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Thinning degrees of freedom in lattice field theories
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%e discuss the calculation of critical behavior by thinning degrees of freedom in lattice field theories. %e
point out the tendency of simple approximations to give incorrect critical indices, even for free-field theory.
%'e introduce a precise definition of the thinning transformation and analyze how it induces interactions
between distant. lattice points. %'e introduce three procedures for calculating the parameters of the
Hamiltonian in the thinned space, all of which give correct free-field-theory indices. For one of them, we
study the interacting theory and obtain the critical indices of the large-n approximation, where n is the
number of field components.

I. INTRODUCTION

ln this paper we study the calculation of critical
behavior of lattice field theory by the thinning of
degrees of freedom. Except for free-field theo-
ries, the thinning procedure cannot be carried
through in closed form, and the standard approxi-
mation techniques lead to a significant distortion
of the density of states. " In the most, straight-
forward calculations one finds an error of a factor
of 2 in the correlation-length critical index, even
for free-field theory. s %e will show how to avoid
this pitfall, arid in the course of our discussion
me mill be able to clarify some other features of
the thinning process. In particular, in lattice field
theory with a nearest-neighbor gradient interac-
tion. , the thinning transformation induces couplings
between all pairs of lattice sites. %e mill follow
this through the iteration of the thinning process,
and show under which circumstances the pro-
liferation of couplings is harmless.

Kadanoff invented the idea of thinning degrees of
freedom. 4 His procedure has three steps.

(1) Take a system with N degrees of freedom on
a lattice, and in some way "thin out" every other
degree of freedom.

(2) Under the thinning process we pass from a
system described by a Hamiltonian H(n, N) to a
system having a Hamiltonian H(a', N/2). Here ts

and n' are constants —masses, couplings, etc. , —
parametrizing the Hamiltonian.

(3) Large-scale features of the system are not
affected by the thinning. For example, the physi-
cal correlation length of systems having the two
Hamiltonians in (2) must be the same, provided
the correlation length greatly exceeds the lattice
spacing. Let $(n) be the correlation length mets-

(1.2)

(Renormalization-group arguments can be used to
justify this ansatz. ) Next define a fixed point of the
renormalization-group (or thinning) transformation
by n'= n —= n . %e assume the nonsingular be-
havior near a,

P ' = tl' + & (& —&')

Now choose y=y . From the equations above we
deduce

(1.4)

The critical index is determined by the renor-
malization-group transformation through the
formula

ln2
lnK (1.5)

Now apply these formulas to free-field theory
with nearest- neighbor gradient couplings:

sue ed in terms of spin sites. The physical corre-
lation. length is unaffected by thinning when

((~') = '-h(o)

Of course, the assumption that g is large is well
satisf ied near the critical point of a second- order
phase transition, where g diverges. Equation
(1.1) can be used to calculate the index controlling
the critical behavior of P, . We assume that if we
vary one of the parameters P keeping the others,
y, fixed, then near the critical value P, (y), g has
the behavior
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&=+ [Pg'+~'x&'+&(Xi —Xi ~ i)'I (Xg-=xo) ~

jaP

(1.6)

This and most of the following equations are
written for field theory in 1+1 spacetime dimen-
sions. Much of the generalization to [(D- 1) + I]-
dimensional field theory is obvious; for example,
the renormalization-group transformation thins
out the degrees of freedom by a factor 2~ '. For
the moment we ignore the fact that after thinning,
the system is described by a Hamiltonian with
non- nearest- neighbor interactions. Then it is
physically obvious that the renormalization- group
transformation ought to be

Lh'= —b,4 m12=m2. (1.7)

& X, X,) - (321rm )I —q ~
~EL) '~'8 ' '

g = (m'/~)-«'.
(1.8)

Next consider a field theory with interactions.
For example, one could add a term XZ&(X,)4 to
the right side of Eq. {1.6). One generally formu-
lates field theory on lattice when X is large, taking
the zero-order approximation to be an ensemble of
uncoupled anharmonic oscillators. The intersite
coupling is then introduced perturbatively. This
method was used in Ref. 1 to calculate the re-
normalization- group transf ormation. It can be
applied to free-field theory, where it gives an in-
correct result:

m' =m v=1.2 t ' (1.9)

In Ref. 2 the renormalization-group transforma-
tion was calculated variationally, using a trial
wave function separable in the X's. The separabil-
ity is motivated by the strongly nonlinear coupling
at each site. When applied to free-field theory,
the variational calculation again gives Eq. (1.9).
In Sec. 11 we will see that Eq. (1.9) appears even
when a large class of intersite correlations is
allowed in the trial wave function.

