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The quantum generalization of the Gelfand-Levitan method is presented for the nonlinear Schrodinger
model. The basic dispersion relation for operator Jost functions is derived, and the Heisenberg field operator
is expressed in terms of scattering-data operators. Construction of Greens functions in the zero-density
vacuum is discussed. The four-point function is explicitly calculated from the expression for the field
operator and compared with the result of a direct Feynman graph summation. In addition it is proved for
any number of particles that the Hamiltonian eigenstates constructed from the quantized scattering data are
identical with those previously obtained by means of Bethe's ansatz.

I. INTRODUCTION

The development of the inverse scattering trans-
form as an operator method in quantum field the-
ory has provided a clearer understanding of the
structure of exactly soluble models. The method
has been used to formulate operator solutions of
the quantum nonlinear Schrodinger' ' and sine-
Gordon equations. ' The Bethe-ansatz solutions
of certain two-dimensional fermion theories may
also be classified as indirect applications of the
quantum inverse method. Comparing these meth-
ods with the classical inverse technique of Gard-
ner, Greene, Kruskal, and Miura, ' it is apparent
that what has been developed in the quantum the-
ory thus far represents only a part of the classi-
cal methodology. In the classical inverse method,
one solves the initial-value problem by first map-
ping the initial conditions into a set of scattering
data (the direct problem) and at a subsequent time,
reconstructing the field configuration from the
scattering data (the inverse problem). Until now,
the analysis of the quantum formulation has pro-
vided the generalization only of the direct problem.
This suffices for the construction of the eigen-
states and eigenvalues of the Hamiltonian. In or-
der to discuss the Heisenberg field operator and
the calculation of Green's functions, we must con-
sider the quantum analog of the inverse problem,
which is solved classically by the Gelfand-Levitan
integral equation. This quantum generalization is
the content of the present paper. In Sec. II we de-
rive an operator form of the Gelfand-Levitan equa-
tion for the quantum nonlinear Schrddinger equa-
tion and then, in Sec. III, discuss some of its con-
sequences. Section IV contains a short discussion.

In the remainder of this section we collect some
results from the direct-problem analysis, follow-
ing essentially the notation of Ref. 2. The nonlin-
ear Schrodinger model (5-function gas) is defined
by the normal-ordered Hamiltonian

where the field P obeys equal-time commutation
relations

1
+

2 $ 4, = —Wc%, Q, (Sa)

i ——$ (4, = vc /*4', .
Bx 2

(3b)

The solutions 0 of Eq. (3) are normal-ordered
operator functionals of the Heisenberg fields Q
and P*. Particular solutions are chosen by spec-
ifying the asymptotic behavior in one direction at
spatial infinity. Of special interest are the Sost
solutions g(x, $) and y(x, g), defined by

(4a)

y(x, $)- e '~"~' as x-+~.

Both g and lt are analytic in the lower half $ plane,
where analyticity of an operator is taken to be
equivalent to analyticity of all its matrix elements
between physical states. We will also have oc-
casion to use the conjugate functions

r
and y=

&ac

g Xl

which for real t are also solutions of Eq. (3), and
are analytic in the upper half plane. The scatter-
ing data a($) and b($) are defined by the asymptotic

[P(x, t), P*(y, t)]=6(x-y).
For simplicity, we will consider only the case of
repulsive coupling (c&0) for which there are no
bound states in the spectrum. The model is solved
by considering the Zakharov-Shabat linear eigen-
value problem'
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behavior
~

&(~)c K K2/2

q(x, f)-
b(~}e"iK2/2

as x~+ . (6)

[6, A*l =

[X1,4*]=-
2

ice
[x., 4]=-

2 x

The fundamental commutators among the operators
a and 5 may be obtained from the following prop-
erties (7)-(10) of the Jost solutions g and X.

From the defining relations (3) and (4), one
finds that the nonvanishing commutators of g and

X with the funda, mental fields P at the same point
x are given by

where S($, $') is given by

f -g'-ic
S(5, $')=

(

(1V)

(18)

For $&$', this is the two-body S matrix. The
commutation relations (12)-(1V) have also been
derived by Sklyanin and Faddeev, ' who obtained
the additional result

(20)Ib, " b ) -=&*(u } "&*(S.)I0)
where Io) is the vacuum state with (t)(x) I 0) =0,
then Ik, b„) is a simultaneous eigenstate of H,
a(&), and a*(g):

(21)

&(5)JK*(5'}=S(5, $')fi*(5')&(5)+2«($ —5'). (19)

The fact that (19) is correct has also been shown
in Ref. 8. From (12)-(16) it is seen that if we de-
fine a state

