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Anharmonic oscillator: A new approach
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We construct a novel perturbation series for the anharmonic oscillator. This has elegant, qualitative
properties. It also converges, unlike conventional perturbation theory, as we prove by a generalization of
Lipatov's technique.

I. INTRODUCTION

Since the early days of quantum electrodynamics
it has been realized that the standard perturbation
series in o. is probably divergent. ' Recently
Lipatov has given a powerful impetus to the study
of this question. ' He showed how in many theo-
ries the Nth term of the perturbation series could
be investigated elegantly by studying the instanton
solutions of an artificial functional integral. By
considering zero space dimensions this technique
may also be used to estimate the terms in the
conventional g" expansion of the energy levels of
the anharmonic oscillator,

H =-'(p'+ m'x') +-'gx'.

These results confirm the old results of Bender
and Wu' that the Nth term behaves like (N! )A"Ns
C [1+O(1/N)]jg" where A, 8, C are computable g-
independent numbers. However, t he technique
shows that genuine field theories in nonzero space
dimensions have essentially identical large-N
behavior with A, B, C altered. Moreover, almost
all of the present-day approximation techniques
have similarly been shown to be divergent. This
includes the e expansion and the 1/N expansion. "

In this paper we shall give a finite, convergent
expansion scheme for the energy levels of the
anharmonic oscillator. This avoids all of the
problems of the conventional perturbation series
but is just as easy to calculate. We will prove
in Sec. III that is is a convergent scheme both by
using Lipatov's functional technique and by a
more direct and laborious technique.

The conventional approach to these divergences
has been to use Borel summation. ' The Lipatov
analysis shows that in some cases the formal
Borel sum constructed from the perturbation
series exists. Only in simple cases such as the
anharmonic oscillator has it been proved that
this must equal the correct answer. ' Indeed
there exist some spectacular counterexamples
to the notion that a convergent or Borel-summable
formal series must give the correct answer. '
This Borel summation technique fails for renor-

malizable theories. Thus any other possibilities
merit attention.

We also strees that our expansion clearly in-
cludes the known qualitative structure of the
exact eigenvalues of (1.1). Thus it is known that'

~I

i]s m' m2 2

E =g A+B ~]s+ C 2(s + ~ ~ ~ (1.2)

is convergent for large g. The existence of the
g' ' factor, necessary on dimensional grounds, is
hard to see from a power-series expansion in g.

The nth energy level is known for large n to
behave like n . For negative m the potential
in H has a double minimum and leads to the well-
known "symmetry breaking" shift. These re-
sults show up clearly in our answers.

In conclusion we stress that we have a conver-
gent, easily computable technique for deriving
the energy levels of a classical quantum-mechan-
ical problem which contains many features of
field theories. Our hope is that this may give a
new insight into how field theories can be solved.

II. GENERAL PROPERTIES

We first consider conventional perturbation
theory for the anharmonic oscillator

H =-'(P'+m'x') =m(a~a+ —'),

H =—x4= (a'+a)'.g
4

(2.1)

Here we have a~
(
n) = (n+ 1)' '~ n+ 1), a!!n)

= vn
~

n —1) as usual for the eigenstates of Ho.
Thus a~ raises the eigenvalues of H, by one unit
of m. If we consider standard Hayleigh-Schro-
dinger or Brillouin-Wigner perturbation theory
then each extra order in g implies an extra factor
of the form (n~H, ~r)/(E E'„) where for-a given n
we are only allowed to have r=n, n+2, n+4 be-
cause of (2.1). Thus at order g'" the states n, r
can be of order 4¹Thus E'„-m4N while (n~HI [r)
= (g/16m')(4N)'. This means that the. terms in the
perturbation series which reach high excited
states imply the existence of¹!factors for large
N. This arises because H, is fourth order in
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a~, a while H, is second order.
If we were to use a Feynman diagram tecImique

then we must think of
~
n) as being n independent

particles each of energy m over a vacuum of
energy 1/2m. Then H, creates or annihilates up
to four particles. The overall ¹~now comes not
from individual terms in the series but from the
very large number of diagrams. ' Thus when H,
acts on an ~particle state, only one of these
particles turns into three and the n factor comes
from the choice of which one HI acts on.

