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A systematic method is developed of constructing the cr model associated with any given nonlinear

evolution equation solvable by the inverse scattering method. The cr model is obtained from the adjoint

representation of the group associated with the Lax representation of the evolution equation. Backlund

transformations for the cr model and for the evolution equation are realized as gauge transformations. The

complete integrability of the cr model follows from Pohlmeyer's R transformation which is systematically

constructed in each case. The examples of the sine-Gordon, nonlinear Schrodinger, Korteweg-de Vries,
and modified Korteweg-de Vries equations are discussed in detail.

I. INTRODUCTION

Among the attempts to understand the origin
of the Lax representation of completely integrable
nonlinear evolution equations, "the group-the-
oretical and differential-geometric interpretation
of solitons, which began with the work of Wahl-
quist and Estabrook, ' has attracted considerable
attention. 4~

The differential-geometric character is brought
about by casting such problems in the framework
of fiber bundles with a structure group such as
SU(2) or SL(2,R), where the Lax representation
corresponds to a flat connection form on the bun-
dle, describing the parallel transport of fibers.
The flatness of the connection is equivalent to the
nonlinear evolution equation.

Recent work on completely integrable 0 models,
on the other hand, has resulted in an interesting
interconnection between 0 models and nonlinear
evolution equations. Namely, every p model has
an underlying nonlinear evolution equation asso-
ciated with it. Using a process of "reduction»,
Pohlmeyer first showed how the relativistic
O(n)-invariant o model is intimately related to the
sine-Gordon equation, ' or its generalizations. "'
This reduction procedure was further clarified
by Neveu and Papanicolaou, ' who showed how to
actually reconstruct the 0-model solutions from
the Jost eigenfunctions of the Lax representation
of the sine-Gordon equation. Similarly, the con-
tinuous Heisenberg spin chain, the complete in-
tegrability of which was first shown by Takhtad-
zhyan, "has been found by Jevicki and Papani-
colaou, "Lakshmanan, "and Zakharov and Takh-
tadzhyan, "to be associated with the nonlinear
Schrodinger equation. '

In this paper, we present a systematic method
of constructing the p model associated with any
given nonlinear evolution equation solvable by the
inverse scattering method. Instead of using a
direct reduction procedure that assumes the know-

ledge of the g model, we begin with a given non-
linear evolution equation and its Lax representa-
tion, which is then recast in the adjoint repre-
sentation (moving trihedral) of the underlying
structure group. The 0 model is obtained from
the adjoint representation by defining the o field
using Neveu and Papanicolaou's prescription' and
finding its equation of motion from the moving
trihedral equations. The two principal features
of the resulting 0 model, namely, the existence
of Pohlmeyer's R transformations which imply
the complete integrability of the 0 model, and
Backlund transformations, become simple con-
sequences of the group-theoretical character of
the problem. Backlund transformations as well
as space-time transformations such as scale,
Galilean, or Lorentz transformations are realized
as gauge transformations, which, in the group
space, correspond to group action from the left.
R transformations, on the other hand, corres-
pond to group action from the right. During the
preparation of our work we became aware of the
work of Zakharov and Takhtadzhyan in Ref. 13
where a similar method of constructing the R
transformation was presented for the case of the
Heisenberg spin chain. In Sec. II, we present the
general formalism, and apply it in Secs. III, IV,
and V to the examples of the sine-Gordon equa-
tion, nonlinear Schrodinger equation, and the
Korteweg-de Vries (KdV) equations.

II. GENERAL FORMALISM

In this section we present a general method of
constructing the g model associated with any given
nonlinear evolution equation. We follow closely
the meth'ods of Neveu and Papanicolaou in Ref. S.
%e begin by briefly reviewing the geometric and

group-theoretical aspects of nonlinear evolution
equations, with particular emphasis on three well-
known group representations in which to cast the
Lax representation of the evolution equation.
Namely, (i) the group space representation, in
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which the solution of the Lax-Zakharov-Shabat
eigenvalue problem is most conveniently dis-
cussed, (ii) the coset space representation, which
is most appropriate for the discussion of BKcklund
transformations, and (iii) the adjoint representa-
tion, which forms the starting point of our discus-
sion of v models. For a more precise and detailed
treatment of the differential-geometric approach,
the reader is referred to the original references
(8-5) or the more recent ones. ' For the moment,
we need not specify the evolution equation, but
shall assume that it admits a Lax representation
of the Ablowitz-Kaup-Newell-Segur (AKNS)' type

(2.1)

where u =u(x, f) is the solution of the evolution
equation, y is the eigenvalue parameter assumed
to be real, and g =(&~,') is the corresponding eigen-
state. The 2 x 2 matrices' andB, which are func-
tionals of u and y, must satisfy the integrability
condition

B„-A,= [A,B], (2.2)

which should be equivalent to the nonlinear evo-
lution equation for u.

