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%e discuss the structure of the Gribov vacuum copies for SU(2} non-Abelian gauge theories in the
Landau gauge. Using the theory of the harmonic maps, we recover the known Gribov-type solutions and
construct new ones which are not spherically symmetric.

I. INTRODUCTION

Recently, Misner' pointed out the role of the
harmonic maps in different fields of particle phys-
ics and general relativity. His paper outlines the
basis for a program of exploring harmonic maps
as models for physical theories, such as broken-
symmetry phenomena, nonlinear 0 model, Yang-
Mills equations, relativity„etc. The aim of this
paper is to use the theory of the harmonic maps in
order to find larger classes of the Gribov vacuum
copies.

As is known, Gribov' observed that, for an
SU(2) Yang-Mills gauge theory, the Coulomb
transversality condition does not fix the gauge
completely. It was pointed out that there are sev-
eral nontrivial field configurations representing
the same physical field (Gribov vacuum copies)
which are connected by finite gauge transforma-
tions. ' ' Owing to the similarity between the Lan-
dau gauge condition in Euclidean space-time and
the Coulomb gauge condition, the existence of the
Gribov pathologies was shown also in the Landau

uge ' ' On the other hand Singer" established
the existence of the Gribov ambiguity for general
continuous gauge-fixing conditions on S4.

In order to classify the possible vacuums in
SU(2) Yang-Mills theory, the pure gauge potential
is introduced in the gauge-fixing condition. The
resulting nonlinear parhal differential equation was
solved using diff erent particular assumptions.

Actually, the solutions of this partial differential
equation define harmonic maps between the Eucli-
dean space-time and S' = SU(2). Using this observa-
tion we find that the theory of the harmonic maps
represents the natural frame for the investigation
of the vacuum structure, at least in the Landau
and Coulomb gauges. %e apply the theory of the
harmonic maps between Euclidean spheres" " to
obtain nontrivial pure gauge fields in the Landau
gauge condition. We obtain all known solutions
and, in addition, we find new ones. %'e do not find
all harmonic maps between R4 and S', restricting
ourselves only to such explicit constructions which
involve ordinary differential equations.

&(q ) = f e(q &h)&x, (2.1)

with the energy density

e(q)(~) =2 ~dy(~) ~'=ag"&, ~; -s; ., (2.2)

where dp(x) denotes the differential of y at the
point x —M and Cx is the volume element of M.

The first and second fundamental forms of. y at
x(=M are'4

Bq7~ Bp~
~)ii s&i a&i ~nii ~

(2.2)

where q
* is the pull-back map, V' is the covariant

differential, and ™1~&,"1"~z are the usual Chris-
toffel symbols of M and N, respectively. Note
that for a Riemannian immersion one has y*h =g.

The trace of the second fundamental form is
called the tension field of y, and a map with van-
ishing tension field is said to be harmonic. The
map y: M-N is harmonic if and only if it is an
extremal of the energy integral E(p) defined by
Eil. (2.1). Indeed, the Euler-I agr ange eiluations
for E are

r(y)"= Tr(v(dq))"

(2,4)

where 4 is the Laplace-Beltrami operator

(2.5)

II. CONSTRUCTION OF HARMONIC MAPS

A harmonic map is a map between Riemannian
manifolds which extremizes a certain simple func-
tional called the energy integral.

Let M, N be Riemannian m anif olds with m etrics
g, &, h z (i,j = 1, . . . , m; o'. , P = 1, . . . , n), respective-
ly. Given a smooth map y:(M, g)-(N, h), its en-
ergy is defined by the formula
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ep z, , e4 ep ep

s ~= (goy)'g' h
ex ex

= 2e ((p)(g o g)'
= 2e(4 o p) g o y)', (2 V)

where 4 is defined in (2.5) and g,&,
j'z

~ are the
metric tensors of M and N, respectively. In order
to obtain Eg. (2.V), we explicitly used the fact that
S" ' is immersed in R ".' '" In fact, it is possible
to prove that y: I-S" ' is harmonic if and only
if Eq. (2.V} holds. " Moreover, if y is an eigen-
function of the Laplace-Beltrami operator, we
have

a(yo p) =X(pop). (2.8)

In particular, if y is a harmonic polynomial of
homogeneity k defining a map between two spheres

S" and S, one has

X=A(k+n —2) . (2.9)

Another application of Eq. (2.6) is the harmonic
r«raction q: R"X(0)-S"' (namely, x-x/~x ~). A
simple calculation shows that if g:S" '-N is har-
monic, then goy: R"-N is harmonic, too.