In addition g and X commute:

[KI,(x, h), X/(x, 5'}l= o. (8)

The results (7) and (8) remain valid with g re-
placed by g and jor X replaced by X. Using (V) one
may show that the WronslKian of g or )r) with X or X

is constant in x, and hence the scattering data may
be expressed as

~ =AX2 —42X1

42 Xl (1X2

as x~-'0,

~*(K)= b(5) s '(h),

Thus a($} is analytic in the lower half plane. From
(9) we may also deduce the asymptotic behavior

) el K2/2 W

x(x, 5)- (10)
/K(]) 8-K K2/2

Using these results it is possible to derive all the
commutation relations among the Hamiltonian 8'
and the scattering data a($) and b($). Expressing
the results of Ref. 2 in terms of the reflection co-
efficient

a (()Ia, a„) ="', ()+ z . Ilier, 'a„).

(23)

The particular significance of the operator B*($)
is that if i'K, &k2& ~ &b„, then Ik, ~ b„) is a nor-
malized in-state, while if k, &k, ~ ~ ~ &0„ it is nor-
malized out-state. In Sec. III it is proved that
these states are identical to those previously ob-
tained by means of Bethe's ansatz, '"a result
until now checked only up to n =3.

II. QUANTUM GELFAND-LEVITAN EQUATION

In this section we derive the quantum version of
the Gelfand-Levitan integral equation which relates
the field P(x) to the reflection coefficient B($). To
begin, let us review the derivation of Zakharov and
Shabat' for the classical case. These authors con-
sider the equation g =KKX+bX (for ( real) and use
the definition (11) to write it in the form

we have ga '=x —ice Jt*x. (24)

(12)

(13)

(14)

[H, a(g)] =0,

[a,z*(~)]= g'z*(g),

[ (5), (&')1=[ (h), *(('}]=0

~(()2'((') =
(&

— ..)2 ((') ~((.)*'
a"(()2'((') = (&+ ", 2'((') a'((), (ts)

g —$'+is

Xe «2/2, 1m~-&0

qa 'e-""" 1m~-&O (26)

From (24) the discontinuity of 4 across the real
axis is inc B~xe " ', while as Ig I-~, 4 has the
behavior

This suggests a piecewise analytic function 4 de-
fined by
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P

tact

0
"H (26)

d(f) =««*(5) «— *(k)««*(k)R($) . (34)

where, for real $, the operator a is defined by

Thus we may write a dispersion relation for 4
which when evaluated just above the real axis
reads

~e-j gX(2 1 ' vc ",R*(ft)x(x, )t)e '« "«'
+ dg'

2m g' —$ —ie,0.
(2V)

This equation enables the Jost function y(x, g) to
be determined in terms of the reflection coefficient
R($); the field (t) may then be obtained by means of
the asymptotic behavior

X1(x, 5)e"""--,as ~]~-vc gt(x)
(28)

which follows directly from the defining equations
(3}and (4).

The main result of this paper is to demonstrate
that (2V) is maintained in the quantum theory and
that the correct ordering is as shown. ' This is not
a trivial extension of the classical result since,
as we shall see explicitly below, the motivating
equation (24}is no longer valid in the quantum the-
ory. Let us instead, for real $, define an operator
function g by

8.(x, ~) =X(x, g) iWcR+(g) q(x, g). (29)

Since the functions y and y on the right satisfy the
Zakharov-Shabat equation (3}, it follows that g
satisfies the coupled equations

c
9 1

+ —5 g«=-~egg%

~ ~

~
—

~ g, = Wcy*g, -ic[R*(g),y*(x)]~, .- a 1

(30a}

'1

(3ob)

The second term in (30b) arises from the quantum
orderings. Using Eqs. (V), (8), (9), and (ll), the
commutator [R*($),Q*(x)] may be evaluated, yield-
mg

=(1+ . Ilg&. (35)

We see that only to first order in c is this the
same as a '($) ~k), since the latter is
[1 ic/-(( -k —ie)] '~k). More generally we may
show that

n

g(()lg, "t„)= 1+ "
)lg, " g„&. (st)

1

Since the states ~k, ~ ~ |«„) are complete, we may
regard (36) as an alternative definition of a(g) and
conclude that it is analytic in the lower half $
plane with the property

u(g) =1+O—1 (37)

