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A theory for a scalar field with a potential corresponding to three wells is analyzed. Use is made of the
lattice approximation and the block-spin renormalization-group method keeping the three lowest levels at
each site. A second-order or a first-order phase transition appears according to the relative depths of the
wells and the intersite coupling. The same qualitative scheme emerges from a mean-Geld approximation.

PACS numbers: 11.10.Ef, 05.50. + q

I. INTRODUCTION

The field theory with Q' self-interaction has been
extensively studied together with its relation to a
quantum spin- 2 Ising model with transverse mag-
netic field. ' This comparison corresponds to
keeping the two lowest-energy levels in each site
when the fieM theory is taken on a lattice. Since
there are cases of physical interest in which the
two lowest levels are not clearly separated from
the rest of the spectrum (e.g. , Reggeon field theo-
ry'), it is interesting to include a third level in
each site of a simple theory. This leads to a quan-
tum spin-1 model in d dimensions which is, equiva-
lent to a classical spin-1 model in 0+1 dimen-
sions' in the same way as the equivalence for the
spin- —,

' case is proved. A mean-field approxima-
tion of the classical spin-1 model has been applied'
to the He'-He' mixture.

The purpose of the present work is to consider
a theory of a scalar field in 1+1 dimensions with
self-interactions up to &f&' which exhibits three
lowest levels well separated from the rest and to
analyze its lattice version.

In Sec. D we briefly review the quantum mechan-
ics of a three-well potential which corresponds
to a single site. When the three wells are of equal
depth, one may keep three equally spaced levels,
obtaining what we will denote as an Ising model
for spin 1.

In Sec. GI we show for this equal-depth case
that classical, perturbative, and mean-field argu-
ments suggest a second-order phase transition
similar to that of the spin- —,

' case.
The general case of unequal depths shows already

in a mean-field approximation the appearance of an
additional first-order transition and a tricritical
point. Our mean-field calculation for the quantum
model developed in Sec. IV gives for the tricritical
point a value in good agreement with the concentra-
tion of He' at this point obtained with the classical
model. '

A complete treatment based on the renormaliza-
tion-group procedure is only possible when the
three levels are unequally spaced. This method is
developed in Sec. V using the modification of the
block-spin technique of Ref. 6. It turns out that
keeping one site and one link in each block the
form of the Hamiltonian is preserved in the sub-
sequent steps of the renormalization-group proce-
dure. When the separation between the second and
third levels (c~) is at least equal to the separation
between the ground and first excited levels (e,), a
second-order phase transition appears with a
slight modification of the critical point with re-
spect to the spin- —,

' model. When 0.2 (&,+ a~) & e~
& &, a first-order transition appears in addition
to the second-order one depending on the value of
the intersite coupling. The first-order transition
is defined in this region in correspondence to the
appearance of a nonzero field expectation value in
the first excited state. For &~ &0.2(as+ ez) only
the first-order transition, this time referred to a
ground-state expectation value, is possible. The
second-order and first-order critical lines join in
a tricritical point again in agreement with the He'
concentration. Concluding remarks are included
in Sec. VI.

II. QUANTUM MECHANICS OF A THREE-WELL POTENTIAL

with U(P) =a,Q'+a, Q'+a, P', where a, and a, &0,
and a, &0.

When we consider its lattice version and define
the gradient as difference of fields at neighboring
sites, the Hamiltonian takes the form

II = A —,'m, '+~

where @ is the field at the site j, w is its conju-

(2)

We are interested in a field theory in 1+1 dimen-
sions described by the Lagrangian
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gate momentum, A ' is the lattice spacing, and

~(e, ) = ~(e,)+ e,'
With the above choice for the signs of the coeffi-

cients a„a„and a„'u(p~) exhibits. three wells.
The quantum mechanics of the single-site Hamil-
tonian may be approximated by analyzing the
square-well potential of Fig. 1. We assume that
V2 ~~ Vy and that the width L is sufficiently small
to neglect all levels except the lowest one in each
well.

We express the Hamiltonian for one site in the
basis of the lowest-energy solutions of the prob-
lems (Fig. 2). Neglecting the corrections in the
diagonal terms and keeping only nearest-neighbor
overlapping, the single-site Hamiltonian is

I

I

l

I

I

FIG. 1. Simplified three-well potential.