The group-theoretical aspects of such problems
arise from the fact that, in most cases of interest,
the matrices A. and B are infinitesimal elements
of a group G which, depending on the evolution
equation, is the group SU(2), SU(l, 1), or SL(2,R).
The examples discussed in the remaining sections
cover all these cases.

To fix notations, let v, , i =1,2, 3, denote the
generators of G defined in terms of the Pauli ma-
trices as

g~ =&g
p g g

= Bg ~ (2 7)

It can be rewritten in a form that brings out the
fiber bundle structure of the problem as

dgg '=A. dx+B dt, (2.8)

where the left-hand side can be recognized as the
canonical right-invariant Maurer-tartan form of
G, and the right-hand side as a. connection form
defined on the fiber bundle with base the space-
time manifold and fiber the group G. The in-
tegrability conditions (2.2) imply that this con-
nection is flat. Moreover, Eq. (2.8) may be in-
terpreted as the parallel transport of fibers, as
defined by this connection form.

In this representation, gauge transformations
, by S(x, f) e G correspond to group multiplication

from the left,

g(x, f) =S( fx)g( fx),

and Eqs. (2.7) transform to

(2.9)

(2.1). For example, it is easily shown that if g
is a solution of (2.1) then so is g = —icr, Jg*, where
J is the metric matrix of G defined to be J=1,
o'»io» for SU(2), SU(1, 1), SL(2,R), respectively.
The ng( xt) may be defined as g = [g, g ] for SU(2)
and SU(1, 1) and g =[M2Reg, W2Img ] for SL(2,R).
Since the matrices A. and B are infinitesimal ele-
ments of G, they satisfy the Hermiticity property
A~J+ JA =0, and similarly for B, from which it
follows that the quantity /~A is constant in x and
f, and thus may be set equal to /~A =1 for SU(2)
and SU(l, 1) and /~A =i for SL(2,R). This nor-
malization is necessary in order to make g an
element of G, satisfying gag= J. The group space
version of (2.1) is then

for the SU(2) case,

= —'Eo 7 ——'Eo' 7 -0l ly 2 2& 3 3

for the SU(1, 1) case, and

(2.8)

(2.4)

gg =Bg
y

w =sos-'+s„s-',

B =SBS-'+S,S-'.

(2.10)

(2.11)

for SL(2,R). The 7 matrices satisfy

(2.5)

(2.6)

where g,.&
arid e,-» are the Killing metric and struc-

ture constants of G. Inner and cross products be-
tween three-vectors, transforming by the adjoint
representation of G, are defined in terms of g&&
and c,-», respectively.

Fquation (2.1) can now be written, in an alterna-
tive representation, in the group space of G by
using two linearly independent Jost solutions g
to form a Jost matrix g(x, f) which also satisfies

Backlund transformations are realized as gauge
transformations, in the sense that if the solution
u of the evolution equation is obtained from a solu-
tion u by a Backlund transformation, then the Lax
representation of u must be connected to that of
u by a gauge transformation S such that A A(u, y)
and B =B(u, y). The explicit form of S was first
constructed by Neveu and Papanicolaou' for the
sine-Gordon equation, and we have done the same
for the other examples that we discuss here. It
must be emphasized that this view of BKcklund
transformations is different from that usually
presented. ' "As stressed by Neveu and Papani-
colaou, ' the eigenvalue parameter y must be
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clearly distinguished from the BKcklund parameter
appearing in the BKcklund transformation, where-
as in the usual approaches, the two parameters
are identified.

A more general transformation is a space-time
transformation (x, t)-(x', t') accompanied by a
gauge transformation

g (x', t') =S(x, t)g(x, t). (2.12)

~2 =1212 + (u11 1222)z 122/

~12 ( 11 ~22) ~21

(2.18)

where a,.z and b, &
are the entries of A and B.

These are, of course, the Ricatti equations that,
are usually associated with the inverse scattering
representations. "' Equation (2.13) corresponds
to the infinitesimal action of G on the coset space.
Under a gauge transformation (2.9), x undergoes
a linear fractional transformation

Syph' +Sg

Spy' +S (2.14)

where s,&
are the entries of S.

