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Dimensionally regularized dispersion theory is used to compute the O(A'g 'f ') contribution to the charge
renormalization function Pg, where g is a gauge field coupling and f is a quartic (pseudo) scalar self-
coupling. Some motivations for and systematics of the calculation are discussed. Special attention is given to
an N = 4 globally supersymmetric gauge theory.

Higher-order corrections in perturbation theory
are very interesting in two sets of circumstances.
First, if experimental accuracy exceeds or threat-
ens to improve beyond the present theoretical un-
certainty in a perturbatively computable obser-
vable, one naturally wants to calculate the smal-
ler, higher-order effects to check for discrepan-
cies between theory and experiment. Quantum
electrodynamics provides classic examples of this
first situation, ' especially in the case of anom-
alous magnetic moments.

Second, one may find effects occurring in low-
order calculations for an unrealistic model theory
which intriguingly suggest some fundamental prin-
ciple is at work, e.g. , a symmetry, but which do
not clearly indicate what the principle is. Higher-
order computations here can either show thy ef-
fects to be spurious, if they are, or provide some
clues for discovering the principle involved. An
example of this second situation is provided by the
charge renormalization function, P„ for an N = 4
globally supersymmetric non-Abelian gauge theory. '
For this model, p vanishes in both the one- and
two-loop approximation' yielding a conformally co-
variant theory with nonzero anomalous dimensions
for the fields.

%hile this scale covariance may be sheer coin-
cidence to O(fi'), it seems more natural to assume
that a fundamental principle is responsible and to
conjecture that P, vanishes to all orders. Unfor-
tunately, a rigorous argument proving such a con-
jecture is not yet known. Also, the full structure
of the model in Ref. 2 does not really come into
play when only two-loop effects are considered.
For example, it is well known that, quartic (pseudo)
scalar self-couplings do not contribute to the
gauge charge renormaiization P, until three-loop
corrections are taken into account.

In this paper the problem of computing P, to
three loops in a general non-Abelian gauge theory
is briefly and incompletely considered. The sim-
plest gauge-invariant three-loop contribution to
P~ is computed to illustrate what we believe is the
most efficient analytic method to solve the com-

piete problem: dimensionally regularized disper-
sion theory. This method is employed to deter-
mine the lowest-order contribution of a quartic
(pseudo) scalar self-coupling, f, to the gauge cou-
pling-constant renormalization. The contribu-
tion is of order h'g'f'.

Although the scale covariance noted in Ref. 3 is
the major motivation for this analysis, the
O(h~g'f 2) contribution to P will be given here for
an arbitrary set of (pseudo) scalar field param-
eters and not just for those of the model defined
in Ref. 2. Thus, the result may be of some in-
terest for other problems, e.g. , in analyzing
cases of extreme ultraviolet behavior (q'»~'„,„,)
for electroweak theories with "large" Higgs self-
coupling.

The rest of the paper is organized as follows.
First we define our notation and give the 0(@'g'f ')
result for P, . Then we indicate how the disper-
sion-relation technique was used to obtain the re-
sult, and we briefly compare this technique with
two others: Straightforward Feynman parametriza-
tion methods and hyperspherical polynomial ex-
pansions. Finally, we close with some remarks
on the remaining amount of work required to com--
pletely determine P, to three loops.

Let (tjtg represent a set of real scalar and/or
pseudoscalar fields with covariant derivatives

Dtt thi
= Bp tjt + ig Y~ (T') „p„,

where V'„ is the vector gauge field and (T') „
= -(T')„ is the real representation matrix for tjt,
possibly reducible. . We assume the (pseudo) scal-
ars interact quartically as follows:

I
quartic 24 f t'ttlmki @at4'I '

The tensor I,» is totally symmetric and satis-
fies a linear constraint, with coefficients T',
which follows from assuming 2,„„„cis gauge
invariant:

(Z )„,.F„,.= 0.
Underlined indices are tota. lly symmetrized and
repeated indices are summed. Using (T') „and
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E,.» we define group invariants E(Q), T(Q), and

C(p) as follows:
cI

I
I I

I

1

~l

(4)

1 2
4g fxahfxcd 5kino(n

(Ak(t',A +„+24'BI(4' B„+B'B,B'B„'). (6)

The f„,are totally antisymmetric, real structure
constants of the (arbitrary) gauge group. Two
of the pecularities of the N = 4 SST are that the
quartic coupling constant is fixed to equal g', the
gauge coupling squared, and that the Yukawa cou-
pling present in the mode1 is also related to g.
Consequently, it is obvious that one must also
compute the three-loop corrections from gauge
and Yukawa interactions before any final state-
ment can be made about P, to O(V). Nevertheless,
we may evaluate Eq. (5) for the N = 4 model to de-
termine the importance of the quartic couplings
alone. Rewriting Eq. (6) in the form of Eq. (2)
and evaluating the corresponding invariants (we
set f=g') gives

r(y) =6C(V) a dE(y) =45C'(V), (l)

where the gauge group invariant C(V) is defined by

f„„f„,—= C(V)5„.

Thus we have

With these definitions we now present the O(R'g'f ')
contribution to the gauge coupling-constant re-
normalization function.

U'sing the minimal-pole-part subtraction
scheme~ so that field masses may be ignored, we
find the general result

3

(),(quari(c) = (, x f'x(4)x(4) . (q)

Since T(III) and E(p) are positive, the effect of the
quartic interactions alone is to cause an increase
ing' as the mass scale increases [cf. M (did M )g'(M )
= PgP, ], an effect which could easily have been an-
ticipated.

The general result in Eq. (5) may be restricted
to the special case of the N = 4 supersymmetric
theory (SST) for purposes of comparison. For
that theory, f/'=(A. ', B': m =1, 2, 3) withA. '
and B' scalars and pesudoscalars, respectively.
Both A and .8 are in the adjoint representation of
the gauge group. Their quartic interaction is given
by

2 4„„„,(N=4 SST)

(c) (d)
FIG. 1. Lowest-order contributions to the gauge field

self-energy involving quartic (pseudo) scalar interactions.

Next we shall discuss the method by which (5) was
obtained.

The number of Feynman diagrams one must con-
sider to arrive at Eq. (5) is minimized by working
in the noncovariant gauge n" V& = 0.' For this
gauge the Ward identities relate the vector wave-
function renormalization to the charge renormal-
ization, Z, =Z~ ' '. We may thus compute the lth-
loop pole part' of Z, by calculating only the vector
self-energy in this noncovariant gauge. The pole
part (Z, , ) then determines the lth-loop contri-
bution to pd(J3, , ) in the minimal. subtraction scheme
through the relation P, , = 2glZ, , (This relation
follows from the analysis in Ref. 4.)

The three-loop contributions to the vector self-
energy which involve the quartic coupling (2) are
shown in Fig. 1. Diagrams (c) and (d) in Fig. 1 in-
clude two-loop counterterms (the solid boxes). The
O(h'g'f') portion of (c) cancels that of (d), however
so we may neglect these graphs. The sum of the
remaining two graphs is obviously gauge invariant.
Diagram (b) is, of course, just an 0(f') (pseudo)
scalar self-energy folded in with the familiar one-
loop O(g') (pseudo) scalar contribution to the vacuum
polar ization. It is easily computed for massless
particles since the internal-momentum integrations
are "nested" and maybe performed sequentially.
Diagram (a) in Fig. 1 requires some ingenuity to
evaluate, however, due to the nontrivial momentum-
transfer dependence occurring in the internal
(pseudo) scalar-(pseudo) scalar scattering. This
dependence prohibits a straightforward sequential
performance of the integrations. It is for diagram
(a) that we find dimensionally regularized disper-
sion theory (DRDT) to be quite useful.