The main problem is to find the solutions of Eq.
(2.4}. In general, this is a difficult problem, but
in some cases it is possible to give prescriptions
to construct explicit harmonic maps. For exam-
ple, an explicit construction is available for the
harmonic maps between Euclidean spheres. " The
strategy is to start with known harmonic polyno-
mial maps between spheres with small dimensions
and, by a special prescription, construct new har-
monic maps between spheres of higher dimensions.

The essential harmonic polynomial maps used
in the present paper are

(a) the identity,
(b) qr~: S'- S' realized by complex polynomials

z-z~ of homogeneity ~k(,
(c) the Hopf polynomial map h: S'- S'.
Suppose that y $~'-$'' and cp $" '-$' ' are

homogeneous harmonic polynomials of degrees

Sometimes it is useful to consider the composi-
tions of two maps y: M-M' and g:M'-N for
which the analog of the tension from Eq. (2.4) is

r (r/) o q ) =aq r (y) + Tr Vd ( (dq, dq ) . (2.6)

In the next section we shall co@sider the case of
a harmonic map between a manifold M and a
sphere S" ' which can be isometrically immersed
in R". Applying Eg. (2.6) with M'=S" ', N= R", g
beingtheimmersion g:S" '- R" and assuming that

y is harmonic [r(y) =0), we get

E and k, respectively. The join of these two maps
is the map p, *y~:S~'"'-S'+'"', defined as fol-
lows. The coordinates of point z cS~ ' are pa-
rametrized ln the form

Then, the join cp, *y~ can be deformed into a
harmonic map S~'" '- S'" '. This can be realized
by constraining the function c!(t) to satisfy the
differential equation

ri(t)+ (e'+e") '([(p —2}e ' —(r —2)e']&(t).
+ (he' —X,e ') sinn(t) cosu(t)}= 0. (2.13)

This equation can easily be obtained by imposing
the map (2.11) to satisfy the condition of harmoni-
city in the form (2.V). In addition, we must keep
in mind that q, and y~ satisfy equations of the type
(2.8) with the eigenvalues given by (2.9), namely,
&, =I(l+p -2) and X, =k(k+r —2). Smith proved
that Eq. (2.13), subject to (2.12), has a solution
n with 0&+ &m/2 and which is asymptotic to 0 and

z/2 at -~ and ~, respectively.
We note that Eg. (2.13) can be interpreted as that

of a pendulum with variable gravity, changing sign
with position.

III. GRIBOV VACUUM COPIES IN THE LANDAU GAUGE

We deal with SU(2) Yang-Mills theory in four-di-
mensional Euclidean space-time. Our aim is to
discuss the structure of the vacuum states in the
Landau gauge, i.e., to find which potentials A„(x)
satisfying the condition

e„&„(x)=O (q=1, 2, 3, 4) (3.1)

generate a vanishing field strength tensor E„„=O,
for which one can write the potential

z=l sinot+ cosa,X
(2.10)ix) ly l

with x ~ R'S(0) ( /lx I
~ S"}y ~ «i(0} (y/ly I

~ S"),
and 0& n & v/2. Then we set

(p, ~p )(x,y)=~ sinn(t)p,
~

~
~, coso.'(t)'Ipp~

f . (x ty l
(I xi

(2.11)

where (x,y}c R~&&R "((0) and

t =In —c (-,~).Ix)
lyl

-A very interesting theorem is due to Smith, "
who was able to construct a harmonic representa-
tive (in homotopy) of y, ~q, . Suppose that p, and

q„are defined as above and the following condi-
tions are satisfied:

u&e(r 2), -I&e(P-2), e=(VY-1)/2.