The adjoint representation may be introduced
by defining an orthonormal trihedral set of unit
vectors e,-, i=1,2, 3, in terms of the Jost matrix

E) =e] g =g '7 g, i =1,2, 3 (2.15)

where the inner product is computed with the group
metric g, &. We find it more convenient to work,
from now on, w'ith the matrices E,. rather than the
three-vectors e, . The trihedral moves according
to

E. -A +gEg, Eg g
-B.

JEST (2.16)

where A, , and B,.&
are the three-dimensional

(adjoint) representations of the matrices A and B.
Using (2.6), the orthonormality and Hermiticity
properties of the trihedral are expressed by

Galilean or Lorentz transformations of the evo-
lution equation are realized in this manner. From
the geometric point of view, Eq. (2.12) corresponds
to a general coordinate transformation of the bun-
dle onto. itself. The property that a space-time
symmetry requires that the space-time trans-
formation be compensated by a simultaneous gauge
transformation is very common in theories with
magnetic monopoles. " This property will prove
important in our discussion of the 0 models.

Next we discuss two other useful representations
of the inverse scattering equations. The first is
realized in the coset space G/U(1) on which the
group G acts nonlinearly by fractional transfor-
mations, and the second is the adjoint represen-
tation. Defining the coset space variable z(x, t)
= g, /g„we find that it moves according to

E)EJ =g ]~+zc)~ E,
E]~ =JE]J ' (2.17)

Under the gauge transformation (2.9) the tri-
hedral transforms as

E) =g 7]g =S,.JE), (2.18)

where S,, is the three-dimensional representation
of S, and E, moves according to (2.16) but with the
transformed matrices A and 8, given in (2.11).

The moving trihedral (2.15) can also be sub-
jected to any constant G rotation, under which
(2.16) and (2.17) are left invariant. Such trans-
formations correspond to group action from the
right,

g =gR, (2.19)

where R is a constant element of G. Then E,. un-
dergo a rotation by R

E,. =R 'E)R, i =1,2, 3. (2.20)

Q'=q q=g... (2.22)

where g» = 1 for SU(2) and SU(1, 1), and g» = - 1
for SL(2,R).

The equation of motion satisfied by Q is obtained
from (2.16) by differentiating it enough times with
respect to x and t and eliminating the other two
unit vectors E, and E2 in favor of Q and its x and t
derivatives. The exact form of the equation of
motion depends, of course, on the evolution equa-
tion. In the process of deriving the equation for
Q the various quantities, invariant under G, are
identified in terms of the solution u and y. The
eigenvalue parameter y which is usually related
to the energy-momentum densities of Q can be
changed in two ways: first, by performing a
space-time transformation which is implemented
as a gauge transformation of the form (2.12), and

This transformation clearly leaves the matrices
A and B in (2.16) invariant. From the bundle point
of view, this reflects the particular convention
that the group fiber is defined in terms of its
right- invariant 1-forms, and therefore the group
is defined to act on the bundle space by left trans-
lations, that is, gauge transformations. As we
shall see shortly, Pohlmeyer's R transformation
corresponds to (2.19) but 8 is allowed to have
space-time dependence.

The moving trihedral E,. may be used next to
define a g model. Follow'ing Neveu and Papani-
colaou's prescription' we define the o field q(x, t)
to be one of the unit vectors e„most conveniently,
the vector e,. That is, let

Q=q ~=g '~.g. (2.21)

Using (2.17) we find it satisfies the constraint



1516 SOPHOCLES J. ORFANIDIS

i.=A(u, y)g, g«=B(u, r)i. (2.24)

To find the equations satisfied by R, we rewrite
(2.19) as

R=g 'g, (2.25)

which shows that R is obtainable from g by a spe-
cial gauge transformation S =g '. Therefore, R
will satisfy

R„=GR, R, =R, (2.26).

where 8 and «9are the gauge transforms ofA(u, y).
That is,

8 =r 'A(u, y)Z g'Z„,-
«9=g 'B(u, r)g -g 'g«.

Using (2.7) we obtain

(2.27)

second, by Pohlmeyer's R transformation which
can be done in the same frame of reference. In

fact, the R transformation will be defined precisely
by the requirement that it change the eigenvalue
parameter from an initial value y to a new value

y, while leaving the solution u of the evolution
equation unchanged. It should be distinguished
from a Backlund transformation which does the
opposite: It changes u but not y. Another require-
ment for the R transformation is that it rotate Q
a,s in (2.20),

Q R'QR, (2.23)

and therefore, must be implemented by (2.19),
where g will satisfy the Lax representation (2.7)
with the new eigenvalue y:

Q„« =sin«I/ (3.1)

admits a. Lax representation of the form (2.1), or
(2.7) with matrices A and B defined as

A (Q, y) = —4«p„o2 --,'iy(«/, cosQ —v, sing),
(3.2)

B(p, y) =4ip«v2+-2'iy '(«/, cosp +«/2 sin(f&),

which are infinitesimal elements of SU(2). The
corresponding moving trihedral and o field Q are
defined by (2.15) and (2.21). Defining the com-
bination E =E, +iE, and its conjugate E =E, —iE»
the trihedral equations (2.16) take the form

Q
— ~2 (Ee«IO 2 E«e-«2/2)

directly from the o-model equation of motion.
Second, Eq. (2.23) defines a family of rotated a.

fields Q, which even though they may not neces-
sarilysatisfy theoriginal 0-model equation of mo-
tion, they can be made to do so by subjecting Q to
a further space-time transformation. These re-
marks are considered in more detail in the speci-
fic examples that follow.