Our method is to rewrite H =H, + HI by using

H, =~ '+—,P'

'I 2"
H =(P'+m'x')/2+ —x' — x'+ —P'

~

H, is now a squared harmonic oscillator with
frequency Q. 0 is at this stage an arbitrary
parameter. We now use a~, a operators of fre-
quency Q. For the moment the harmonic (p'
+ m'x2) term is put into Hz. Later we will move
it into Hp Thus the eigenvalues of Hp are

S'=—(n+ -')'.
11 Q2

' 2 (2.3)

HI is still fourth order in a', a. The extra factor
in going from Nth-order to (N+ 1)th-order per-
turbation theory is now of order 1, not ¹ This
eliminates the terms that give rise to the ¹&.
However, all graphs in a given order must now be
counted, and it is not at all clear how the sum
behaves. This is the subject of the last section.

The parameter 0 is at this stage entirely free
except that it must not be zero or infinity. In both
these cases the spectrum of H, becomes continu-
ous rather than discrete and the standard pertur-
bation theory is not well defined. Order by
order the perturbation theory defined by (2.3)
depends on Q. This must vanish in the final
summed answer. We will show how to estimate
0 later on. Clearly this. fake dependence imposes
strong renormalization-group-type constraints in
our series, but we have been unable to use this.

In terms of a~, a we now have in normal-ordered
form

m2
H = ——(a~2+ a —2a~a —1)+ (a" + a + 2a'a+ 1)

4 40

+ g (a'4+ a4+ 4a"a+ 4a~a' —10a~'a' —20a'a+ 6a~'+ 6a' —1) .16Q2 (2.4)

We stress that a, a have dimensionless, .0-independent matrix elements. Clearly calculating low orders
orders of perturbation theory is trivial, if tedious, since HI is at most fourth order in a, a.

Before writing out the first few terms we change Q for a new variable Z = Q'/g which is dimensionless.
Then

gO gigsg~g3(if'+ i)2

+l/3Zl/3 m2
H, = — (a~'+ a' —2a~a —1)+4,&»i, (at'+ a'+ 2a~a+ 1)

4g 1/3Z1/3

-l/3
+ (at~+ a + 4at'a+ 4ata' —10a~'a' —20a~a+ 6a~'+ 6a' —1)16Z

(2.5)

In each order of perturbation theory we explicitly remove g' 'Z ' '.
For simplicity we set m2=0, for the moment. Then for the ground-state energy in Rayleigh-Schro-

dinger perturbation theory we obtain

+ ~8 8
—gZ gZ —~~ + ~ 8

—gZ 8-gZ + gZ —~6

rig
32 x400 &v (2.6)

and where the curly brackets enclose different
orders in Hi For the coeffi.cient A of Eq. (1.2)
a choice of Z =1 gives 0.4247 as opposed to the
correct 0.420 805. Further numerical studies

may be found in Ref. 10.
The question which must now be raised is:

How do we know what value to choose for 0 or
equivalently Z'? We shall prove in the next sec-
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tion that the nth term -exp(-n'~' Z4~' const) as
n ~. Thus the larger the choice of Z the faster
the convergence of the nth term to zero. How-
ever, large Z implies E0-0 and so we start fur-
ther away from the correct answer. For small Z
the convergence is slower and we start even fur-
ther from the correct answer.

One way is to choose Z so that +e sum of the
corrections to the zeroth-order term E0 vanishes.
Referring to (2.6) this gives Z =0.25, 0.845, or
0.412 keeping one, two, or three orders. Notice
that our expansion is not an expansion in any
parameter of the theory.

Returning to (2.6) and keeping the m' term we
see that the numerators of the Rayleigh-Schro-
dinger series are polynomials in (m'/g'~') while
the denominators are constants after we cancel
the g' ' factors and remove the sole overall g' '
factor. Thus our perturbation series automati-
cally falls into the form of Eq. (1.2) and we obtain
perturbation series for the separate A, B, C
terms. In other words, the qualitative structure
of the large-g limit is built into our expansion.
The terms (m'/g'~')" first appear in Nth-order
perturbation theory.

Now let us turn to the calculation of the Kth
energy level for large K. This is known to be
-K ' lying between the K of the harmonic oscil-
lator and the K' of our unperturbed Hamiltonian
80. We use the strategy employed above of
solving for the Z which makes the corrections to
E~ zero. This gives Z -N and remembering E~
=g'~'Z~~'(K+ —,')' we see immediately that Zr

K4/3

We have checked the above calculation of Z -K
up to third order in Bl. The calculation involves
surprising cancellations whose origin and signi-
ficance are obscure to us. Thus, although each
term in say third order -K4, the sum of a1.l Ray-
leigh-Schrodinger graphs -K'.