DBDT was introduced long ago when dimension-
al regularization was first invented. (E.g. , cf.
Bef. 7. This paper also gives reference to earlier
work on dispersion theory. ) Nevertheless, we are
not aware of any higher-loop calculations of P,
employing the method. To evaluate a Lorentz
scalar diagram depending on one invariant, k',
using DBDT, we employ the representation

P (N=4 SST, quartic) =, g'C (V). (9)
45 i 2i Disc[D(s)]

ds
2))' k -s+i0 (10)
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2i Disc ~., i„i P" =
where M' is the arbitrary renormalization-group
mass scale. We may therefore perform the in-
tegration called for in Eq. (10) to obtain

t) ~+~'
(b) (c)

e+y
g+~ ( I

1 )2 ~ 36'

D(k') = d(s)(-k'), r (2 —3s)r(-1+ 3~) .2' M~

FIG. 2. All possible dispersion cuts contributing to
the discontinuity of the diagram in Fig. 1(a).

The discontinuity here is obtained by "cutting"
the diagram in all admissible ways, replacing cut
propagators:

1/[(p)'+f0]- -2«5(p')e(p. ),
and evaluating the resulting weighted phase-space
integrals. For diagram (a) in Fig. 1, there are
four possible cuttings as shown in Fig. 2. [Cuts
(a) and (d) give the same contribution in Eq. (10),
as do cuts (b) and (c).] Each of these discontin-
uities is computed in D = 4 —2e dimensions, and
for a range of e we obtain finite results even after
the dispersion integral in Eq. (10) is evaluated.
The final result is then continued back to D= 4
where the pole parts arise in the usual way.

To reduce the diagrams in Fig. 1 to the Lorentz
scalar form of Eq. (10), we must take either the
trace j9"„or the double divergence 0"D„,k". In-
dependent computation of both these scalars allows
the reconstruction of the full self-energy tensor.
To illustrate the use of DBDT, we explicitly con-
sider only D„". Note, however, that this trace is
more difficult to calculate than the double diver-
gence.

Since all particles in the diagrams are massless,
simple dimensional analysis tells us the discon-
tinuities are of the form

2f DiscD(((s) =Ed(E)(s/I ) so(s),

(12)

The calculation thus reduces to computing d(s),
the "discontinuity coefficient. "

The result of the dispersion integration with the
discontinuity in Eq. (11) is to produce a simple
pole in e as evident in the expansion

1r(-1+ 3~) = — —1+y,„„,+0(~) .

The diagrams in Figs. 1(a), (1b), may have more
singular behavior as e- 0 only if the phase-space
integral involved in computing DiscD(k') is itself
singular in the four-dimensional limit. This ad-
ditional singularity can occur only if the cut dia-
grams contain closed loops which are not cut.
From Fig 2we .see that the (a) and (d) cuts will
indeed have such an additional singularity, while
the (b) and (c) cuts will be finite as e- 0. Since
we are only interested in the pole parts of the en-
tire diagrams to compute P, using the minimal
subtraction scheme, it suffices to evaluate cuts
(b) and (c) directly in four dimensions, i.e. , deter-
mine d(0). On the other hand, we need to deter-
mine both the pole part and finite part of cuts (a)
and (d). [Actually, the cuts in Figs. 2(a), 2(d) are
quite simple to work out, even though we do need
two terms in their Laurent expansions. ]

The four-dimensional cuts in Fig. 2(b), 2(c) lead
to the following two weighted phase-space inte-
grals [~.(p) = 5(p')8(p, )]:

d'pd' d'qr 5,(p)5,(k-q)5, (q-r)5, (r -p) k' k'8(k')e(k„) I s
(2s)" (k —p)'q' (16n')'

[C(2) —,]

(13a)

(13b)

Their evaluation involves the usual judicious choice
of coordinates. Assuagingly, (13a) and (13b) appear
in the (b) and (c) cuts with a relative factor of -4
so the transcendental i;(2) = s2/6 cancels out.