III. THE SINE-GORDON EQUATION

In this section we illustrate our method by re-
producing the well-known results of the O(3)- in-
variant 0 model. "' First we treat the sine-Gordon
equation as an SU(2) problem, and then, as an

SU(1, 1) problem. The latter results into an O(2, 1)
-invariant 0 model which has been discussed re--
cently in connection with the axially symmetric
solutions of Einstein's equations. " The sine-
Gordon equation

8 =g '[A(u, y) —A (u, y) f g,
«9=a '[B(u, y) -B(u, r) la

(2.28) E„=2i«I«„E- iye «o/2Q

Q
—««y 1(Ee «cl/2 E«e«2 2)

(3.3)

Next we express 8 and in terms of the initial
moving trihedral E,. belonging to the eigenvalue y.
Expanding A (u, y) —A (u, y) = u««7, and B(u, y)
-B(u, y) =ib 7, and using the . definition (2.15) we

find from (2.28)

9 =ia'E

=ib'E).
(2.29)

pinai]. y, eliminating E, in favor of Q and its x and

t derivatives we may express 8 and only in
terms of Q. The integrability condition of (2.26),

«9„-8« = [8,«9j, (2.30)

follows from that of (2.24) which is in turn equiva-
lent to the evolution equation for u. The R trans-
formation has a dual purpose": First, it serves
to establish the complete integrability of the re-
sulting o model, with Eqs. (2.26) as the corre-
sponding Lax representation, and therefore, the
compatibility conditions (2.30) must also follow

Q.'=q, '=r', Q,'=q, '=r' q. q, = cost -(34)

Differentiating the first of (3.3) with respect to f
and using (3.4) we find the equation of motion for
Q,

q «+(q„'q, )q=0. (3.5)

The well-known Backlund transformations of
(3.1),'

«, —«, =«ssis( +"),
(3.6)

(
.P, +P, =2a ' sinl~~

s

are realized as gauge transformations of the form
(2.9) with a gauge matrix S '.

E« = —2ip «E+iy 'e'2
Q .

Using the orthogonality properties (2.17) we obtain
the O(3)' invariants
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i'.g) e ia-se 4e-ialeeia3i 4

tan8 =a/y.
(3.7)

Q
— —z y( Eeioi2 Ei'e i o/2)

E„=-,'ty„E - tye-'&" Q,
(3.11)

As emphasized by Neveu and Papanicolaou, ' the
eigenvalue parameter y must be clearly distin-
guished from the Backlund parameter a. In the
usual way of deriving the Backlund transformation
(3.6) from tbe inverse scattering representation,
the eigenvalue and Backlund parameters are iden-
tified and the inverse scattering equations are
then transformed into the Backlund equations
(3.6).' ' The connection between the two ap-
proaches can be best seen in the coset space re-
presentation (2.13). Under the gauge transforma. —

tion (3.7) the coset variable z transforms as in
(2.14). Inverting (2.14) we write

(3.8)
cosee'f~ ~~ 2 +i since 'f~'~)

i since'&+'~&" z+cosee' ~-')"

q —~ t y -1(Ee-i I i2 Ef i 4 &2)

E = —'i P—P +i y 'e'i '2
Q . (3.12)

The generators of the R transformation (2.26) can
be computed easily from (2.29). ~e illustrate
here some of the details. According to (2.28) we
compute

A(y, y) -W(y, y) =--,'i(y-y) [{~,+to, ) e'&"

+(&r, ta, )e—'o" ],
(3.13)

B(P y) —B(it, y) = t(y ' —y ') [(a, +is,)e'o"
+ (a, io,)-e'~" ],

It is evident from (3.7) that in the limit y-ia, S
develops a singularity. However, (3.8) remains
finite and gives

and therefore (2.29) becomes

8 = —,'i(y —y)—[Ee'~"+Etc 'i'"],
=-'(y '-y')[E ""+E"*'"] (3.14)

(3.9)

which is the usual identification (up to a gauge
transformation). In fact, inserting this expression
for g into (2.13) with a„and b„evaluated at
y=ia, (2.13)turns intothe Backlund equations (3.6).