Why do these calculations fail? For the per-

The reason is that after thinning we have a system
whose lattice spacing has been doubled. However,
the lattice spacing appears in H only as a factor in

6, where it occurs to the -2 power.
Equation (1.7) gives the correct index v. First

note that g can depend only on the dimensionless
ratio m'/rh. The transformation (m'/b )' = 4(m'/
h) has two fixed points, m'/4 =0 or ~. The
former fixed point results in an infinite correlation
length and critical behavior. Then K=4 and v =
This is correct, as we can see by calculating the
propagator at equal times and large site separa-
tion. For m'/b « I,

turbative treatment the reason is clear. Note that
the critical fixed point is at m2/6 =0, whereas
perturbation theory works in the neighborhood of
m2/6 =~. In Sec. Ill we will see that the true re-
normalization- group transformation for free-f ield
theory approaches Eq. (1.7) at m2/b, =0 and Eq.
(1.9) at m2/6=~. All is consistent, and we learn
that one must do much better than treat the
gradient coupling per turbatively.

In the varitional calculation, the site-to-site
correlations induced by the gradient term ap-
parently are not taken into account adequately.
The correlations are especially important in the
small-m2/6 limit. Altogether, we see there is a
dilemma. Since X is large, one wants to treat the
single-site terms in H accurately. On the other
hand, critical phenomena are long-range phenom-
ena, which requires an accurate treatment of the
gradient term,

The layout of the remainder of the paper is as
follows. In Sec. II we adopt and explain the thinning
transformation of Ref. 1. Then we give both the
perturbative and variational derivations of the
erroneous transformation (1.9). In Sec. III we
present a variational procedure for calculating the
parameters n'. We then introduce a new trial
wave function which must give the renormalization-
group transformation for free-field theory because
it includes the true ground-state wave function
within its parameter space. We discuss the prop-
erties of the transformation, including the ap-
pearance of non- nearest- neighbor interactions.
Ln Sec. I7 we apply our new trial wave function to
lattice n-component &y4 field theory, and compare
ouq critical indices to known results. We also
introduce an alternative trial function which more
fully takes into account nonlinear effects. Finally
in Sec. P we study directly the transformation
properties of the correlation function under the
thinning process, and show how they can be used
to calculate the parameters n'.

II. RENORMALIZATION-GROUP TRANSFORMATION

We start with a lattice with N sites, N even. We
introduce new canonical coordinates and momenta

I

1 1

(2.1)
Xl- ~ (X21 + 1 X2E) s Pl- —

~g (P21 + 1 P2l) s

where I =0, . . . , N/2 —1. Since the erroneous fac-
tor in (1.9) follows from the normalization of these
coordinates, it is worth emphasizing that the y 2
is uniquely determined by canonical commutation
rules and. our convention that the square of any
canonical momentum shall appear in H with co-
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efficient one. Denote the ground-state wave func-
tions of H(c(, N) and H(c(', N/2) by Po(x, , , X, ) and

gt(x, ), l =0, . . . , N/2 —1. Then c(' is determined in
terms of 0. by Friedman's constraint'

SJ2-i
l(t)o(x~. ) I

=„.',",
; "Xs ~ -I VX(. x( -) I' (2.2)

calculate perturbatively from a Hamiltonian having
N/2 degrees of freedom and the primed parameters
given in Eq. (1.9).