(2.12)
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A, = U-'e„U, (3.2) differential d. For a vanishing field tensor

f/=N, +tv,N, (t .=1,2, 3) .
Then the Landau condition (3.1) becomes

nN =(s,N, a, N„)N. ,

(3.3)

(s.4)

where 4 is the Laplacian in R4 defined with the
convention bf = -divdf, so that it has positive
eigenvalues. We are looking for a solution of Eq.
(3.4) which leads to potential A, (x) satisfying the
so-called weak boundary condition'

where U(x) is an SU(2) gauge group element which
can be parametrized by a unit four-vector N, (x)
(a =1,2, 3, 4) lying on the unit sphere S'

E =dA= 0, (3.8)

we can write A„ in the form (3.2) for which Eq.
(3.8) is equivalent with Eq. (3.1). But Eqs. (3.8)
and (3.9) say that the one-form (3.2) is harmonic,
which implies that the map U is harmonic. " We
conclude that the problem of obtaining the Gribov
vacuum copies in the Landau gauge is equivalent
to finding the harmonic representatives of the map
(s .6).

The first example of harmonic map between R4

and S' will be the composition of a harmonic re-
traction R'$(0) -S',

1
, A~(x))„(- „0 (s.5)

X] X2 X3 X4
4

I xl ' Ixl '
I x I

'
I xi

x = (x,'+x, '+x, '+x, ')"',
(3.10)

We note that Eq. (3.4) is the condition that the
map

Z: R4-S'( R' (3.6)

is harmonic. Indeed, Eq. (3.4) is essentially Eq.
(2.7) with the "energy" density

e(N) =qs N, s N, . (3 7)

d*A =0, (3.8)

where d* is the adjoint operator of the covariant

Another proof that U is a harmonic map can be
done in an invariant way. As is known, the vector
potential A„represents a connection for a princi-
pal bundle P with the gauge group SU(2) over the
base space R'. The gauge-fixing condition can be
written as"

followed by a harmonic map S'-S'. As we stated
in Sec. II, this composition is a harmonic map be-
tween R' and S', so that we have to construct a
family of harmonic maps between spheres of di-
mension three. For this purpose we shall use the
join of the harmonic polynomials y, :S'- S',
y, :S'-S', where

y, (x,/(x, '+x, ')"',x /(x '+x ')"')
is a harmonic polynomial of degree l and

(x /( 2+x 2)1/2 x /(x 2+x 2)1/2)

is a harmonic polynomial of degree k. These
polynomial maps are of the type z', where z=x+iy
is a point on the circle S'.

Using the prescription presented in Sec. II, we
construct the join of p, and y~,

( )
X] X2 X3 X4

Ixl '
lxI

' Ixl ' Ix)

= (sinn (t)p, (x, /(x, '+x, 'P/2, x, /(x, '+x,')"'), coso'. (t)p,(x, (/,x' +x')' '/x, /(X, '+x,')"'), (3.11)

where

t =-,' ln ', ', c (-~, ~) .x'+x'
x3 +x4

(s.12)

The condition that this map is harmonic implies

o. (t)+ (e'+e~) '(X,e' —X,e ') sina(t) coso. (t) = 0,

weak boundary condition (3.5).
We remark that in (3.11) we have a family of

equations depending on the integer numbers k and
The final sphere S' spanned by the vectors N,

is parametrized as

(s.13)

which is just Eq. (2.13) for P =r=2 and X,=l',
X, =k . Taking into account the asymptotic be-
havior of the solution of Eq. (3.13), we note that
the corresponding potential A~ (x) satisi'ies the

sinQ sinP

sino. cosP

cosQ siny

cosa. cosy

(3.14)
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where n is given by Eq. (3.13) and

g =l arctan —', y=k arctan —'.
xg X3

(3.15)

m= —
2

1 dS=kl,
(y 8e )(S )

(3.16)

where dS is the surface element on the S' sphere

The map (3.11) can be characterized by an inte-
ger m [m,(S'}=8]:

and (y, *p~)(S') is the image of the initial S'
sphere on the final S' sphere by the join cp, *y,.
This quantity gives the number of times the group
manifold S' is covered by the image of the join
Dlap p) Wp~.