Under tbe gauge transformation (3.7), the moving
trihedral and in particular the e field Q transform
by (2.18). Thus, the Backlund transformation for
Q becomes

Q = cos(28)Q ——,'i sin(28) (Ee 'o" E'e's ') . -(3.10)

Lorentz transformations of the 0 model are also
realized as gauge transformations of the form
(2.12), but in a trivial manner. Under the Lorentz
transformation (x', t') =(p 'x, pt) the field Q trans-
forms as a scalar it '(x', t') = i'(x, t), the eigenvalue
parameter y changes to y' =py, and the I ax re-
presentation (2.7) undergoes a gauge transforma-
tion of the type (2.12) with S equal to the identity
matrix, such that the transformed matrices A and
B become A' =A(Q', y') and B' =B(@',y'). Tbe o
fieM Q transforms according to (2.18) which gives
in this case Q'(x', t') =Q(x, t), and the invariants
(3.4) are changed to the corresponding primed
quantities. '

Next we construct Pohlmeyer's R transforma-
tion. Considering Q as the initial o -model solu-
tion, the 8 transformation will generate a new
solution Q belonging to a new eigenvalue, say y,
and satisfying (3.3)-(3.5) with y, but with the same

That is,

The right-hand side may be written now in terms
of Q alone. Using the trihedral equations (3.3)
and the orthogonality properties (2.17) we find

qq = ,'ty(E-e-""+E'e-"")

qq, =-,'ty-'(Ee-""+E'e"") .
Therefore, (3.14) become

8= ———1 QQ 8= ———
&)QQ

1 y 1 y
2.y t&

(3.15)

(3.16)

which are the usual equations. ' Their integrability
conditions (2.30) follow directly from the o -model
equation for Q. Under the R transformation, Q
and Q are related by

Q =R 'QR. (3.17)

Next we consider briefly the SU(1, 1) version of
this formalism. It can be obtained if throughout
the above the eigenvalue parameter y is replaced
by y-iy. Then the matrices A and 8 become
elements of SU(1, 1), but their compatibility con-
dition (2.2) is still equivalent to tbe sine-Gordon
equation. The corresponding boost matrix g(x, t)
defined in Sec. II will be an element of SU(1, 1).
The moving trihedral and the 0 fieM will be de-
fined by (2.15) and (2.21) with the choice (2.4) for
the g matrices. The Killing metric is now g, &=(-1,—1,1) and the o field will satisfy the con-
straint (2.22) and Eqs. (3.4) and (3.5) with inner
products computed with the metric g, &.

We close this section by showing an interesting
application of the gauge property of Backlund
transformations. That is, we may derive the well-
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known algebraic combination formula among four
solutions of the sine-Gordon equation that are
connected by successive Backlund transforma-
tion s'

Q, +4yQ„+2—,. IQ, Q.„1=0,1

or equivalently

q, +4 yq„+q x q„„=P.

(4.5)

(4.6)

tan (3.18)

as the condition of commutativity of Backlund
transformations. fn (3.18) the solutions Q, and

P, are obtained from an initial solution Q by the
Backlund transformation (3.6) with parameters
a and 5, respectively, and Q„ is obtained from

Q, or Q, by a further Backlund transformation
with parameter b or a, respectively. The com-
mutativity of the corresponding gauge transfor-
mations (3.7)

S(4. e.;&)S(e. 0 s) =S'(e. 4»s)S(e
(3.19)

is easily seen to be equivalent to (3.18).

IV. THE NONLINEAR SCHRODINGER EQUATION

ID this section we consider the example of the
nonlinear Schrodinger equation

iu, +u„„+2(u( u=0,
I

(4.1)

which is known to be associated with the classical
continuous Heisenberg spin chain. "" Equation
(4.1) admits a Lax representation of the form
(2.1) or (2.7) with matrices A. and B,'»

(iy u)
A. (u, y) =

—u~ —iy

(4.2)

(i)u[' —2iy' iu„—2yu )
B(u, y) =

iu„*+2yu~ 2iy' —i u '

Q„=uE +u*E~,

E„=—2iyE —2u»'Q,

Q, =(iu„—2yu)E —(iu~ +2yu~)E~,

E» =2(2iy' —t
(
u(')E+2(iu„* +2yu*)Q,

where E=E, +iE, The O(3) in.variants are

Q„' =q„' =4/
u
)',

q (q xq ) =2i(uu* -u*u ) 8ylu/'.