In Ref. 2, the renormalization-group transforma-
tion is determined by using 4p as ground states in
Eq. (2.2). This ansatz is a, special case of a varia-
tional calculation. Let us determine Po a.nd i{)o by
variation of the functional

This ensures that

(OiA(0„)(0)„=(0A(
~' ''') 0)

=(0 l&(xi) I»./2, (2.3)

& =
&&o IHlto) - &(&)t)o lto) —I). (2.6)

The renormalization-group transformation can be
obtained if we choose )1)o to be separable in the
plus and minus coordinates:

II=HO+Hi. +Hio+H
x 2-i

(P.'+ 'x, ,'+P '+ 'x '
r=p

s 2-i
(x~. g-+ x~-)(x~. —X2. g. )

=p

S 2 1

H&o — [2X& + o(xt +Xg+& ) ],
=p

S 2-i
1 2

Hfo 2 + (XJ A 1+ Xl+)

(2.4)

To zeroth order in 4, the ground-state wave func-
tion 4 p

is a product of,N mass-m oscillator states.
The first-order correction is

~n)(n~H, ~eo)
0 0

n p
E —E

p n

(2.5)

In evaluating (2.2) through first order in b, , only
those terms in (2.5) contribute where In) has all
minus oscillators in the ground state. This allows
us to drop H„,which always changes the parity of
a minus oscillator. Since ln) 40 and all minus os-
cillators are in the ground state, at least one plus
oscillator must be excited. However Ili~ does not
depend on plus coordinates, cannot excite a plus
oscillator, and so can be dropped. This leaves
Hi„which depends only on plus coordinates. We
can now perform the integral in (2.2) mentally.
The resulting probability density is what we would

where A is any operator and the suffix specifies
which Hamiltonian has been used. Equation (1.1)
is a consequence of this relation. It is clear from
Eq. (2.2) that the determination of the renormaliza-
tion-group transformation is tantamount to solving
the theory, since if we knew (t)„wecould calculate
all Green's functions directly. However, Eq. (2.2)
sets the stage for any approximations we may wish
to make.

Following Friedman, let us calculate perturba-
tively, treating 6 as the small parameter. ' We
use the free-field Hamiltonian (1.6), which can be
written in terms of the new coordinates as

to=4, (xi, )({ (xi ).
4O belongs to this class of functions. Arbitrary
correlations are allowed within the plus and minus
sets, but we take Po and P, to have even parity be-
cause they approximate ground states of H(u, N)
and H(n', N/2). It follows that ({) has even parity.
For this calculation it is convenient to write Eq.
(2.4) as

2-i
[~,'+ 'x, '+l~(x, , -X.)'),

S=O

H = [P, + (m2+2(2)x, 2 (2.8)

+ .-'&(Xr-+ xr. i-)'J
N /2-1

Xi - i + X~- Xr. —X~. i.
E= 0

When we substitute Eqs. (2.7) and (2.8) into (2.6),
we immediately see that the matrix element of
hP vanishes by parity. Varying 8 with respect
to ()), yields

(, (0. I ~. 10.))
~
0 ) (2.9)

III. VARIATIONAL CALCULATION —GAUSSIAN TRIAL
FUNCTION

Since we cannot hope to carry out the renormal-
ization-group transformation H((2, N) —H(o', N/2)
exactly, we proceed by means of a variational
calculation. We first introduce a trial function for
the ground state of H(n, N), Po(x,„x,;)6). The
parameters p are determined from the Rayleigh-
Ritz variational principle, and are therefore func-
tions of (2. Substituting )I)o(x„p)into Eq. (2.2)
determines (t)o(X, , p). Finally we determine the
0.' by requiring that P are the optimal variational

This shows that the optimum g, is the ground state
of the operator H, . The parameters b, ' and m'2 of
this Hamiltonian are given by Eq. (1.9).
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parameters when $0 is used as the trial function
for the Hamiltonian H(a', N/2).

We illustrate this approach by a Gaussian trial
function which must give the correct transforma-
tion for free-field theory because it includes the
true ground-state wave function within its pa-
rameter space. Qur ansatz is

(0 = C exp (- A),
N-1

otm Xl Xm '
Ewe = 0

(3.1)

We want to use this trial function for both free-
and interacting-field theories, so we will first
show how to integrate out the minus coordinates
before relating the matrix e to the Hamiltonian.
Interacting lattice y4 field theory will be discussed
in Sec. IV.

