 0

[!trav]

I~v= j v gv'

PIpVQPV

't Hooft loop exhibit the expected weak-coupling
behavior in this constrained model.

Finally, we would like to discuss the behavior
of the Wilson loop in the presence of the con-
straint

~

arg tr(U[C ]1![S]-')
~

=-. v/N. (51)

This constraint is obviously rather unnatural since
it explicitly refers to the particular Wilson loop
we are considering. If it is included in the mea-
sure, then the constraint destroys translation
invariance and consequently we lose reflection
positivity (see Appendix A). However, if the new
constraint is only inserted in the numerator of the
expectation, then the previous bounds on the clus-
ter expansion are valid and imply that the first
nonzero term of the expansion dominates for suf-
ficiently weak coupling. Therefore consider the
leading term for which q[p]= 1 on all plaquettes.
Owing to the constraint (51), only configurations
with ~argtr(U[C])

~

~ v/N will contribute to the
Wilson loop. In other words U[C] is restricted
to lie in the Z(N) sector about 1 and consequently
it is clear that the Wilson loop will be highly
ordered. However, in order to prove that the
Wilson loop exhibits nonconf ining behavior we would
need to find a lower bound on this term. We are
unable to do this rigorously with the present
methods.

VL CONCLUDING REMARKS

We have seen how confinement may result from
the spreading of magnetic flux which is possible
in an SU(N) theory. However, in order to prove
confinement one must be able to show that the
average action of magnetic flux decreases expo-
nentially as the transverse area through which the
flux may spread increases. This requires far
greater control over the energetics of these SU(N)
fluctuations than we currently possess. It is the
case that nearly aB of the analytical methods used
here and elsewhere to study SU(N) theories have
been based on exploiting the effects of the easily
controlled Z(N) part of the dynamics. It appears
that these methods have reached the limit of their
utility. The Abelian Z(N) dynamics is defi1utely
insufficient to produce the expected weak-coupl. ing
behavior. In the future it seems clear that in-
herently non-Abelian features of the dynamics,
such as flux spreading and thick vortices, should
be the focus of attention.

(50)

where n = 6/(1 —c(P)b), e '= c(P)b. This proves the
area law (25) for sufficiently weak coupling. We
see that the magnetic-flux free energy and the
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APPENDIX A: REFLECTION POSITIVITY AND
CHESSBOARD ESTIMATES

Reflection positivity (Osterwalder-Schrader
positivity, physical positivity, etc. ) is a funda-
mental property of Euclidean lattice theories. '"
It guarantees the existence of a positive-metric
Hilbert space and allows one to construct the trans-
fer matrix. We will use it in the following form.

Consider a reflection 8 in a plane containing
sites of the periodic lattice. Specifically, l.et us
position the sites s(n) atx„=n, -2 -e'cn„-2~e -'

(mod 2 &) and reflect in the (d —I)-dimensional
hyperplane(s} A given by x, =0 or x, =2'o '. 8x

= (-x„x„.. . , x„,). (Since the lattice is periodic
any reflection has two fixed planes opposite each
other. ) If F(U[b]) is any function of bond variables,
then

8E(U[b])-=E*(8U[b]), (Al)

((8E)E)~ 0 for all E c U~. (A2)

I et us show tha, t this is true for the lattice gauge
theory (3):

where 8U[b„„]= U[b,„,,] and b„, is the bond with

boundary s(x) —s(y). Partition the lattice into the
three regions A, =fx, ~x, =0 or x, = 2 0 '$, A,
=fx~ IO&+x, &2+ ']; Let U; be the space of func-
tions E(U[b]) which depend only on bonds in A, Ij A]:.
Reflection positivity is the statement that

&Iez]z&=z-'f eeefbl ','egeez(rrfeel))z'(br/lb])z(eefb])
b

-'Jl .... Il. . .
'"' .„, ll . ,

""
I I, I' - .1)beh g Qeh ' PeA+

x dbe[b] ee' 'Z (U[bz A, ], ebe[b eZ.]))
beh Pe~ h

=Z-'
i dU b

behg PeAg beA

2

dU[bl ... e""E(U[bcA.1 U[b ~A. ]) (A3)

Reflection positivity may be proven for the modi-
fied model (40) in exactiy the same manner. (The
constraint on cubes is local and causes no diffi-
culties. 'She spacelike surfaces S&&, 0&i &j may
be chosen to lie in A, , so that g[S,.~] is reflection
.invariant. The timelike surfaces S,z may be
chosen so that 8(S,~nA, )=-(S,~nA ). (Note that 8

reverses the orientation of timelike plaquettes. )

The timelike constraints may then be represented
as

2ff

dr, exp(I]].,fn[(S„n A, )]+N[(S„n A )]])
1T Q

and one easily sees that these nonlocal constraints
do not destroy the reflection positivity. )

Since the periodic lattice has translational and

cubic symmetry, reflection positivity holds for
reflections in any cubic plane containing sites. (It
also holds for reflections between sites, ' but we

will not need to use these. )