It is convenient for symmetry purposes to in-
troduce r =K + —,'. Then

g (K }HI }K+2) (K a 2 }H~ }K)
Er -Er:

~ (K }H,}K+4)(K+4}H,}K)+~ 0 0

Each of these terms -K' but of course, due to
the oddness of the denominators and evenness of
the numerators, these cancel. We are left with
terms Z', ZK, K'. Again we obtain Z -K.

Now turn to third order in Hi. Assuming Z -x
and keeping up to 1/r corrections we may easily
show that

(K+2IH, IK) = —~(zr r'—)+(——,'Z+ —,'r),
(K —2IH, IK) =- ~(zr r'-) —(- —,'Z+ ~r),
(K+ 4IH, IK) = —T'6r' ——,'r,
(K-4IH, IK) =- ~~r'+ ~r,
«+ 4

I
Hi

I
K+ 2) ~(zr r') (—&Z —&r), —

(K-4IH, IK-2& = —y(«-r')+(gz-yr),
(KIH, IK) =~r(z —~5r)+0(const),

(K + 2 IHy IK —2) = —~r' + 0(const) ~

(2.8)

Thus in leading order in K or Z we have four
graphs where we jump up or down four excited
states and then come down or up in two jumps of
two. These give

4 [ —.'(«- r-')]'(- ~r')
( 4r)( —8r)—

2 [ @(Zr -r')]'T'—r(z —yr)
(-4r)(-4r)

the same graphs but with jumps of four:

2
(- +r')'vr(Z vr)—

(-8r)(-8r)

Then there are two graphs were we jump up or
down two states, stay in that state, and then jump
back to K:

Eo ~1/3Z-2/3y 2
E

(KIHI IK) =g' 'z

—~(10(r+-,')(r - -,')+1) .

(2.7) two graphs where we jump up two, down four,
and up two:

(2.9)
Setting the second term equal to zero gives Z

-5/4r-5/4K as expected. Now turn to second
order. The energy denominators are all of the
form

r' —(r e2)', r' —(r +4)',

since we are not allowed to return to the state K.
Moreover, (KIH~IK+2) are equal for large K.
Thus in second order we have

Then in Rayleigh-Schrodinger theory we must
subtract the four terms

(K }H,}K+s) (K+ a}H,}K) (K}H,}K)

where a= +2, +4. These are again equal in pairs
in leading order giving
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—2
[- ~(Z~ —~')]2 ~~(Z ——,'~)

(-4x)'

( 1 y2)2 ly(Z By)
(-8~)'

2
H' = -'g x' + P2 + —' 2 + m2

2"
+—.Pnl'

(2.10)

for a=+2 and +4, respectively. Thus the terms
add because the energy denominators have the
opposite signs for a plus or minus but they occur
in pairs of the same sign except for (2.7). The
above terms add up to zero.

Now turning to the correction 1/x down on the
dominant term, we see that the corrections to the
energy denominators and matrix elements are all
odd under +——,i.e., x+ 2- x - 2. Thus any
given correction term is canceled by a similar
term with x+ 2 —x —2. Notice the even
(&~Hy(&) (&+2~&y~& —2) «rms have no
1/r corrections.

The final answer, thus, is of order x2, Z2, Zr
just like the previous terms. This is a truly
remarkable result. It also shows clearly that
if we try to calculate excited states we must use
different 0 for the fastest convergence.

The above split of H =H, +H, thus turns out to
naturally fit the problem of investigating g-
so that m'/g' 3 0. The limit g-0 is much
more complicated. Clearly for g positive or
negative we expect violently different spectra.
Thus E(g) is expected to be extremely delicate
near g=0. We now write

the energy denominators took the form (—', )'
—(N + —,')', ¹ 1. Thus there are no g singularities
apart from the explicit g'(' in a given order of
perturbation theory. Our expansion, however,
contains powers of m'/g'(' which hardly allows
us to investigate g 0.