Since $0 is to approximate a ground-state wave
function, we choose n to be real, symmetric, and
translation invariant:

the eigenvectors are orthonormal:
N-1

g v.(p,g) v. (p, g') =6„,6„..
as= 0

(3.8)

'This diagonalizes the exponent A in the trial wave
function:

A = X(0)(q")'+X(N/2)(q" ")'
N 2 1

+ &(p)[(q")'+ (q")'] .
@=1

Finally, using the inverse of Eq. (3.9),

(3.10)

I.et us expand the coordinates in terms of normal
coordinates

qOw 1 qN/2w1

Xm=
~N

+
vN

(-1)

1/2 N 2-1
+

~

— [qr' cos (2wpm/N )(N
+q~'2 sin(2wpm/N)] . (3.9)

f ts +l + dw tn+ d ' (3.2)

+Ow~-l Ow l-m +Owns-& +AN & (3.3)

d is an arbitrary integer, and indices are evalu-
ated modulo N. It follows that

) 1/2 &-1
q~'= -'a

~
Xg cso( 2wp/iN),N]

q~'2=
~

—
X, sin(2wP//N),

I N =0

(3.11)

where k is an integer. We see that $0 contains
N/2 + 1 variational parameters ao

„

1 = 0, 1, . . . , N/
2. Eigenfunctions of n are

V„(P)= exp(2wiPm/N), P = 0, 1, . . . , N- 1.1

(3.4)

{orresponding eigenvalues are
N-1

X(p) =g oo, exp(2wipl/N)
1=0

2

= Qo 0+ 2 Go g
cos(2wpl/N)

we can use Eq. (3.10) to parametrize n in terms of
its eigenvalues:

X(0) X(N/2)
("m

N -1
X(p) cos[2wp(m —l)/N] . (3.12)

N

The next step is to introduce the plus and minus
coordinates of Eq. (2.1):

=X(N -P). (3 6)

The eigenvalues X(p), p = 0, 1, . . . , N/2 can be
taken equally well as variational parameters, and

henceforth we will do so. Since eigenvalues with
quantum numbers P and N-P are equal, we can
form real eigenvectors

fe
V„(P,1) =~ ~ cos(2wPm/N), P =0, . . . , N/2

(3.6)

1/2
V (P, 2) = '.

~ sin(2wPm/N), P=1, . . . , N/2 —1.
With the choice

pm . 4'/ pzsin —sin +
N N N

(3.13)

p~ . 4~pi p~q~'= ~ X,, cos —sin +-
1=0

pm' 4'/ pw+ X sin —cos +-
N

Substituting these expressions into Eq. (3.10), we
can write

N 2-1
(+lm Xl+ Xm+ olm Xl+ Xm-

t, m=0

1, P=0, N/2

2, P=1,2, . . . , N/2 —1
(3.7) where

otm Xi —Xm+ + ogm Xt-Xm-) t (3.14)
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2X(0) 2X(N/4), „4" -', Pm N . , Pm

V N
(- 1)' "+— X(p) cos2—+ X ——p sin' —cos[4vp(l —m)/N]N N 2 N

ar -i ~ N
X(p) —X ——p sin(2'/N) sin[4np(l"- m)/N],

p-1

&tm
2X(N/2) 2X(N/4) i 4 4 . p pnN'2 pr

N . N N ( N 2
+ (- 1)' "+— X(p)sin~ —+X ——p cos2 —cos[4vp(l —m)/N] .

N

(3.15)

We can now evaluate the integral over minus coordinates on the right side of Eq. (2.2). We use Eq.
(3.14), and by completion of squares we find

N/ N

dX, , ~g, (X,„X,, )j'=(C')'exp -2 (a'), X„X,
oo l, m=

where

n'=a'' —(a' )(n ) '(n ').

(3.16)

(3.17)

The inverse of o. is

(
--)-) 2 2(-1)' 4 " 4 ' cos[4np(l —m)/N]

1A(N/2) NX(N/4) N
& [ X(p) sin~(mp/N) + X(N/2- p) cos'(wp/N)]

' (3.18)

We then find that n' has the form (3.12), but with
N- N/2 and X(P) -X'(P), where

1 cos2(mp/N) sin2(wp/N)
X'(P) X(P) X(N/2-P) '

The constraint X'(p) =X'(N/2- p) is assured by
this mapping. %e see that Gaussian trial functions
are automatically mapped into Gaussian functions
when the minus coordinates are integrated out. In
Sec. V we obtain a result analogous to Eq. (3.19)
for the Green's function in the interacting theory-.