&o+ V~ 0 and K=&, —~ .K-c
&ss= V Eo V

&= V„&,= p[V, +(V,'+8V')' ],
with the eigenvectors

f»= (/I)- /8)),

, „,(V /
I) —X,

f
2) + V (8)),

(5)

respectively.
Defining Ld '=(X, ~P~ ~», since ~2) does not af-

fect this matrix element, it follows that

(x
~ y, ~

» = un, "2,
where

0 V 8+V,
where E, is the lowest energy for the central well
and V is a negative overlapping integral, which is
exponentially small due to the WEB factor.

The eigenvalues of Eq. (8) are

Therefore, the Hamiltonian [Eq. (2)]may be rewrit-
ten as

0-e 0
f

, 0 0 -K,

0 1 0 0 1 0

—6 1 0 n 1 0 p

0 n 0 0 n 0

Tc & x
f

where we have taken A=1.
In the particular case of V, =0, the three lowest

levelS are equally spaced, i.e., K=2&, and Eq.
(6) takes the form

(6)

H =g(cM, , —24M„M„,), (I)

wh'ere a constant term has been added and M, and

M„are angular momentum matrices for spin 1.
We shall refer to Eq. (7) as the quantum Ising
model for spin 1 because of its similarity with the
spin- —,

' case.

III. SPIN-1 ISING MODEL

To obtain an equally deep three-well potential for one site of the field theory on the lattice, the potential
in the classical theory must be

2 1
~(4) =~4' (~'-f)'- (8)

as it is shown in Fig. 3.
As with the Q' theory, apart from the constant solutions, there are classical x-dependent solutions which

interpolate between the minima. These solutions, which are characteristic of a phase transition, in the
present case are

4„(4„'—84, ')' 'tanh{4'„[6c(4„'- P, ')1' '(x —x,)]
(8(e.,'- 0 ') —20 't h'{0 [6 (0 '- 0 ')]"'( — .)])"''

(9)
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FIG. 4. Kink solutions for the potential of Fig. 3.

FIG. 2. Basis used for the solution of the three-well

problem.

where

U(4 }
&u'(&~'- 3&s') '

The form of these functions is shown in Fig. 4,
where it is apparent that Q, (x) are the same kind
of solutions as the kinks of the &P' theory whereas
P, (g), which are not acceptable in a continuous
theory because of the discontinuity in the deriva-
tive, become meaningful on the lattice and are
easily understood in the spin-1 approximation.

In fact, taking the model [Eq. (7)], it is clear
that in the limit 4- 0 the ground state is unique
(all spins down) and the degenerate excited states
correspond to one spin with zero projection.
Therefore, the perturbative treatment gives a
band with the dispersion relation

E =-(2N+1}a+a —2hcosk (10)

FIG. 3. Potential needed to have equal-depth wells in
the lattice version.

for a (2N+1)-site chain, which is the same as the
one for spin-p.

On the other side when a -0, the ground state is
doubly degenerate (all spins aligned along +x or
-x}, and the degenerate first-excited subspace is
richer than that for spin —,

' due to a larger family
of states, i.e., --—-,- x - -,- x --. The ar-
rows indicate eigenstates of M„with eigenvalues
gl and x that of zero eigenvalue. The first two
types correspond to solution P, and the last to Q, .
The perturbation treatment gives rise to an energy
band, due to two independent sets of linear corn-
binations of the first two types of states:

E = 4Nn, + 2n-, + &Ye cos—,'k .
Equation (11) is different from the band correspon-

ding to spin ~ which is of the same form as Eq.
(10). The common feature is, however, that the
energy gap between the ground level and the band
decreases for increasing e making easier the
production of these topological kink states which
tend to disorder the phase. On the other hand,
the last type of states, which are not topological
kinks, do not couple to the rest and are not easily
excited, giving no contribution to the disorder.

It is clear that the two extreme situations 4-0
and E -0 correspond to two phases, and a transi-
tion must occur for a particular value of e/n,
which from the perturbative argument may be ex-
pected to be not far from two. A complete treat-
ment of this phase transition will be given in Sec.
V.

Vfe conclude the present section with a mean-
field approach which will be applied to the general
case in Sec. IV. By this approximation we mean
that given a Hamiltonian of the form

a= a, —~00,„,
we propose a, vector II, ~4'&,. with the same state

~
4& for every site and minimize the energy ex-

pectation value

(12)

(0 (H, ~
4 & ~(0 10 1

@&'

(e [e& &4 Ie&'

with respect to
~
4&. This gives the Schrodinger-

type equation'

(H, -26sO) ie& =E i@& (13)

with the consistency condition s =(C )0 [0&/(4 [ 4&.
In the present case we must replace Eq. (7) by

HMF=EM, —4snM„=(e +16s n, )' 2M.. . (14)

where M, , is the angular momentum component
along an axis z' rotated with respect to the original
one. By self-consistency the expectation value of
M„ in the ground state, which corresponds to M~
=-1, must be equal to s giving the condition

4sA
(6 +16s g)

with the two solutions s =0, (1 —&'/16dP)' '. For
e ~46 the latter is possible and gives rise to the
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lowest energy. For E &46 only the former is
possible. Therefore, there is a critical point at
e/n. =4 where the system undergoes a second-or-
der phase transition since s vanishes continuously.