The positivity (A2) enables one to use the

Schwarz inequality

~((8E)G)
~

((8E)E) ~ ((8G)G} ~ ', if E, G

(A4)

'I'his allows one to prove the following chessboard
estimates": Let

A = „,, f, e,(U[b(s*)]),
s+eh

(A5)

where s* is a dual site, that is a d-cell. of the
lattice, and b(s~} is any bond contained in s*. f, ~

is an arbitrary function of the variables in a single
d-cell. We will show that

x/ Ih I

I&»l -
~ L ~ L [ T[s*]f.*(U[b(~*)]&
s+' s'~eh

(A6)

where T[s*(+)]=+„(I,)"» and I„ is an operator
which complex conjugates f and reflects the in-
terior of s* through the plane normal to e„. 'The

remarkable utility of chessboard estimates de-
rives from the fact that they allow one to prove
bounds on local expectations which are uniform
in the lattice volume

) A~.
Any product of the form (A5) may clearly be

written as (8E)G with E, G c:Ue for any reflection
8. To prove (A6) one simply uses (A4) repeatedly
for different choices of 6). Concentrate for the
moment on a particular factor f,* in the product
(A5). If we reflect in a hyperplane which inter-
sects the boundary of s*, then in the RHS of (A4)
we find two new expectations each of the form (A5).
One of these does not contain f, » while the other
contains f, » twice for the adjoining sites s" and
es~. We may now reflect in a plane through the
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boundary of this two-site complex. Continuing in
this manner one may reflect f, ~ onto every dual
site of the lattice (since A„= 2 ~). Repeating this
process for each factor of the original product
[Eq. (A6)] one arrives at the desired bound (A6).
[In fact (A6) is valid for any lattice of size 2l,
x ~ x 2&„,."]

Finally, note that if B =II, »g, (U[b(c„)])for
any size r-cell (r ~ 1), then we may define

x, = z !!(g n): -!)r ((mJ)
(n~)

jf, .
& g=o

(B2)

f,*(U[b(s*)])=, , g, (U[b(c„)])' "
~

c&C,a

where I"„„=2'"-"' is the number of d-cel. ls contain-
ing a given r-cell, and then use (A6).

APPENDIX B: CONNECTED SURFACES

In this appendix we wish to bound the number of
connected surfaces of a given size. The result is
essentially a. corollary of the Konigsberg bridge
problem. " For an arbitrary connected set Q of
size q consider each plaquette p c Q as a,n "island. *'

Define two "bridges" between every pair of con-
nected plsquettes in Q. The number of bridges is
bounded by y '

q where, if connectedness is defined
by &p A sp'e 0, then y = 4(2d —3), while if connect-
edness is defined by &p Asp'c0, then y= 10(d —2).
By the solution to the Konigsberg bridge problem
(or otherwise) one sees that starting on any island
a path always exists which crosses each bridge
exactly once. Therefore N(q), the number of con-
nected surfaces of size q containing a given pla-
quette, is bounded by the number of paths on the
lattice consisting of y q steps. A step moves bet-
ween two connected pl. aquettes. Since the number
of choices for the path at each step is once again
y, we find the bound

N(q) ~ y"~,

4(2d-3) if

dphil&p'40

y=
10(d —2) if &p n &p'w0 .

Lastly, we need to count the number of ways in
which any number of connected components of q
may attach to a given set of plaquettes (x,'„].. This
problem is equivalent to the number of partitions
of I distinguishable objects (the plaquettes) into
any number of indistinguishable boxes. Let n„be
the number of boxes which will contain k objects;
Z»", n» 0 =I. The number of partitions yielding a
given sequence (n,},I'($n»]) is easily found to equal
I!g»", 1/n»! (k! )"». Therefore the total number of
partitions &~ is given by

APPENDIX C. STRONG COUPLING

In this appendix we wish to consider the strong-
coupling (P-0) limit. Clearly, our observables
may still be considered as probing the behavior
of magnetic flux; however, in this limit magnetic
flux need not spread out in order to have low ener-
gy. As P - 0, the action exp[I/(U)] becomes. nearly
independent of the flux U, so that even thin flux
tubes cost little action. In order to show that the
magnetic free energy actually decreases exponen-
tial. ly with the transverse area in this "total chaos"
limit, one may use the well-known strong-coupling
expansion. " Here one expands the action in
powers of P (or rather uses its character expan-
sion) and sums over all possibilities for the set of
plaquettes Q on which the O(P) (or nontrivial re-
presentation) terms are kept. Q must form a col-
lection of closed surfaces in order for the contri-
bution to be nonvanishing. ' Only if a surface
wraps around the whole lattice will the contribution
depend on the twist &,„. All other terms cancel
against identical terms in the expansion of the
partition function Z. Consequently, assuming the
expansion converges, one finds e
+O(e " "). [The identical result holds for the vor-
tex free energy (33). For the 't Hooft loop, only
surfaces which wind around the source C* depend
on the twist 7 and this yields the perimeter be-
havior (21).] This shows how confinement occurs
as consequence of the "light" behavior of magnetic
fl.ux; obviously one could instead directly examine
the behavior of the Wilson l.oop. In this case one
finds that Q must contain a surface S which spans
the loop and thus provided the expansion converges
one immediately finds the confining area. law (19).