(4.3)

(4.4)

The equation'of motion for the o field Q is found
from (4.3) to be

which are infinitesimal elements of SU(2). The
consistency condition (2.2) is equivalent to (4.1).
The corresponding moving trihedral E, and o field
Q are again defined by (2.15) and (2.21). Equations
(2.16) take the form

u'(x' t') =e' '" "u(x t) (4.9)

satisfying (4.1) in the primed coordinate frame,
and y' is

y' =y —4v. (4.10)
Thus, clearly, by choosing v =4y, the eigenvalue

y may be set equal to zero. The 0. field Q trans-
forms according to (2.18), which gives in this
case Q'(x', t') =Q(x, t), and the equation of motion

1
(4.11)

.2z
'The other components oi the trihedral transform
as E'(x', t') =e 'e'" "E(x,t) . The field Q trans-
forms as a scalar in both the sine-Gordon a,nd
the present cases. This is due to the fact that the
gauge matrix S, implementing the space-time
transformation, commutes with the generator 7,
in the definition (2.21) of Q. A more interesting
situation appears in the KdV case in Sec. V.

Next we construct the B, transformation. we
begin with the o -model solution Q belonging to
the eigenvalue y, and transform it by 8 to the new
solution Q belonging to y. Looked at from an ap-
propriate Galilean frame, we could have started

A
with y =0. The trihedral equations for Q are

A A

Q„=uE +u*E~,
A

E„=—2i y E —2u*Q,
(4.12)

Q, =(iu„—2 yu)E —(iu»'+2yu*)E',

E, = 2(2iy' —i~ u~') E+2(iu»'+2yu*)Q,

and its equation of motion

Q»+4yQ. +
2—,fQ, Q„„l=o. (4.13)

For y=0, (4.6) is the Heisenberg chain. The
eigenvalue y can be changed to zero, or any other
value, in two ways: first, by a Galilean trans-
formation, and second, byPohlmeyer's R trans-
formation.

Galilean transformations (x', t') = (x —vt, t) are
implemented as ga,uge transformations. It is
easily seen that the gauge transformation (2.12),
where

S(x, t) =e" »'3" "", 8(x, t) =—,'v't ——,'vx, (4.7)

takes the Lax representation defined with the ma-
trices (4.2) into

(4.8)

where A'=A(u', y') and B'=B(u', y'), where u' is
the GalHean transformed u,
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The R transformation is designed to rotate Q into

Q =R 'QR. (4.14)

The generators 6 and of R, are computed using
the procedure explained in (2.28) and (2.29). We
find

A(u~r) -A(u~'Y) =&(y —r)&3
(4.15)

B(u, r) B(-u, r) = - »(y' y-')o,

(r-r) -[u(a, +to. ) -u*(o,- ig, ) ],
and (2.29) becomes

in the sense that the transformed matrices (2.11)
becomeA A(u, y) and B =B(u, y) provided (4.18)
holds. Using (2.18) we find the corresponding
transformation for g field Q,

Q
= (1 —2 sin'8

~

b
~

') Q —b sin8(t cos8 +a sin8)E

+ b* sin8(i cos8 —. a sin8)E~. (4.20)

The relationship to the usual approach of obtaining
Backlund transformations is best seen, again, in
the coset representation (2.13). Under (4.19) the
coset variable z transforms by (2.14), the inverse
of which is in this case

ft =t(r r)Q-,

= 2t(r-' —r')Q —(r r)(u—E u*E-') .
(4.16)

(cos8 —ta sin8)z +i sin8b

i sin8b~a + cos 8 + ia sin8

In the limit y-iq, (4.21) gives

(4.21)

u, —u„=(u+u) (4q'- iu —ui') "',
(4.18)

u, —u, =i(u„+u„) (4q' —~u —u~')'~'

+t(u -u) ( iud'+ Jul'),
where q is the Ba.cklund parameter, and u(x, t)
satisfies (4.1) if u(x, t) does. In Ref. 17, a more
general form for the Backlund transformation is
given which, however, may be reduced to (4.18)
by an appropriate Qalilean transformation. Much

like the sine-Qordon case, Backlund transforma-
tions are realized as gauge transformations of the
form (2.9) with

Using (4.3) we rewrite (4.16) only in terms of Q,
as

8 =t(r r)Q—, (4.17)
=-»(r' r')Q-'(r - r-) -(Q, Q. ],

which for y=0 are the expressions given by Takh-
tadzhyan. ' Similar methods for constructing R
have been given by Zakharov and Takhtadzhyan. "
The integrability conditions (2.30) for 8 and 8 are
easily shown to also follow from the p-model equa-
tions of motion (4.5) of Q. If the field Q is further
subjected to a Qalilean transformation with velo-
city v =4(y —y), the parameter y may be set back
to its initial value y, thus obtaining a 0 field that
satisfies the initial equation (4.5) in the new

frame. "
Finally, we discuss Backlund transformations

in the present model. Equation (4.1) admits a
Backlund transformation of the form"

(4.22)

which is the usual identification. "
V. KdV EQUATIONS

A(u, y) = —iy7;+ ,'tu(r, +7,)——t(r, —v, ),
(5.1)