Now Eo' = (g/m')(n+ &)'+m(n+&) and energy de-
nominatorsE, "—E~ = (g/m')[-', —(n+-,')'] -mn clear-
ly have zeros as functions of g which tend to zero
for large n at fixed m. These clearly lie at nega-
tive g. In Nth-order perturbation theory these
poles appear to the power (n —1) and the behavior
of the sum is tricky. Thus, although we cannot
compute the behavior as g-0, our series contains
clear warning signs that g-0 is dangerous.

For m2 & 0 when the potential has two minima
we cannot set 02=m2. We then are forced into
setting 02 =~' = -nz'. When we shift y = x
+ (x'/g)'(' then

a =-' p'+ Z'y'+ &gy'+ y'(g x')'" + z4/4g

Now remove the k'/4g and write

g( p2 )a (p2
If."=-I y'+ ~ I

+ I
—+ ~'y'

I .4( 2X'p 2

Then H,
' is soluble and HI is proportional to g.

The y' term is proportional to vg and must appear
an even number of times. Thus apart from the
X'/4g term we obtain a series in g" as above with
denominators as rational functions of g.

We expect that the above technique also works
for potentials of the form g(x')~/2" for R an
integer ~ 2. We again write

1
p2 2B

0
The harmonic term is now included in the "free"
Hamiltonian. This means HI is proportional to
g, unlike HI. Thus nth order in HI is at least nth
order in g since H,' is linear in g. To make H,'
soluble we have assumed Q' =m'. Clearly this
only works if m2 & 0. Then the perturbation ser-
ies defined by this split has the remarkable prop-
erty that it is convergent for all gw 0, ~ and,
moreover, the first N terms of conventional
perturbation theory are contained in the first N
terms of the H,', HI series plus higher-order
corrections. This can be checked by expanding
the energy denominators. Notice that the terms
proportional to g in the denominator are the terms
of order N2 which give us convergence. Hence
the expansion of these denominators is dangerous
as N- ~. The HI series has thus picked up parts
of the conventional expansion in g and inserted
them into the energy denominators in a truly
remarkable manner.

In our original H~ split with 0'/g=Z =1, say,

(a'a+ —,')n .gR

We also expect that if we have two coupled oscil-
lators

H = (p,'+ m, 'x, ')/2 + (p,'+ m, 'x,')/2

+X(x, —x,)'+g,x,'/4+ g,x,'/4

and we write

Ho —4gl x1 g 2pl + 4g2 x2 + g 2P2
1 "2

H =H —H,
then this perturbation expansion converges. The
coupling is all provided by the X(X,—X2)~ term
which is of lower order in creation and annihila-
tion operators. The convergence properties are
hence similar to our technique applied to two in-
dependent anharmonic oscillators.

We can clearly take the sum of M such anhar-
monic terms. This Hamiltonian is then the lattice
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analog of P' theory where (hP} —[(x, —x,.,)/aP
where i labels the lattice points and a is the lat-
tice size. This then gives, f or example, a model
for anharmonic effects on the phonon spectrum in
a crystal lattice. Unlike the conventional pertur-
bation theory in g„we construct a convergent ex-
pansion.

m. CONVERGENCE PROOFS

In this section we prove the convergence of our
perturbation series for both Rayleigh-Schro-
dinger (RS) and Brillouin-Wigner (BW) perturba-
tion theory. We do this by estimating E„, the
Nth-order contribution to the ground-state energy.

The leading large-X asymptotic contributions to
E„are obtained by entirely different methods foz'

RS and BW theory and agree. Such agreement is
in accordance with our previous numerical re-
sults that showed a diminishing difference between
ground-state BW and RS energies even in low
orders.

I.et us concentrate first on the convergence of
the B% series. Suppose we wish to calculate the
energy levels of a system described by the Hamil-
tonian

H = (p'+ x')/2+ V(x), (3.1)

where V(x) is a polynomial in x' and V(x}
=g(x'/2}~ for x- ~, where I, is an integer. We
then define

H = (x'+ p')/2+ g(p'+ x')'/2'

H, = V(x)-g(p'+x') /2i, (3.2)

E„=(olH, M"-'l o&, (3.3)

and prove that the corresponding BW series is
convergent for arbitrary E in the denominators.
For the sake of simplicity we take I =2 and V(x)
=g(x'/2}' and only quote the results for general
L and V. Here we have chosen 0=m =1. Dif-
ferent choices of 0, m do not alter our conclusion.