Another construction of a harmonic map be-
tween R and S' will be done with the aid of the
Hopf polynomial map h: S'- S'. For this purpose
we shall consider again the map R'- S' given by
(3.10). The Hopf polynomial map is defined
as"

2 2 2 2xg x2 x3 ~x [ i xg +xm xs x4 g 3 xgx4 g 4+x2x3
2 ~ 2

iI, ) xl ' lxl ' !xi ' ixl j I, I xa' '
I xl' ' lxi' (3.17)

for which the topological invariant is called the
Hopf invariant and equals one. At this point we
shall modify the preceding construction in order
to suspend this harmonic map to one from R4 to
S3~

N{x„x„x„x,) =~ sino. (t)a~, coso. (t) ~,(txI ' ] '

(3.13)

ii(t) + n(t) - sin2o. (t) = 0, (3.19)

which coincides with the Gribov equation in the
Coulomb gauge. Since we know only one polynomi-.
al Hopf map (3.17), we find just one equation but
not a family as in (3.13). We note that both the
above constructions give new vacuum copies which
are not spherically symmetric.

Finally, we shall write the, spherical symmetric
solution of the Qribov ambiguity in the Landau
gauge. We shall start with a harmonic polynomi-
al map

y(x, /(x, '+x,'+x, ')'~') (i =1,2, 3)

between S' and S'. Now using a similar trick as
in the above, we shall construct a map from R4 to
S3 ~

N( xgy x2y x3 y x4)

= (sina(t)q (x, /{x,'+x, '+x,')"2), coen(t)},

(3.20)

where

t = ln(x '+x '+x ')' '/ ~x, ~
.

The condition that N is harmonic implies the

with t= 1
~

n~'x.

Now using the same technique we obtain the con-
dition that N is a harmonic map in the form

following equation for at:

B(t)+'n(t) -2x(1+e") 'sin2o. {t)=0, (3.21)

where A, =l(l+ 1), l being the degree of the polyno-
mial map y. Unfortunately, harmonic polynomials
between two-dimensional spheres are known only
for l=0 {the constant map) and l=1 (the identity). "
We shall look only at the nontrivial case l= '1.

After a change of variables

t = in'' —ln(e' —e '),
Eq. (3.21) becomes

d'ct (r) dn (r)
dT2

—tanhr —~ sin2n(r)=0,
dY'

(3.22)

rhÃ, = (8 Plqs N~)N, ) i = 1, 2, 3 (3.23)

and 4 is now the Laplacian in R'. Hence the
problem is reduced to the construction of the har-
monic maps between R' and S3. We observe that
we cannot use the join of maps between spheres

which was obtained by Itabashi. ' Again, we have
only one equation (3.22} due to the fact that we
start with a single polynomial map S'-S' (the
identity). For a discussion of Eq. (3.22) we refer
the reader to Itabashi's paper. '

We remark that all the above examples use as
starting point known polynomial maps between
spheres of lower dimensions. But only in the first
construction were we able to find a family of equa-
tions of the Gribov type since the initial polynomi-
al map q, :S'- S' can be explicitly realized for
any integer k. In this case we are able to find
vacuum copies characterized by any integer num-
ber (m =kl).

Finally, let us briefly discuss the Gribov am-
biguity in the Coulomb gauge. In this case, Eq.
(3.4) becomes
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as we did in the Landau case because we finally
arrive at spheres of dimension higher than neces-
sary. Of course we can suspend the identity map
S'-S' to R'-S', but this is essentially the solu-

tion known in the literature. ' ' This is due to the
fact that beteen two-dimensional spheres there
are no polynomial harmonic maps except the con-
stant and the identity maps. "
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