Using (13a), (13b) we immediately determine the
four-dimensional discontinuity coefficient cor-
responding to the cut in Fig. 2(b) for D"„(k) [we
temporarily suppress coupling constants, group
invariants, and combinatoric weights, ef. Eq.
(«)]:

1. I'
d2&b) (0) ——ZS

I

A straightforward calculation also gives the sin-
gular discontinuity coefficient corresponding to the
cut in Fig. 2(a):

1, h '1 17
d, ),)(e(=—i)), —). ) 0())) .16m' (15)

The two internal-momentum integrations which
must be evaluated to obtain Eq. (15) are both easily
done due to the mass-shell constraints on the eut
(pseudo) scalar lines. Combining Eqs. (12), (14),
and (15) we arrive at the final expression for the
singular parts of the trace of Fig. 1(a):
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3
tC(k)= ((t(t * (('f'k(k)t'(k)

xk2 —,— + +finite1 19 ln(-k'/M')

The trace of Fig. 1(b) is contained in E(l. (19) be-
low.

The double divergence k"D„,(k)k' of the dia-
grams in Fig. 1(a) or 1(b} may be computed either
dispersively as above or with equal ease using
Feynman parameters. The relevant momentum
integral is

f 1

=i, 0' — + finite, 17

and allows a simple sequential evaluation of each
subintegration.

We will now combine the trace and double-
divergence pole-part information for both dia-
grams (a) and (b) in Fig. 1. As we remarked
above, diagram (b) is easily computed due to the
nested character of its internal-momentum inte-
grations, so we will forego a detailed discussion
of its evaluation.

The final results for the diagrams (a) and (b) in
Fig. 1 are as follows:

tt'e".(k)=i(, ) k'f'k (k)T(k)'

x (k„k„-g„„k2),+ — +finite +k~k, — +finite
1 59/48 ln(-k'/M') . . 1

216m

3

ttee (k) = t(tk, tt'f '&(k)t'(k)

x (k„k —k„„k —„— + +ttmte + k„k„+iieite)77/48 in(-k'/M')
7 216&

(18)

The dipole terms (1/e2} cancel when (18) and (19)
are added, as do the in(- k/2M)2/e terms, thereby
explicitly confirming that quartically coupled
(pseudo) scalars do not destroy the renormali-
zability of a Yang-Mills theory. Also note that the
sum of E(ls. (18) and (19) is conserved (true not
only for the displayed pole parts, but also for the
finite pieces we have neglected to show}. However,
each diagram separately is not conserved.

From (18) and (19) the O(k2g2f') wave-function
renormalization can be deduced. The Ward iden-
tities then give the O(k2g2f 2) charge renormaliza-
tion, as discussed earlier. From this p, can be ob-
tained. The result is E(l. (5).

Now we shall compare DRDT with other graph
evaluation techniques. First consider the diagram
in Fig. 1(a) and use the Feynman parametric meth-
od. The difficulties with this method occur be-
cause a large number (five) of parameters must be
introduced and because the momentum-transfer
dependence appearing in the internal (pseudo)
scalar four-point function makes it very difficult
to evaluate more. than half the parameter integrals
in closed form. Qne of the two basic momentum
integrals encountered is

DPDq&' k -P 'P' P+ r ' r+ q 'q2 k —q
'

The internal r integration may be performed using

t

one Feynman parameter to obtain (dropping an
overall momentum-independent factor)

$2 -36 1
( } M2 J P f (k p)2p2[(p )2]2 2(k )2

(20)

This displays the momentum-transfer dependence
mentioned previously.