The same critical ratio of parameters is ob-
tained with this method for spin-2 where the exact
result is known' to be e/n = 2.

IV. MEAN-FIELD CALCULATION FOR THE GENERAL CASE

6 0 0 0 0 0 0 (16)

00-1]00-1)„
where the energy has been rescaled and

W(K- 2a) - ~n.(1+u')
[~(K- ~)]"" [~(K—~)]"' '

The mean-field replacement [Eq. (13)] allows
us to diagonalize Eq. (16), giving the equation for
the eigenvalues y

Our purpose jn this section is to describe the
phase transitions of first and second order, which
we have anticipated as being contained in the gen-
eral case of Eq. (1), using the mean-field approxi-
mation.

We start performing a unitary transformation
which leads the three-level Hamiltonian [Eq. (6)]
to the form

010100
I

H=Q 1 0 1 +K 0 0 0

0 1 0,. 0 0 1,.
1 0 0 1 0 0

It can be numerically verified that a, b &0, giving
as lowest-energy solution the one with nonvanish-
ing s. For this case Eq. (18) may be put in the
general form Q(s) =A+Bs'+Cs'=0 with C & 0.
The possibilities for Q(s) are shown in Fig. 6.
For case (a) the only possible solution of Eq. (18)
is s =0 (disorderd phase). Case (b) gives a non-
zero value of s (ordered phase) and the fact that
s -0 continuously with A -0 indicates a second-
order transition, the critical relation among pa-
rameters being given by A = 0 for B &0, i.e.,

- K-y. (K-y, )'' 1+ (20)

e/K = 0.38, 6/K = 0.26 .
The expectation value of

1 0 0

(22)

S 0 0 0

Cases (c} and (d), where B &0, correspond to dis-
ordered and ordered phases, respectively, with a
first-order phase transition between them.

The tricritical point is determined therefore by
the simultaneous conditions A =0 [Eq. (20)] and
g —0s

2b,'[1 —(K:—y,)'] —(K- y )a —(K—y )'+ 2arK= 0.

(21)

Equations (20) and (21), together with the explicit
solution yo, allow us to obtain the numerical val-
ues of E and 4. In terms of the original parame-
ters the tricritical point is characterized by

y(K+2sb, —y)(K- 2sh- y) —2(y —K) =0, (17) 0 0 1

with the consistency equation for the lowest eigen-
value

in the lowest-energy state for the tricritical pa-
rameters gives

8(K- y.,„)4
2[(K )2+4n2 2]+ [(K y )s 4~2 2]2

A trivial solution of Eq. (18) is s =0. To look
for other solutions one must know y „.Instead
of solving Eq. (17) for the general case, we limit
ourselves to the region of small s which will cor-
respond to the vicinity of a critical point of sec-
ond order or a tricritical point, if the first-order
transition can also occur.

We expand therefore y „=yo+as'+bs4, y, being
the lowest solution of Eq. (1V} with s =0. Replac-
ing this ansatz in Eq. (1V) and solving independently
for the s' and s4 terms one gets

g2

3yo -4yoK+K —2 '

(19)

2
(S& ) 2' g }2

0 38

(b)

(c)

(23)

b =—
~~ 1+2~2+ 4~2 FIG. 5. Possible solutions for the mean field .
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This result is independent on the number of di-
mensions since 5 does not appear. Referring to
the model of He'-He4 mixture, the concentration
of He' is predicted to be x = 1- g,'}= 0.62, to be
compared with the mean-field calculation for a
classical model' x =0.67 which agrees with the ex-
perimental result. e

V. RENORMALIZATION-GROUP TECHNIQUE

We wish now to use the renormalization-group
method in the block-spin version. There are two
procedures to build the block spins in d =1 dimen-
sions. One of them is to take the Hamiltonian of
two sites and their link, ' the other is to include
only one site and one link. ' It has been shown that
the latter gives better results for the critical ra-
tio of parameters of the spin--,' Ising model.