Equation (3.19) becomes the renormalization-
group transformation when the eigenvalues X(p)
are related to the Hamiltonian. In the remainder
of this section we will consider the general free-
field- theory lattice Hamiltonian

Nj2
iP' ~+' i'XQ+d, (Xr

—Xi.,)'=0 p 1

(» ~=-») (3 20)

This Hamiltonian is diagonal when written in terms
of normal coordinates (3.9) and normal momenta
~ Pef.

p0e I g N/2~ i

~g2N 2-~
+ — [ m~' cos(2nPm/N)

N

+ n'~'2 sin(2mpm/N)] .

2

[(vpI f)2 + ~2 (p) (qP ~ 1)R]
@=0

~Pg2 2+~2 p qPy2 2 (3.23)

where
N 2 1/2

u& (p) = m' + 2 d~ (1 —cos2vpj/N)

Nl2
2

"0 2X(p)

X(P) = .' ~(P) . -

c /2

(3.25)

Alternatively, we can evaluate C and X(p) by vari-
ation of the functional (2.6). This method will be
used in Sec. IV, where $0 is not the exact ground
state of interacting-field theory. tItthen applied to
free-field theory, the variational method repro-
duces Eq. (3.28). It follows that Eq. (3.19) is a
mapping of u&(P) —co'(P), and this mapping in com-
bination with Eq. (3.24) gives the renormalization-
group transformation.

A number of properties of this transformation
can now be seen. Since u&'(0) = &o(0),

(3.24)

We can verify that Eqs. (3.1) and (3.10) give the
ground state of this Hamiltonian, where

(3.21)

The q's and m's are Hermitian canonical variables:

m'2= m2. (3.26)

[gP'~ PTER'i~']
pp'

The Hamiltonian is

(3.22)
The transformed intersite couplings can be ob-
tained from the original ones by the proj ection
equation
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N 2-1 4&p'
d&

———~ [&u'(P)] ' cos

, ~N[(o'(0)]'+ (o'~ —
(
—1)~ (3.32)

It is easy to justify these ideas for free-field
theory. Consider the equal- time propagator

1 ~ cos[2wP(l —m)/N]
XIX' 2N ~ & (p)

where

J((r 4- i 4+ 2 [(o'(p)] 'cos—
N

(j = 1, . . . , N/4), (3 27)

Introduce the momentum variables k =2'/N and

(5k) = 2m/N. Then

cosk(l —m)( Xt X & =g& ~ (Bk) gp2

m'~4 Q d~ sin'kj/2
g-1

1, j=o, N/4

2, j= 1, 2, . . . , N/4 —1. (3.28)

In general, all intersite couplings are nonzero,
even if one starts with a Hamiltonian having only
nearest- neighbor gradient terms. A simple way
to see this is to start with v(p)2=m2+4d, sin2(n'p/

N) and develop [&o'(p)] 2 as a power series in d, .
We find

(3.33)

When N -~, the sum becomes an integral. In
addition, when the dz's are large, the integral is
dominated by the region near A =0. Then we have
the approximate formula

1 ' dkcosk(l —m) f b,
(x'x' ~~ (m'+~(')'s' 1&m'"').

0

(3.34)

[&o'(p)] 2=m2+4 ~ sin2 2'
2 N

+4 —,sin +0 d,
3d& . 2 4'

16m

We then read off

d( ——
~ d) + O(d(3),

d', = — —,+ 0 (d, ) .3dg
16m

(3.29)

(3.30)

m N 2a&p

m N 2 Bc@'(P)
8 n 8P

We fj.nd for 4&&m2,

(3.36)

Equation (1.8) was obtained by extending the upper
limit of the integral to infinity and finding the
leading behavior for large (l —m).