The remaining two momentum integrals can be
converted to a four-parameter Feynman integral.
Unfortunately, only one of these parameter inte-
grations is readily carried out in D= 4 —2e dimen-
sions. This produces a nontrivial hypergeometric
function depending on the remaining three param-
eters, x, y, ands, and weighted by appropriate
powers of x, (1-x), etc. The remaining three-
parameter integrations have stubbornly resisted
our attempts at any useful simplification. In par-
ticular, we have not been able to extract the cru-
cial 1/e term in the Laurent expansion of f(e) using
parametric methods.

The advantages of DRDT techniques here are
obvious, especially for massless particles. The
representation in Eq. (10) is a one-parameter in-
tegral which is always calculable for massless
particles [cf. E(ls. (11) and (12)]. The only prob-
lem is to determine the phase-space integrals,
which require some weighted angular averages.
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Since the integrands are on-shell in the phase
space, however, these angular integrations are al-
so manageable.

This is more fully appreciated by considering one
more momentum integration in Eg. (20), say q:

J,(k /k', k k/kQ(, )

D~ ~ ~ E ~ ~ ~ I 2
1

[(P —q)'] q'(& —q)' '

The result is a complicated dimensionless function
of two invariant ratios (not a simple Gauss —but
rather an Appell —hypergeometric function). This
generalized hypergeometric function must then be
integrated over all p weighted by the other two
propagators in Eq. (20), an integration. beyond both
our patience and our expertise when using param-
etric methods. Note, however, that the integral
in Eq. (21) is also encountered in the DRDT ap-
proach [cf. the cuts in Figs. 2(a), 2(d)], but there
only the on-shell form of Eg. (21) enters, i.e.,
J,(0, —,'), and no subsequent nontrivial integrals
over p2 and p k remain. This is a significant
simplification.

Next, let us compare DRDT with hyperspherical
polynomial expansion methods (HM's). The latter
were developed extensively long ago' for applica-
tion in quantum electrodynamics. In fact, the
specific task for which HM's were developed was
precisely the three-loop calculation of the electro-
magnetic charge renormalization, P„an applica-
tion which makes the method all the more attrac-
tive for the N = 4 SST. The original O(&s) calcula-
tion of P, was not fully completed for some time, '
but this delay was not a necessary consequence of
using HM's. These methods are reasonably ef-
ficient and have been applied in other higher-order
problems (e.g. , cf. Refs. 10 and 11, or consult
the other applications described in Ref. 1).

The essential features of HM's are as follows.
After continuing momentum integrals into Euclid-
ean space, the most difficult parts of the integra-
tions are due to angular dependences induced by
unconstrained scalar products of different four
vectors. These dependences are a hindrance when
they appear in propagators, e.g. ,

1/(0 —q)'= 1/[0'(1 - 2t cose+ f')],

where cose= k q, l ql = tl&l However, suc. h pro-
pagators may be identified as generating functions
for the hyperspherical. (Gegenbauer) polynomials
in four dimensions, C„, giving a sum

1
PC„(cos8) .

1 —2t cos8+ t'

Angular integrations may then be done using or-

thogonality relations on the three-sphere, e.g. ,

J iw ~"2D 'r( ,'D —1)-
u'+z0 (x'-zo) "-' (22)

Only for D= 4 does the same 1/a' form occur in
both momentum and position space. Continuing to

dO C„q'& C k'P =2m' 5„C„q P 1+pg

and one sum is thus eliminated by 5 „. Finally,
all radial momentum integrations involve only
simple powers of lkl (for massless theories) and
are calculable. The net result when products of
different propagators are involved is usually a
surviving sum of terms, each term being a simple
radial integral. For massless theories in four
dimensions, this final sum can often be explicitly
done to obtain a closed-form result.

Many of the radial integrations are ultraviolet
divergent, however, and must be regularized. For
electrodynamics this is easily done using an in-
variant cutoff in Egclidean space, A'. To compute
P one needs the InA' terms, a point which was ex-
ploited in Refs. 8, 9, and 10.