B(u, y) =ta7, + —,'ib(T, + v, ) + —,'ic(v, —7,),

with the choice (2.5) for the v matrices, where

In this section we consider two equivalent Lax
representations for the KdV equation. . One is of
the AKNS type, ' and the other is that of Wahlquist
and Estabrook. ' They are connected to each other

by a gauge transformation, and they lead to two

different z models. The analysis of these two
cases leads us to the conclusion that the right
choice for the 0 field may not always be given by

Eq. (2.21), but is dictated primarily by the form
of the R transformation and the requirement that
the compatibility of the R Eqs. (2.26) should be
equivalent to the 0-model equations of motion, as
well as to the underlying evolution equation.

In addition, we consider the SL(2,R) version of
the modified KdV equation, and show how Miura's
transformation is realized as a gauge transfor-
mation between the I.ax representations of the
KdV and modified KdV equations.

The first Lax representation that we consider
is defined by the infinitesimal bL(2, R) matrices
A and 8,'

fcos8+i sin8a

~ ~~—i sin&b*

—i sin8b

, tan8 =g y
cos8 —i sin8ap

(4.19)

a =4y'+4yu —2u„,

b =2yu —4y2u u 4u'

c =8u+8y'.

(5.2)

The integrability conditions (2.2) are equivalent to
the Kd& equation
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ug +u + 12uu =0, (5.3)

The moving trihedral and the g field Q are defined
by (2.15) and (2.21). The trihedral Eqs. (2.16)
become

The generators 8 and of the R transformation
are constructed according to (2.28) and (2.29).
Using (5.4) we may express them in terms of Q

only, as

Q„=2E+uF, Q, =bF —cE,
E„=—2yE —2uQ, Eq =2aE —2bQ,

E„=2yE —4Q, E, =2cQ —2aF,

(5.4)

8 = —t(r r)Q—

I =4t(y' -y') Q+t(y -r) (Q..—~Q.'Q)

+(y r)—(y+2r) [Q, Q„].

(5.12)

where E=E, —E, and I' =E, +E,. The equation of
motion for the o field is easily found from (5.4) to
be

Q, +Q„„„--,'(Q„'Q)„=3ir [Q, Q„„]—12y'Q„. (5.5)

The SL(2,R) invariants that follow from (5.4) and
(2.17) are

The integrability condition (2.30) is equivalent to
the equation of motion (5.5) for Q.

The second Lax representation that we discuss
has generator matrices

(5.13)

Q„' =q„' = —8u, q ~ (q„xq„„)=u„+8yu. (5.6)

Galilean transformations of the KdV equation (5.3)
are realized as gauge transformations of the form
(2.12). Under the transformation

X =X —5t~

where

o. =2u —y
2

P =4u+4y'.
(5.14)

t' t
u'(x', t') =u(x, t) —

—,', v,
the KdV equation remains invariant. The Lax
representation (5.1) gets transformed according
to (2.12) with the SL(2,R) gauge matrix S,

(5.7)

(5.8)8=, a= —y+y

intoA'. =A. (u', y') and B' =B(u', y '), where y'
=+(y' ——'v)'" The trihedral (5.4), and in parti-
cular the o field, transforms as

Q (x, t ) =Q(x, t)+nF(x, t),
E'(x' t') =E(x, t) —2nQ(x, t) —n'E(x, t), (5 9)

F'(x', t ) =F(x, t),

Q„=2E+uF, Q& =b E cE, —

E, = —2yE —2uQ, E, =2aE —2bQ,

E„=2yF —4Q, E, = 2cQ —2aE,
and the equation of motion

(5.10)

Q, +Q„„„-~(Q„'Q)„=»yt Q, Q„„]—12y'Q„(5 11)

and Q' satisfies (5.4) and (5.5) in the primed va-
riables. The eigenvalue y, therefore, can be
changed to zero or any other value by an appro-
priate Galilean transformation.

Next we construct the R transformation. As in
previous sections, we begin with the initial 0 field
Q belonging to the eigenvalue y, and transform it
to Q belonging to r. The trihedral equations for
Q are

Their compatibility condition (2.2) is equivalent
to the Kd7 equation. The two Lax representations
are related to each other by a y-dependent SL(2,R)
gauge transformation

Q„=nE+E, Q, = —(np+n ) E pE

E„=—2Q, E& =2J3Q +2n„E,

E„=—2nQ, F, =2(nS+n„„)Q —2n„E.
(5.16)

Galilean transformations are implemented with
a gauge matrix which can be computed from (5.8)
and the connecting matrix (5.15). It turns out to
be the unit matrix, and therefore under (5.7) the
trihedral (5.16) transforms as