The renormalization-group transformation for
4 is easily found by noting that

The first of these equations reproduces what we
discovered by perturbation theory in 4 =d& in Sec.
Q; the second shows the nonzero second nearest-
neighbor interaction.

We are particularly interested in lattice field
theories in which the d&'s are large, because the
lattice field theory then approximates continuum
field theory. We intuitively expect that in this
limit the lattice field theory ought to depend only
on the sum

2

d~(j)2, (3.31)

and not on the individual d&'s. The reason. is that
there are many ways of approximating a deriva-
tive by difference operators, and all sums of dif-
ference operators having the same b ~ (lattice
spacing) are approximants to (Bp/BX) . Thus
when N and 4 are large, all lattice field theories
having the same m2 and 4 ought to have the same
Green's functions. If this is so, then we do not
have to keep track of the renormalization-group
transformation of all the d&'s, but only of the com-
bination b.

(3.36)

Equations (3.26) and (3.36) together comprise Eq.
(1.7), which we introduced on physical grounds,
and which gives the correct critical exponent for
the correlation length.

I.ooking back, we can see more precisely what
went wrong with the elementary calculations in
Sec. II. The perturbative calculation failed on
several counts. As we noted in Sec. I, the funda-
mental difficulty with the perturbative calculation
is that it would apply in the domain b,/m2 « I, not
the domain L/m2» 1 relevant to the critical fixed
point. It also makes the naive identification 4 =d, .
This is correct to first order in d&, where the re-
normalization-group transformation. does not in-
duce non- nearest- neighbor couplings. However,
we have seen that such couplings are generated
beyond first order, and then one should define 4
as in Eq. (3.31). The variational trial function in
Sec. D effectively omits the n' and n ' matrices
of Eq. (3.14), which introduce correlations between
plus and minus coordinates. This drastically
affects the relation between X'(p) and X(p). It re-
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IV. INTERACTING-FIELD THEORY

We can apply the Gaussian trial function of Sec.
IQ to an interacting-field theory; our choice is the
n-component lattice field theory given by the
Hamiltonian

@~f tl

e=P g p, .'+ m')t, .
l=o o=f,

N 2

+ dy(Xi. —Xg, g,.)'j= i
N-1

g Xla~ X1ag (4.1)

places n' by n'', and Eq. (3.19) by

X'(p) = X(p) cos2 —+ X ——p sin2 —. (3.37)2Pm Pf . 2Pr
N 2 N

This incorrect transformation differs from Eq.
(3.19) by having the reciprocal of the eigenvalue
take the place of the eigenvalue.

Before calculating the exponent ~, let us review
what, we expect to find. The critical behavior of
our system is well understood. When the number
D of spacetime dimensions exceeds 4, g vanishes
at the fixed point and we revert to a free-field
theory having v=,'-. At D &4, the relevant fixed
point has a nonzero g, and at least at first this
fixed point coupling increases as D is decreased.
Qur Gaussian trial function is therefore exact at
D~ 4, and we expect to find v= there. Qf course,
this limiting value would not be given correctly by
the approximate renormalization- group transform-
ations we discussed in Sec. II. 'For D & 4, we ex-
pect to see a smooth change in v away from v= —,'.
In general we expect v to become less accurate as
D is reduced because the Gaussian wave function
does not take account of interactions except through
the form of X(p).

The c'alculation proceeds by evaluation of the
functional 8 of Eq. (2.6), using the trial function
(3.1) and Hamiltonian (4.1). We use normal co-
ordinates (3.9) and find

g/-2

g ++ g2
2x(p)

"'&~2 &o2(l) (3n+ 5)gN 1r+ng ~, X(l)+ +. (4.2)

The term proportional to g is not the full contribu-
tion of the quartic term, but it is all that survives
when the number of lattice sites N tends to infinity,
provided we stay in the disordered phase where

(X,) =0. We vary parameters so that g is sta-
tionary. This leads to the identification of ).

&(p) = ~(p),

~ 2(p) =m 2+4 d„sin2—"jP
N

(3n+5)g 1
4 N, 0(o(q)'

(4.3)

(4.4)

Note that we do not obtain renormalization-group
transformation formulas for m2 and g separately,
but only for the combination m2. This oversimpli-
fication is due to our crude trial function.