The hyperspherical method, with an invariant
cutoff, would probably allow one to determine p,
to O(k') for a general non-Abelian theory Apr.e
liminary calculation indicates that the (A- ~) di-
vergent part of the diagram in Fig. 1(a), e.g. ,
can be computed using HM's. The amount of analy-
sis needed to simplify the sums encountered using
HM's is comparable to that needed to work out
closed forms for the discontinuities encountered
using DRDT. However, we believe there is one
major advantage of DBDT over HM's: Dimension-
al regularization.

It is desirable to use a regularization technique
which manifestly preserves non-Abelian gauge
invariance under radiative corrections. Dimen-
sional regularizaion is the finest such technique
for continuum theories. Unf ortunately, unlike
dispersion-theory methods, HM's are not readily
generalizable to D dimensions in momentum space.
The problem is that the angular measure in D di-
mensions is not compatible with both the expan-
sion of momentum-space propagators and the or-
thogonality relations for the C„'s. This compatibil-
ity is achieved for arbitrary D only if one trans-
forms from momentum to position space. Thus
we may simultaneously use dimensional regular-
ization to eliminate ultraviolet diverges and HM's

to carry out angular integrations only if we evaluate
Feynman diagrams in position space. The resulting
formalism is quite cumbersome.

Let us make these points more explicit. " If the
momentum-space propagator is 1/k', the position-
space propagator is
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Euclidean spacetime, we may again identify in-
verted propagators as generators of hyperspheri-
cal polynomials on the D —1 sphere":

1 1 1

[(x -y)']D"-' xa ' (1 -2t cose+ t')D"-'

1
D, P t"C„' ' (cos8).

n=0

C„" is to be identified with the previous C„. These
generalized spherical polynomials obey the ortho-
gonality relation (cf. Hef. 13, p. 488)

n mI dt~(x)C"" "(y x)C"" "( . )

&L) /2

I (-,'D) 1+2 /(D-2)
The solid angle dQ(x) is that appropriate to the
D —1 sphere. For functions depending on. ly on the
polar angle, we have

D-X) /2

dQ(x)-, 1 [1 —cos'8]' "t'd(cosa) . (25)
2

The power of [1 —cos'0] in Eq (25) .is responsible
for the aforementioned incompatibility in momen-
tum space.

Given a product of propagators in Euclidean pos-
ition space,

1/[(y -x)'(x-z)'] t' ',
the intermediate position (x) may be integrated
over by using the HM's as generalized above.
Equation (24) permits the elimination of one of the
two sums introduced by expanding both propaga-
tors as in Eq. (23). Each radial position integral
is calculable and finite, at least for a range of
D. The final remaining sum may often be ex-
pressed in closed form.

For multiloop diagrams, however, we have not
found D-dimensional HM's to be very convenient.
Without going into explicit examples, let us simply
note the following complications. (a) Integrations
over intermediate positions produce both ultraviolet
and infrared pole parts, ' in general. The two must
be carefully separated. (b) The sums which are
encountered are more difficult to express in closed
form than those found using four-dimensional HM's

due to the additional dependence on D. (c) Extract-
ing the most singular part of a diagram is usually
manageable, but nonleading singularities are dis-
couragingly difficult. The farther the Laurent ex-
pansion in (D —4) is taken, the worse this prob-
lem becomes. (d) The final results must be trans-
formed back into momentum space, a chore which
is obviously manageable but bothersome since
more algebra is involved.

In summary, it appears that dispersion theory

is preferable over HM's for multiloop diagrams
if one wishes to have the convenience of manifest-
ly gauge-invariant dimensional regularization.
We wish to have this convenience.

In concluding this paper let us discuss the re-
maining analysis needed to complete the three-
loop calculation of P, . We wish to indicate some
labor-saving devices, especially for the N= 4
SST.