Osterwalder and Seiler' originally proved the
convergence of the strong-coupling expansion and
the area-law b'eha, vior for the Wilson loop for
sufficientl. y strong coupling. We would like to show
that the use of chessboard estimates provides a
very simple proof which may be easily extended to
nonlocal observables such as the flux free energy.
Since the strategy is identical to that used in Sec.
V we will be rather brief in presenting the al.ge-
bra, ic steps. Al, l of the following expressions will
be valid for either the standard model or the con-
strained model. This shows that non-Abelian flux
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spreading does not significantly affect the strong-
coupling dynamics. This is to be expected since
it is known that if the pure 'Z(N) gauge theory con-
fines (as it does for strong coupling) then any
SU(N) theory at the same coupling will also con-
fine. '" In other words, for sufficiently strong
coupling, the Z(N) part of the theory alone is suffi-
cient to produce confinement.

Consider, for example, the electric-flux free
energy. 'The strong-coupl. ing cluster expansion is
based on writing

exp[P[Re tr(U)+N]] = 1+f(U) (cl)
and expanding in products of f's. [f(U) tends to
zero as P - 0; it is convenient to include the factor
ea" so that f is positive. ] Inserting this decom-
position produces a sum over all sets Q. Once
again an arbitrary set Q may be decomposed into
connected components, where two plaquettes, p
andP', are now defined to be connected if ~p A ep'
40, i.e., they share abond. A connected com-
ponent is topologicall. y nontrivial if it contains a
closed surface S„„which winds about the lattice in
the [p, v] direction. Decompose Q aS Q =Q & Q',
where Q is the union of all topologically nontrivial
components. I et I ~ be the number of distinct,
nonoverlapping surfaces S, contained in Q. For
each set Q, one may deform S„*„(inthe region
outside q) so that S„*„doesnot intersect Q'. Simi-
larily, if e„„W0 but I„„=O, then the contribution is
zero since the integral i.s independent of the twist
and therefore the Fourier transform vanishes.

We may now resum over Q' and, using f& 0, find

e ~e{e»&=
Qs

where

with

. ... z, (~I'PI)), (c2)

g, (U[ P])=f(U[8 ],.' "')/1+f(U[ P]).
Applying the chessboard estimates of Appendix A,
one finds

(
~ W ~ x/ IA I

g~(U[sp]) . . . gt, (,g)(U[&p])
o~Q

'This may be immediately bounded in the same
fashion as before yielding

I;-cy)'",
where

c(p) = min (1 —e ' ~)e~"" ' 'r2. ~/(~T)" ~, ~ (C3)

and c(P) - P as p -0.
Summing over sets Q may be performed as in

Sec. V. The only modifications are that Q must
contain I„„pl.aquettes in each coclosed surface S„*„,
whose minimal area is A„*„. Also the number of
connected surfaces of sizes q containing a given
plaquette. is, with the current definition of con-
nectedness, bounded by b', where b = [4(2d
—3)]"' ".(see Appendix B). Thus, following the
previous discussion, one easily finds

e ~~'»'& g exp exp g ak»A~„e '"» -1
g~g=Oq 1 I:»1

x, [k, q
—I,8(1 —b, q)],

I: ~F81
(c4)

where now e-' = c(P)b, a = {1—c(P)b)-', and I 8
= 1

This reduces to (20) as
I A~ -~ in any

powe r-law fashion.
To bound the Wilson loop (Ae[C]) using the same

method one begins with the expansion (Cl) and
separates from Q the connected component Q' (if
it exists) which intersects the coboundary of an
arbitrary link of C. One extracts the loop itself by
the bound ~g (U)) ~)Ie(1). Then, resumming the
remainder of Q, bounding the contribution of a.

given Q', and summing over all connected sur-
faces Q' of a given size q', all using exactly the
same methods as above, easily yields

(A [C])= a(q'),
-"0

~

a(q')
~

- 2(d —I)X'(1){c(P)b)".

To show that a(q') =0 if q' is less than the mini-
mal arear'. of a surface spanning C, one may pro-
ceed as follows. For any set Q, if q'&A, then a
coclosed set of plaquettes P*=L* exists which
winds around C but does not intersect Q. Under
the change of variables U[b] —U[b]&~ "' the Wilson
loop changes by &', but by construction all other
factors are unaffected. 'Thus, if the n-ality e is
nonzero, then the contribution vanishes and con-
sequently we find

~(Ae[C])
)

~ o. exp(-pA), (c5)

with n = 2(d —l)ye(1)/{I —c(P)b), and e '= c(P)b.
This proves the expected area-law behavior (19)
for sufficiently strong coupling. %e see that at
least in this phase the Wilson loop and the elec-.
tric-flux f ree energy are equivalent confinement
criteria
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