We now make the observation that both the
differential equation (32) for g and its asymp-
totic behavior in (33) may be continued into the
lower half $ plane without singularities. Thus the
operator function g(x, g) may itself be continued
into the lower half $ plane, and is analytic there.
We are now in a position to mimic the classical
derivation, defining a function 4 by

ye ««" ' Img&0
O(x, $) = (38)

t

By construction, 4 is piecewise analytic with dis-
continuity across the real axis given by
inc R*(&)g(x, &)e '~"". In addition, as ~g~-~, 4
has the property

Classically we could use the unitarity relation
(
a(' —(f«(' =1 to conclude that a(g) =a '($), as in-

deed it would be if g were ga '. To gain some
feeling for the quantum case let us use the results
(16)-(19)to evaluate a($) on a one-particle state

a(()lg&=(1+ . —»ct(( —g))lg&,

[R*(&},4*]=(X.—ircR*li, ) q, a-',
&0

(39)

so that Eqs. (30) become

(
8 1

+ —()g, = —tcg, t, (32a)

~ ~

1 —() g, = tc t"g, —ccg, t, a' 1, . (ttb)

From its definition (29), the function g has the
asymptotic behavior

Xe-3 gX(2

(4o)

whi:ch holds in the lower half plane by virtue of
(3V). Thus we may write a dispersion relation
for 4 which yields the desired result

1 '
&)c ",R*((')y(x, g')e «« "I'

+ dg'
21r g'- g —ie

as x--~, (33)
Iterating this equation and its Hermitian conjugate,
and using the asymptotic behavior (28), which
holds also in the quantum theory, we obtain
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d$, d$, d&,
C

I 2 3
2r 2r 2m

*(.) (,) (,) """"""
($. &,— z~—)(5. (.—+z~)

+ ~ ~ ~

(41)

All the above results refer to some fixed time,
say t= 0. However from (13) we see that the time
dependence of R($) is simple, so that (40) and (41)
may be generalized to arbitrary times by the re-
placement

it'(~)-z(~, t) =e-*"'ft(~) (42)

Equations (40) and (41) are the fundamental re-
sults of this paper. However, since the above
proof is somewhat formal it may be useful to
provide a simple test of these results. Note that
Eq. (40} holds for all values of the spatial vari-
able x. In particular, it is valid in the asymptotic
regime x -~, where it produces only one non-
trivial result:

d $' R*((')a((') B(g')
2' g'- $ + ie (43)

n

1 — . (44)-k;,'--"; k; -k;

(Here, all denominators are understood to have a
negative imaginary part. ) For n =2, the validity
of (44} is seen by noting that

Since a($) is diagonal on the n-particle states (20),
we can verify this equation directly. By acting on
the state lk, . ~ k„), it is easily seen using (1V),
(19), and (22} that (43) is equivalent to the identity

zc1—

(44) may be proven for arbitrary n by induction,
thus verifying (43}.

III. APPLICATIONS

we find, after some computation, that the con-
nected part G', is given by

4zz 5((Oz+ COp —(dk —&02) 5(k k+k2 —kk —kz)

II ((o,. -k, '+is)((o', -k',.'+is)

1+ic 0' (4V)

In this section we present two applications of
Eqs. (41) and (42) for the Heisenberg field Q(x, t).
First we observe that together with the commu-
tator (19), these equations may be used to com-
pute any 2n-point Green's function

(ol T(y( x't', ) y(x'„t'„) y*(x, t,) ~ ~ y*~(x„t„}"l o),
where T denotes the usual time-ordering oper-
ation. Since for each term in the expansion (41),
the annihilation operators R($) appear to the right
of the creation operators R*($), it is evident that
for the 2n-point function above we need consider
at most the first n terms in the expansion. Thus
the evaluation of any Green's function is reduced
to a finite calculation. The two-point function
(OlT[ tk(kxt) Q*(0, 0}]lo) is easily seen to be just
the free propagator, so that the first nontrivial
application of (41) is for the four-point function.
Denoting by G'(aflak';a&, .k&) the Fourier transform

k

2-
(dx, dt; dx',.dt',

)=1

xexp [i ((o,. t, —(o',. t', —. k,.x,. +k',. x-',.)]]

x(ol z'(y(x', t', ) y(x,'t', ) y*(x, t, ) y*(x, tz)] lo),

(46)

k —k, ( k, —k, ) k —k, ( k. —k, )
with

o =-[2((o, +(o,) —(k, +k, )'] "'. (48)

g -k, f -k, ($ -k,)(f —k, )
'+ —,(45)

and thus the right-hand side of (44} reduces to
[1—ic/(g —k, )]x[1 —ic/(g —k, )] . Using algebraic
manipulations similar to the above, the identity

The result (4V) may be compared with a direct
Feynman graph calculation. Apart from external
factors [the first set of brackets in (4V)] the tree
graph is just -4ic, while the one-loop term is
given by