In order to calculate v, we must replace m2 by
m' in Fq. (4.4). The last formula in (4.3) relates

The only effect of interactions is to renormalize
the mass. The renormalization-group transforma-
tion is given by (3.19). We will assume m2/6 is
small, where n, is given by (3.31). The renormal-
ization-group transformation reduces to (1.7), with
m2 replacing m2. The fixed point is still m2/L =0,
and the critical behavior of the correlation length
is

Bm2 (3n+ 5)g
Bm2 Sn0(m~ + Ak'2)3~2=1+

We now extend the integration to a~ and evaluate
the integral

(4.6)

8m (3n + 5)g (v) 'D 3' ~2 1'(4 —D/2) —
2a- -1+ 2D+ 3(~)(D-l)/2 ( )

m'- m.' (3n+ 5)g(m)~D-»~' f (2 —D/2)
2D+ 3g3/2

(4.7)

~2 (9-2) /2
X

where m2 smal], , 2 & D & 4. Equation (4.7) can be
inverted

I

these parameters. The sum can be converted to an
integral as in Eq. (3.34):

(3n+ 5) ' d
+ g —p ~2 ~(2 ' (4 5)4@0('m +6k )

We have generalized from 2 to D spacetime dimen-
sions; k is now a (D 1)-dime-nsional vector. At
ihis point we must recognize that Eq. (4.5) lacks the
oscillating factor in (3.34), so the region of small
k dominates the integral only for D& 2. However,
small k dominates the formula for the derivative
for D &4.
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m' = (const)! ' (m2-m, 2&D&4).c

(4.8)

where

V (P)X (4.15)

For 0 & D & 2, m, = —~, and we see directly
from Eq. (4.5) that

m /b, „2 const(-m'/E}'/'n ".
We then have

v= (0&D & 4).1
(4.9)

+ l X» +X» (4.11)

If all the parameters d& were zero, then the ground
state of IJ would simply be

N-1

!o& =-, I' Io, f&, (4.12)

where IO, I& is the ground state of H, . For d& g 0
we can introduce intersite correlations by writing
the ground-state trial function in the form

I 40& =f(xo . x~-~) I o& . (4.13)

The trial function f is to be determired by the
vari'. tional principle for the ground-state wave
function.

To illustrate this approach let us return to the
case of free-field theory and take

For D~ 4, we must differentiate (4.5) a second
time to assure dominances of the integral by the
region near k =0. W'e learn

m'= 'foal —tB—= (const) ' (m'-m, 2, 4~ D),
(4.10)

v= (4&D).

Equation (4.9) is the correct critical exponent
inthelimit n-~(Ref. 5). This isnot surprising: if

we solve Eq. (4.5) for m2, and express the answer
as a power series in g, we generate the self-
energy Feynman diagrams which are dominant in
the large-n limit. But Eq. (4.9) can be quite
misleading when D and n are small. At D =2 and
n =I, the correct critical exponent is v=-', , the
exponent of the two-dimensional Ising model. 5

For finite values of n and D ~ 4, the Gaussian
trial function is inadequate for the interacting
theory. It is important to take into account both
the strong quartic single-site interaction and the
small momentum fluctuations.

One possible approach is to take advantage of our
ability to solve the single-site problem. 6 If we set
n=1 for simplicity, then the single-site Hamil-
tonian is

( )
6, 2irP (E)(rP)2

Equation (2.2) now becomes

(4.16)

12
40(XO+~ ~ ~ ~ ~ X))(/2-( ) I

Ã /2-i N-1

dX, (m/n)'/2s-mxa
0=0»=0

0

x I+4m+ B(p) X „Xq
@=0

(4.17}

since it is sufficient to work to first-order B(P).
Now

X, =e'"/"[cos(vp/X)X, ,+i sin(wp/IV)X, ],
(4.18)

where
N 2-i

X&~
= Vt (P)Xr~

» =,0

e2fff »P /(N /2)"P'= (X/2)/ .