When one applies the method to the spin-1 Ham-

Hq= T —4T„T, (24)

It is convenient to express H, in the following
basis:

iltonian [Eq. (7)], it turns out that in keeping the
three lowest energy levels of the block, an itera-
tive procedure cannot be built. This is because
these three levels are not equally spaced and the
interaction between blocks is not given by the angu-
lar momentum matrices M„. An additional prob-
lem emerges if one uses the recipe of Ref. 1 since
the third and fourth levels exchange their role ac-
cording to the value of e/n, ; this difficulty is not
present with the prescription of Ref. 6.

Therefore, we apply the method of Ref. 6 to the
Hamiltonian corresponding to a general three-well
potential [Eq. (6)]. The one-site one-link Hamil-
tonian is (see Fig. 6)

n144}—14»
'9

144}+n I 0 4)

n

n1 40& —140&

7l

144}-n14»
'9

l5&=
' ', l6& = loo&, (25)

7&=
"' ", 16&=lo~&, l9&=lo~&,

where q=(1+ n )

M.(l&& I&& lo&)=(l~& -I» ')

The states ll), l2), and l3) are eigenvectors of
H~, whereas l4), l5), and l6) form an invariant
subspace as well as I7&~ I6» a"d l9» giving the
same eigenvalue equation

E~ +E~ (K+ e)+E~(Ke —6 q ) —LPrpK=O. (26)

It has been numerically verified for all values of
z, 6, and E that the lowest three levels are the
two degenerate states

l1 )=N[~q(K+z) l4)

+ 617nz
l
5) —(K+E)E

l 6)],

l

3t& =+[(K+z)z
l
7)

—n.q(K+z)
l

6& —~benz l
9&],

where

N = [(K+Z)'(Z'+ C.'rP)+ ~'q' 'Zn']"',

corresponding to the lowest solution E of Eq. (26)
and the eigenstate

l
2') =

l
2}with eigenvalue K. -

Diagonalizing the site -1 energy T, in this
three-dimensional. subspace, the above degeneracy
is removed giving the new eigenvalues

+ —,'([2(K- &) +E]'+4P'j'~',

Ka +E

where p= NKn'nz/-q and the eigenvectors

respectively, where

¹=tl +( —E+ 8)

FIG. 6. Block spin. The shaded area indicates that
only the energy of site 2 and the link are kept.

To calculate the interaction between blocks we
must evaluate T„, in the basis of

l
$'&

l
g'& and

l ] } of one block and T„ in the corresponding ba-
sis of the other. The result for the new block
(see Fig. 6) is
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'0 0 0

0 -a' 0
2.0 .

0 0 -K', ,

0 1 0~ '0 1 0'
—s' 1 0 n' 1 0 (29}

1.4
~0 n' 0,, t0 n' 0.~,

1.2
where

1.0

0$-
=--,'[2(K- c)+E]

+ —,'([2(K- c}+E]'+4P')' ',
K'=( —( =([2(K- ~)+E]'+40']' '

0.6

' 0.4-

(30) 0.2-
n. ' =-2n. (¹)P N APE(K+E)(K+E'f) ),
n =N-/N'= [~ /(K'- ~')]'"

0.2 O.D 0 fi 0.5 0.6 0.7 0.6 P.9 Lo

Equation 30 is the renormalization-group recur-
sion formula, which gives e', K', 6' in terms of
z, K, 4. The parameter n' is not independent
and is related to the others according to the same
law obeyed by n.

One sees from Eqs. (24) and (29) that the form of
the Hamiltonian is preserved by the renormaliza-
tion-group transformations. Therefore, Eg. (30)
is the basis for a numerical computation which al-
lows to draw the phase-transition diagram of Fig.
V. Since the relevant parameters are n/K and
e/K, it turns out that starting from any point in
region I one gets a fixed point e = 6 = 0 which cor-
responds to an effective configuration where the
first and second excited levels become degenerate.
In the same way, starting from region II the itera-
tive procedure leads to a point with a/K between
0.5 and 1 and 4= 0; this is equivalent to the spin-
—,
' Ising disordered phase. Finally, starting from
any point of region III one ends up to a point with
a/K= 1 and n x0, which is the ordered phase for
the spin--,' Ising model.