Then

E„=(2m + —,') +g(2m + —,')' . (3.6)

We are now using l, m, which are half the pre-
vious values. Since HI is a fourth-order poly-
nomial of a', a it only generates finite steps in the
space of eigenstates of H,: Thus (3.5) may be
calculated by replacing M by a finite matrix.
Thus labeling the rows and columns by the even
excited states of the harmonic oscillator we omit
all /, rn&¹

The new matrix has X eigenvalues X&'& and
eigenvectors a~&'&, i, k = 1, . . . , ¹ The eigenvalues
X&'& are real since the symmetrized form of M is
Hermitian. Then (3.6) becomes

2 N

E„=Q Q (0
l
H,

l
l& a,'"'*x'"'" 'a'"'

l, m=1 t'"-1

1
(mlH, lo).

m

The eigenvalue equation

g(mlH, ll & ~, + ~(E„-E)a„=o
K=x

(3 "l)

(3.8)

then leads to a 5-term difference equation for
a„. We investigate (3.8) as N

If the initial conditions of the linear homogene-
ous difference equation (3.8) are not fixed, there
are four linearly independent solutions. Defining
a/a„, = (-1}C~ each of the linearly independent
solutions is such that (C, —1)/(C„, —1)- 1 as k
—~ as shown later.

Setting C, ,„=C,=C for lrl ~2, one obtains the
following leading terms and the most important
correction term:

S(2l+ 2) (C 1)
(2l y}2

N-2= Z &0IHII'&&'lM" 'fm& &mlH~lo&,
J,m=1

(3.6)

where

where

M =(E —Ho) 'PHi. (3.4)

+ A.[g(2l+ —')'+ (2l+ —') ]C'+ O(l(C —1)')=O.

(3.9)

I' is the projection operator for the space orthog-
onal to lo), the ground state of H„ i.e., of the
harmonic oscillator. We remark that in BW per-
turbation theory E is the exact energy level and at
Nth order we should in principle solve an Nth-
order polynomial equation for E. Our proof
works for arbitrary E.

%e may omit the projection operator by re-
stricting the space of state to the one spanned by
the even excited states of the harmonic oscillator
if we write

The deviation of C„„from C, generates a term
similar to the correction term of Eq. (3.9}.

This equation can be solved to give

VC ——= 2(1 —A —A/2gl)'~~e'~~+ O(1/v l ), (3.10)1

vc

where Q, = (s —1)m, s = 1, . . . , 4. lf
l

1 —Xl «1
then

l
C, —1

l
«1 for l » 1, and we can write the

left-hand side as C, —1. The solutions of (3.9)
are generated by
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a (r)= C,a, =a, exp glaC)
t t

n l /t'4

=a exp 2 1 —~ —-- e '+O—
vV

n I/4
a„(1)=a,exp 2 dx —1+X

~

e' '+O(&n)
2gx

(3.13)

Substituting (3.12) one obtains

=a exp 2 dx 1 —A, —
2gx

e "'+O(2jn}

(3.11)

l 1/4
a„=exp 2 dx —1+a

~
cos-

2gx
2

a„p cos + q„, (3.14)
where t is a large independent number, t«¹

Now our recurrence relation leaves a, and a2
independent and all subsequent g,. are linear func-
tions of a, and a2. Thus a, is determined by the
recursion relations independently of ¹ This
means that a„ is a linear function of g, and a2
and the four a„(s) functions

where P„ is the phase of p =p," and

f'n y l /4
q„=sin —

~ dx —. 1+X
4 2gx

(3.15)

Substitute this into (3.14) and solving the deter-
minantal equation gives

4 2

an= R.e san s Q~, (3.12} W2 (
—1+1) =Mr, (3.16)

where p, are complex numbers independent of N,
a„a2. They can be calculated exactly from the
recursion relations for small l. The real parts
in (3.12) are taken because a„ is real but the a„(s)
are complex.

The eigenvalue X is to be determined from the
conditions a„„=a„., =0. Substitute into (3.12)
and we obtain two homogeneous linear equations
for the two initial values. The determinant of
that equation provides the characteristic equation
for X.

Suppose first that X/2gÃ& 1 —X. Then the
dominant solutions are a„(1),a„(l)*:

or since N- ,
1

2g(N+ 2) ' (3.17)

(3.18}

The solutions (3.1V) will be discussed later with
the solutions (1 —X& X/2gN) The s.olutions (3.18)
give a contribution e ~, a. &0, to E„much
smaller than those of the next paragraph.