First, consider a general non-Abelian gauge
theory with vectors and fermions (in an arbitrary
representation), but no (pseudo) scalars. Much
labor is saved in computing P, in such a theory if
we exploit the proven renormalizability and the
Ward identities, but make no attempt to check
them explicitly. We may then use the fact that the
vector self-energy n„„ is transverse when all dia-
grams are summed, so we need only compute the
trace m„" to determine Z~. Similarly, renormal-
izability dictates that the pole part of the vector
three point function I"„'„'~(P,q, r) will have the
same algebraic structure as in the tree diagram,
so Z, may be determined by computing

f„,p~g"'I"„",~(p, -p, 0). Thus p, can be obtained by
considering diagrams which depend on only one
invariant, p', and for which all indices have been
contracted. Further, we may conveniently set
-P'/M'= 1 in determining pole parts, and finally,
we may similarly work in the radiatively stable,
covariant Landau gauge.

The problem now breaks up into two phases:
One analytic, the other purely algebraic. The
first phase requires the analytic evaluation of
pole parts for a complete set of three-loop inte-
grals. As we have emphasized in this paper,
DBDT seems advantageous for this phase. The
second phase requires the enumeration of all. dia-
grams (with correct combinatoric and group-theo-.
retic weights), the algebraic reduction of the dia-
grams to the basic set of integrals, and lastly
some careful addition. We believe this second
phase may be entirely implemented on a machine.
We are presently investigating this implementa-
tion.

In particular, we have written computer routines
to produce the full set of vector self-energy and
three-point diagrams by inserting external lines
in formal algebraic expressions for vacuum bub-
bles For a c.ovariant (ghost-containing) gauge
calculation, there are 17 (11) three-loop vacuum
diagrams in an arbitrary vector-fermion (pure
vector) theory. These lead to 114 (68) topologically
distinct vector self-energies. Insertion of one
more zero-momentum vector line increases the
number of diagrams by a factor =5. The further
algebraic reduction of these formal expressions to
a basic set of integrals is presently under study.
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Of course, to determine P for the N = 4 SST, we
must also include in the theory (pseudo) scalars
in the adjoint representation of the gauge group.
The easiest way to do this is to use dimensional
reduction techniques, extended to be used in com-
puting radiative corrections. The N= 4 SST may be
compactly formulated as a gauge theory involving
only vectors and spinors in ten-dimensional space-
time. ' The classical four-dimensional theory then
materlallzes if the zero-mode constraint
for M = 4, 5, . . . , 9, is imposed.

Radiative corrections may also be computed
using the ten-dimensional formalism. We merely
need to enforce by hand the zero-mode constraint
in all internal-loop integrations. The effects of
the (pseudo) scalars then arise from a 10=4+ 6
cleavage of the metric tensor (G~ -g„„g5 „) and
from the use of ten-dimensional Dirac algebra
(I'„-y„y ). [Actually when integrals are eval-
uated using dimensional regularization, one is
really making a 10-2s= (4-2s)+6 split for the
metric and Dirac matrices. ] An appropriate scal-
ing of the trace of the unit matrix in the Dirac al-
gebra accommodates for the existence of four
Majorana spinors in the four-dimensional SST.

The use of dimensional-reduction techniques to
"compactify" the number of algebraic steps in-
volved in radiative corrections for the X= 4 SST
will be described more fully elsewhere. '4 It is

remarkable that these techniques allow the simul-
taneous calculation of P„„„,„,and P„„„if one con-
siders the spinor-vector-spinor vertex. This als'o
permits a quick but nontrivial check on some of the
supersymmetric Ward identities in the theory. It
is also remarkable that these techniques permit
an interpolation between theories with no (pseudo)
scalars and the N = 4 SST, e.g. , through the di-
mensional reduction of Yang-Mills theory in 4+ 2m
dimensions. We believe such an interpolation
should be incorporated in the full three-loop cal-
culation (using an arbitrary fermion representa-
tion of the gauge group) since it would permit the
final result to be easily adapted to more realistic
models such as quantum chromodynamics.
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