So, we can do the X, integration in Eq. (4.17) and
obtain

f

I I2
~0(XO+) ' ' r X)(/2-1+)} I

N LP-f
(m/v}«'e-~a '

k'=' b

P P0

x I +4m+ (pB) X
I p=0

(4.20)

Comparing this result with that which we would
have obtained by using a trial function of the same
form for a Hamiltonian with parameters m' and
4' on a lattice with N/2 sites, we see that

and V (P) is defined in Eq. (3.4). Equation (4.14)
is the only form quadratic in the X that is con-
sistent with translational invariance. Since we
are interested in large-distance correlations, we
have cut off the sum over p at po«¹ In fact f has
the functional form (4.15) only for small P, but
any nonzero range of P suffices to deduce the re-
normalization-group transformation on the Hamil-
tonian parameters. Using I()),& in the Rayleigh-
Hitz variational principle, we find that

f= ) + Rm g 8 (P)j j (4.14)
m'=m

a' =a/4,
(4.21)
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the exact results.
The reader should note the close resemblance

between the wave function of Eqs. (4.13) and (4.15)
on the one hand, and that of Eq. (2.5) on the other.
They are identical except that in Eq. (2.5), PO=N/
2. The reason that the wave function in Eq. (2.5)
leads to the incorrect renormalization-group
transformation is that after we thin coordinates,
'we find the sum in P ranges twice over the same
operators in Eq. (4.20). We can reduce po to N/4,
but we pick up the notorious factor of 2. In fact
Eq. (4.21) results only for Po independent of N and
less than N/4. We have already given other rea-
sons for choosing Pp small.

One can use the same procedure to study the
interacting theory, and we hope to do so in the
future. The point which we wish to emphasize
here is that there exists a straightforward varia-
tional approach which is guaranteed to reduce to
the correct answer in the weak-coupling limit.

V. TRANSFORMATION PROPERTIES OF THE

CORRELATION FUNCTION

If one def ines the renormalization-group trans-
formation by Eq. (2.2), one needs information
about both the large- and small-distance behavior
of the ground-state wave function. We will now
sketch an alternative approach in which the trans-
formation properties of the nonlocal term in the
Hamiltonian are explicitly taken into account.
This approach appears to require less detailed
information about the large-distance behavior of
the wave function.

Qor starting point is the I,ehmann representation
for the cor relation function. It can be written in
the form

Now consider the Qreen's function on the thinned
lattice defined by

I l
G~q ——~ (G2) ~ 2q+ Gu+ i.2

2J 2k+ f 2g + t, 2k+ $)

] N &-1 elf�(J-A) /&N /2)

N/2 2&v'(p, o)

After a brief calculation we find that

(5.3)

1 cos~(vp/N) sin2(mp/N)
&o'(P, o) ~(P, o) ~(N/2 —P, o)

(5.4)

Equation (5.4) is the generalization of Eq. (3.19)
for the interacting theory.

Our program is to use the Hamiltonians H(n)
and H'(n') to make the best possible calculations
of p(o) and p'(c). We then determine the parame-
ters n' as a function of a from the requirement
that p(o) =p'(c). ln order to calculate p(o) we need
the matrix elements (g& ~X& ~$0), where ~P ) is a
general odd-parity eigenstate of H. Since X, is a
local operator we expect these matrix elements to
be less sensitive to the large-distance behavior of
the wave functions. Qn the other hand, we must
now estimate the excited states of H instead of
just the ground state as in the previous approach.

To illustrate this approach let us again consider
free-field theory. %e make the very, crude ap-
proximation that terms in H and H' proportional
to the d& can be neglected in calculating p(o). We
then immediately find that p(o) =5(m2 —o) and
p'(o) =5(m" —o), so

&g =&xg(~)x P)&
QQ 2~g(y -a) p/xe

N ~ 2~(P a)
(5.1) ~' = ~/4.

(5.5)

where e(P, o) =&a(N —P, o) is the energy of a single
excitation with mass o'/ and momentum mP/¹

Again, corresponding calculations can be carried
through for the interacting theory.

p(o) =z35(o —m2) + g(o —Bm2)p(o) .
For a free-field theory with nearest-neighbor
couplings, z~=1, p=0, and &a(P, o) =[o
+ 4b, si n( v/pN) J '/2.

(5.2)
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