Suppose that 1 & 1 —X & X/2gN. For n& n,
=X/2(1 —X)g, a„ is still given by (3.14). For
n&no,

a„=e '([o,,e "+y,e "+Rep,e "]a,+[n2e "+y,e "+Rep,e "]a2j,

where

(3.19)

g„= dx 1 —X —X 2gx'

The n, P, y coefficients are the analogs of the p's of (3.12). Neglecting the low order y„y, we find

sin(2g„—g) =0, (3.20)

where g is a fixed, N-independent constant. Thus the eigenvalues X are such that g„ is large in general,
i.e., 2g„-Mm with M large. Thus we obtain

X=1 —(Mm/2N)'/' M=1, 2, . . . .
Using (3.19) and inserting n„n2 we find

a„=e'""c([e'""'""'Re(p,e "")+Re(p,e 'M)]a2+ [e "" ""'Re(p,e "')+Re(p,e ")]a,).

(3.21)

(3.22)

Thus e " is only important when N —n= 0(1).
Thus

"nQq=e Q„~ (3.23)

where n is bounded.
Now, disregarding slowly varying functions of

n, low-order entries of the normalized vector
Qp Q 2 ale

2 1 1 4t)
1 (Q 2} 2

Using 4q, ,=4m(1 —X) ' 4/2g we obtain
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EN —- A. g

- Q )("exp[-(((I —)() 2/4)(/2g] . (3.24)

Using the fact that the spectrum of M is dense
near X-1, the sum of (3.24) can be converted to
an integral and evaluated by the saddle-point
method. The optimum value of A, is obtained from

The proof of the theorem is fairly straight-
forward; it follows from the expansion of Z(X) in
powers of ~. The theorem implies that the lead-
ing asymptotic term of ln E„ is given by InE~/
lnZN - 1. We calculation Z„by using the Hamil-
tonian functional integral form of Z:

Z- DPDxexp d7 iP &
«8 /2 2

N/)( =({(I—)() '/'3/8g .
Consequently A. = 1 —(8Ng/3m) '/' and substi-
tuting into (3.24) we obtain

P'(~)+ x'(~)l'
1

2

gXx '('7)
(3.30)

E„=em[-N'"g -4/'(3v/8)'/'V/3+ O(~'")]. (3.25)

The behavior of EN for the general problem of
V(x) Eq. (3.1) gives

[ N(L+1)/(2L L+1) 2L{2L L+1)2 2

N

X d (1 + 0(N-1 /2L))] (3.26)

where

(2L —L+ 1),L (L,) / (,L L, )I. +1

H(X) =H, + )(H',

Z(X) = Tr(e 2"('))

where H2=R+gR, H' =-gR +gx /4, R
= (p'+ x')/2. Then

Z(X) - exp(e ' "'), P - ~

(3.27)

I +1
L(L —1)2

){ I'(I/L + 1 —1/2L)l (1 + 1/2L)
2I. I'(I/L —1+1)

Thus the BW series defined by Eq. (3.3) is con-
vergent for every g&0 and integer ~ ~ 2.

Let us now turn to using Lipatov's' method to
investigate the RS series for our split. This
method has been used by Lipatov and Brezin,
LeGuillou, and Zinn- Justin to investigate large
order of conventional perturbation theory. We
again restrict ourselves to L = 2. The generali-
zation for 1.& 2 is agian possible and gives re-
sults identical to (3.26).

Let us define

We use the boundary conditions p(-{8/2) =p(p/2)
in the functional integral.

Before proceeding to the calculation we- remark
that this functional integral has an ordering prob-
lem. The operator (p'+x')' does not simply
translate to a function (p2(7)+x2(r)) but terms
corresponding to the commutation [P', x']
-2i{px+xp) also appear. It is easy to see that
such terms do not change the leading asymptotic
contribution to ln E„, the only quantity we are
going to calculate. Therefore for the moment we
are going to ignore the corresponding contribu-
tions.