The dashed curve corresponds to a second-order
phase transition analogous to the one of the spin-
—,
' case. The solid curve represents a phase tran-
sition of first order since a small modification of
the initial conditions changes the output from an
excited degenerate doublet to a ground-state de-
generate doublet. The dashed-dotted curve does
not describe a phase transition in the traditional
sense of the word since the ground state is nonde-
generate and the corresponding order parameter
is zero on both sides of this line. But on the other
hand, crossing this line a discontinuous expecta-
tion value for the first excited state appears so
that, defining in this way an order parameter, we
still have a first-order transition. The three

FIG. 7. Phase diagram obtained with block-spin meth-
od. The dashed curve denotes a second-order transition.
The solid curve corresponds to a first-order transition
from a degenerate ground state to a degenerate excited
one. The dashed-dotted curve shows a discontinuous
transition from nondegenerate states to a degenerate ex-
cited state. The tricritical point is represented by a
large dot.

curves join at the tricritical point

e/K = 0.2, n,/K =0.65. (31)

From this analysis it is clear that for the spin-1
Ising model (by which we mean c/K= 0.5) only the
second-order transition is available and the cri-
tical point (e/n), =2.5 is only slightly different
from that of the spin--,' case. This value cannot be
strictly compared with the exact critical ratio 2
for the spin-& case because our treatment of three-
level systems introduces a small error. In fact,
one can check that for e/K& 0.8 the method of Ref.
1 modifies e' less than 4% (as is reasonable since
the effect of the third level must be small), where-
as with the prescription of Ref. 6 the change is
~18%. As a result, for &/K= 1 instead of the ex-
act critical ratio for the spin- —,

' case a/n, ,y, =2
our transition occurs at (K- c)/nn'= 1.6.

Even though our method is therefore approximate
but better than the mean-field treatment, we ex-
pect that the above-described phase-transition pat-
tern is general. In particular, we see from Fig.
V that the first-order transition, with the sense
we have given to it, may appear only if the poten-
tial %t(Q&) shows lateral wells less deep than the

FIELD THEORY WITH P4 AND P& SELF-INTERACTION



1556 B. BOYAXOVSKY A WD L. MASPERI 21

central one.
Regarding the tricritical point, we may evaluate

again the concentration of He'. This is related to
the expectation value of

0 0

S'= 0 0 0

0 0

in the lowest eigenstate of Eq. (16), or alternative-
ly to the ground-state expectation value of this
matrix transformed to the basis in which Eq. (6)
is written. This corresponds to calculate

1/(n'+1) 0 n/( '+ 1) t

1 —x= $ 0 1 0
n/(n'+ 1) 0 n'/(n'+ 1)

Since the tricritical point is a fixed one, it is al-
lowed to compute this expectation value in the
first step. Because of the asymmetry in sites of
our treatment, the result is different if one com-
putes the expectation value of the matrix for site
2 or 1. Using Eq. (28), the two expressions are

1 —x, =(N )'I()'N [6 (JC+Z) +'Ra'a'E(lC+E)

+ &'E'n'+ E'(K+E)'].(„.
'

z,.(-)';,', I,
1 —x, = (N )'p'N'[a')l'(K+E)'+ n2g'E'n'+E'(K+X)'],

which, for the tricritical values in Eq. (31), give
x, =0.69 and x, =0.75. One may observe that these
results are similar to that coming from the mean-
field theory even though the tricritical parameters
Eq. (22) and (31) are quite different and the influ-
ence of the dimensionality of the renormalization-
group treatment cannot be anticipated.

VI. CONCLUSIONS

We have applied the nonperturbative methods of
the mean-field approximation and renormalization

group to the P' field theory finding a second-order
phase transition similar to that of the (t)~ theory.
In particular, with the three-level approximation,
we have seen that the critical point is slightly af-
fected by the presence of the third level even if it
is close to the second one. Therefore, one gains
confidence in the spin- —, approximation of models
such as Reggeon field theory where the third level
is not too far from the second. One the other
hand, we have seen that the richness of the phase
diagram increases since in the qP theory a critical
line of first order appears joining the second-or-
der curve at a tricritical point.

The mean-field treatment, as in the case of
spin--„gives a large error in the position of the
second-order critical line. The use of the block-
spin method where a block is formed by one site
and one link has the virtue of preserving the form
of the Hamiltonian, giving for all range of parame-
ters the same set of three lowest block levels.
The second-order critical parameters are more
accurate than in the mean-field approximation
though not as good as in the spin--,' case, probably
because of the lack of self-duality, 4 a property
which was at the basis of the method of Ref. 6. It
is interesting to remark that the ground-state ex-
pectation value (S,') seems to be rather independent
of the methods used giving, both with the mean-
field and the renormalization-group technique,
good agreement with the experimental value of the
He' concentration in the He'-He' mixture.
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