( 4. )2
d(d dk
(2zz)' ((u —k'+ic) [(o, +(u, —&u —(k, +k, —k)'+is] '~ ~ (49)

which reduces to -4ic(-ic/g). Since this contrib-
ution depends only on the total energy and momen-
tum, and not on any relative momentum, we see
that the full connected four-point function, which is

t
just a sum of bubbles, is a geometric series which
sums to give the result (4V). As an aside, it is
interesting to note how the four-point function (4V)
leads on the mass shell, co, =k ', +',. =k',.', to the
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two-body 5' matrix (18}. Writing the scattering operator as 8 = 1+T, and noting that on-shell the
quantity v in (48) is just b» =—~k, —b, ~, we conclude that the matrix element of T between asymp-
totic states is

&b', u', [T~a,u,&=(2~)'5(b', +b', -u, -b, )s(~, +~, -~,'- ~,') 1+zc k» j

=(2w)*))().", +).",,
—):,—):,)[))(a, —).",) +I!()., —).",)]() . &" )

(so)

Thus

(sl)

in agreement with (18).
As our second application of the Heisenberg

field expression (41), we will prove for any num-
ber of particles that the states (20}are identical
to those obtained previously by Bethe's ansatz. ' "
We first introduce the Fourier transform

Z(x) = e""Z(g)d
2lr

and define states ~x, ~ x„& by

(52)

Ix, x„&-8+(x,) . R+(x„)lo&. (58)

Then, if x&x,. for i =1, 2, . . . , n we find, using (41),
that

'

y*( )), „&=a*(x))x," x„&, (s4)

=R*(x,)B*(x,) ~ ~ &*(x„)) 0& . (55)

The fact that this result follows from identifying
the Bethe-ansatz states with those in (20} has al-
ready been noted in Ref. 8. Here we will show the
converse —that (55) actually implies this identifica-
tion. To see this, let us consider the coordinate-
Bpace wave function

f(k, , x,) = &0 ~ Q(x, ) (t)(x,) ~ ~ ~ Q(x„) ~ k, . ~ ~ b„& . (56)

Since this is symmetric in x, ~ ~ x„ it is sufficient
to consider it in the r'egion xy+x2+ +x In this
region we have from (55)

i.e., only the first term in (41) survives; the con-
tribution of the remaining terms may be shown to
vanish by simple contour integration. Applying
(54) repeatedly, we conclude that if x,&x,& ~ ~ ~ &x„,
then

y*(x ) (j+(x ) ~ ~ ~ g+(x }~0&

i eiPiXi

x&olz(p, )" z(p„)z*(b,)" z*(r „)Io&.

(5V)

Using the commutator (19) to evaluate the matrix
element, we recover the usual Bethe-ansatz ex-
pression for the wave function.

IV. DISCUSSION

We have shown that in the nonlinear SchrMinger
equation the operator transformation which ex-
presses a($) and b($) in terms of the field oper-
ators Q(x) and Q*(x) may be inverted by a general-
ization of the Gelfand-Levitan method. The deriv-
ation of the basic integral equation in Sec. II em-
ployed an analyticity argument similar to the
classical treatment of Zakharov and Shabat, al-
though the problem of operator ordering led to
some essential differences in the quantum anal-
ysis. Using the Gelfand-Levitan equation (41), the
field operators are expressed in terms of the re-
flection operator B(g), which has a simple time
dependence. This is a central result of the pres-
ent analysis. To gain experience with this formal-
ism we carried out a number of calculations, some
of which are reported in Sec. III. By considering
vacuum expectation values and few-body matrix
elements of fields, exact calculations may be car-
ried out by keeping only the first few terms of the
series expansion (41). The detailed combinatorics
of these calculations is very reminiscent of the
graphical formalism which was developed for this
model by studying Feynman graphs. " AQ of these
results should be appended with the remark that in
this model, the vacuum state is structureless from
the point of view of Bethe's ansatz, i.e., it is the
reference state upon which the Bethe eigenstates
are built. A more meaningful application of the
methods we have developed here is provided by
considering correlation functions in a finite-density
gas. This problem is more closely analogous to
the calculation of Green's functions in a relativis-
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tic theory, where the physical vacuum is a com-
plicated many-body state. By such considerations,
one might also hope to establish a connection with
the work of.Vaidya and Tracy, "and Jimbo, Miwa,
Mori, and Sato, "who have obtained exact results
for the correlation functions in the case of infinite-

ly repulsive coupling (c = ~). These questions are
currently being investigated and will be discussed
in a subsequent paper.
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