Thus

1
Z =—DPDx

Nf

. . p2+x2 2+x2
xexpl dr 2Px-P g2 4

(p'+x')
+Kin g dy

4

1
DPDxe ".

N! (3.31)

We have dropped the arguments of the functions
P(v) and x(7) The functio. nal integral (3.31) is
dominated by classical paths as N- ~. The
canonical equations for the classical paths are

6(-A) =ix- p —gp(x'+ p')+ —p(x'+ p') =0,
(3.32)

6( A) . ~ 2 2 N
6x

= -Lp -x- gx(p'+ x')+ —xp'= 0,
C

1 8"E()() (3.28)

where E(A) is the ground-state energy of H(X).
Now define

where

O/2

C = —k dv[(x'+p')' —x'].
-g/2

(3.33)

Z ——TE eN N (3.29)

Then we prove that if Q){E„(~ and (E„„—E„)/
E„-0for N-~, k fixed, then

6(-A) ~ 6(-A) .P+ x=0, (3.34)

The first integral of the canonical equations is
obtained from
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which integrated over z gives

p2 + ~ 2 (p2 y ~ 2)2

N X4 (X2+P2)"
+——— =E= const. (3.35)C[4 4

The second integral is obtained from

(3.43)

(
8N4) (3.44)

There are two solutions of (3.43) for b. A
4 & 0 solution is

5(-A) 5(-A)
P — x=0. (3.36)

Alternatively for 4 & 0 and choosing &0= sic or
using principal values on the integral

This gives (3.45)

(3.3V)

It is advantageous to introduce the polar coordi. -
nates

all prescriptions giving the same.
Now calculate the classical action correspond-

ing to (3.45). The other solution will be shown
later to be unstable. We can write

P =42R cos8,

x=v'2R sin8. (3.38) -A.o= dT iR8 —R -gR +NlngC. (3.45)

The boundary condition on the polar coordinates
is 8(-P/2) =+8(P/2). Then Eqs. (3.35) and (3.37)
can be restated:

Now we use (3.39) and (3.41) and the above 4 to
obtain

y/7
'-A, = —~7N2~'g 4~' — +Nln(N/l) .

8

R + gR2 ——R'(1 —sin48) =E,
C

(3.39)

1i——= 4 sin'8 cos8.d7R (3.40)

The instantonlike classical paths dominate the
functional integral. These are the solutions that
satisfy R(7)-0 for r +~. -This implies E=O.
If E = 0, then R can be calculated from (3.39) and
inserted into (3.40) to give

8=i
(3.41)

8=i(~- ~,).
The condition P(P/2) =P(-P/2) requires r, -0.

The constant C is to be determined from the self-
consistency Eq. (3.33). Substituting Cg/N=1 + ~
and using (3.41) and (3.39) we find

Ng/(1+ &) = dr . 4 ', . (3.42)[I —sinh'( v —v, ) j
4 + slnh 7' —'70

The right-hand side is large only if 6-0. This
gives

InE„=-2¹'g 4 '(3v/8)4 '+ 0(N ') . (3.47)

This agrees perfectly with our previous BW
result.

At this point the effect of extra ordering terms
is easily computed:

i d7x v P v =2i dwRsin&cos8

=o(¹").
This proves our earlier statement that ordering
problems do not affect the leading large-N be-
havior. The small oscifi.lations around the clas-
sical solution do not alter the leading term of
(3.4V).

I et us now return to the b, & 0 solution. We
shall show that the corresponding classical solu-
tion is not stable; (3.44) does not correspond to
a minimum of the action.

The action A. can be expanded in a functional
series around the classical solutions P(r) and x(v)
as follows:

5'(-A) 5'(-A) 52(-A)-A=-Ao+~ d7'~d72 m r2 m v', +2m 7', 7'2 + v', 7'2, 3.48

where

O' A ,=-I 1 + [ P*(~,) +Sx (~)]( )I 4(~'—(r,,)(}——-, (r, )[)P*,(r, ) + x*(y,)](y,)[(P*(~,} + a'(r, )],

(3.49)
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and similar equations for the other derivatives.
%e show that at least one of the eigenvalues of

the Schrodinger equation corresponding to the
eigenmodes of the oscillations around the classi-
ical solution is negative. %e use the variational
approach by choosing a particular pair (P, m) and
calculate the quadratic part of the right-hand side
of (3.48). Our choice is

Then we have the lowest eigenvalue,

Thus a large negative eigenvalue exists. The
6 & 0 solution is unstable and (3.47) gives the
dominant term.
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