Q (x', t ) =Q(x, t),
E'(x', t') =E(x,t),
E (x', t ) =F(x, t),

(5.17)

and satisfies (5.16) in the primed variables.
At first glance it might be thought that the pro-

per choice for the o field should be the compo-
nent Q of the trihedraL However, the derivation
of the R transformation in Eqs. (2.28) and (2.29)
suggests that the field E =E, —E, be chosen as the

(5.15)
(-2 0)

which transforms (5.13) into (5.1). The corres-
ponding moving trihedrals transform into each
other by (2.18). The trihedral of the representa-
tion (5.13) moves according to
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o field. E is a "lightlike" vector satisfying E' =0.
To see this, we may start with an initial value
for the eigenvalue parameter y. Without loss of
generality we may choose the initial value y =0.
The trihedral equations become

S =S(w, w;q)

1 K —& ]
2 2 1~2

(q' —y
' —(w —w) ' w w—j

(5.26)
Q„=F + 2uE, Q, = —2(4u'+u„„) E —4uF,

E„=—2Q, E, =8uQ +4u„E,

F„=—4uQ, E, =4(4u ~ +u„„)Q —4u„E.

(5.18)

Using these and (2.28) and (2.29) we compute the
generator matrices 8 and of the 8 transforma-
tion as

6=2iy E,
8= 2iy'(u -y') E —2iy'F.

(5.19)

Comparing these with the expressions in the pre-
vious sections, we choose E as the g field. The
equation of motion for E follows from (5.18)

E, +Q„„+-,'i [Q, Q„„]=0,

E = —2Q.
A

The 8 transformation rotates E into. E,
E~R ~ZR, Q =R ~QR

which satisfies

(5.20)

(5.21)

E, +Q„„+ai[Q, Q„„]=-6y'E„,
E =-g.

The extra term —6y'E„may in turn be removed
by a Galilean transformation, of the form (5.1V)

with velocity v =6 y', which resets the eigenvalue
parameter y to its zero value. The matrices 8
and can also be expressed in terms of E only:

(5.22)

8 =-,' iy'E,
2y'E .'-y'(Q. -:-[Q,Q.]).—

(5.23)

Their compatibility condition (2.30) is equivalent
to the equation of motion (5.20), provided one uses
the orthonormality property QE =iE which follows
from (2.17).

The KdV equation admits Backlund transforma-
tions, first constructed by Wahlquist and Esta-
brook, "of the form

w„+w„=-q'+(w —w )',
)

w, +w, = 4(u'+uk+8')+ 2(u„- Q„)(w —8),
where zo and se are pseudopotentials related to the
two solutions u and u of (5.3) by

Q = —K» ~
Q = —K» q (5.25)

and g is the Backlund parameter. BKcklund trans-
formations are realized as gauge transformations
(2.9) with SL(2,R) gauge matrix

g A
SU —K

(5.28)

which is the usual identification. Using (5.26) we
may rederive the algebraic combination formula
among four solutions of the KdV equation connected
by successive Backlund transformations. Re-
quiring the commutativity of the matrices (5.26),
that is,

( 12' ly 1g) S (was we 74) S(wy~~ ~wq 'g~) S (w~) w ''g~))

we find"
~1

12

Finally we discuss the SL(2,R) version of the
modified KdV equation

(5.29)

(5.30)

its Lax representation is'

A(v, y) =~, B(v, y) =~

-yv t'a b

v y c -a
where

a =4y3 —2yv2,

b =2yv„-4y2s —v„„+2v3,

c = —2yv„—4y2m —v„„+2m 3.

(5.31)

(5.32)

The corresponding trihedral moves according to

Q„=vE vE, Q, =bE —-cE,
(5.33)E„=—2yE —2vQ, E, =2aE —2bQ,

F„=2yF +2vQ, E& =2cQ —2aE,

where again E =E, —E, and E = E, +E,. The o field
satisfies the equation of motion

The transformed Lax representation has genera-
tor matrices A =A(u, y) and B =B(u, y). The gauge
matrix that corresponds to the first Lax repre-
sentation (5.1) can be obtained from the connec-
ting matrix S, as S, SS, '. The moving trihedrals,
and in particular the 0 fields of either represen-
tation, transform according to (2.18). The re-
lationship to the usual way of deriving Backlund
transformations can be found using the coset. re-
presentation (2.14) which reads

(w —w)z+1
[y'-q'+(w-w)']z+w u'- (5.2V)

and in the limit y-g gives
1
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Q, +Q„„„--.(Q„'Q)„=3' [Q, Q..J »-r'Q" (5.34)

which is the same as for the KdV case, Eg. (5.5),
but with SL(2,R) invariants

Q '=g '=4+', q ~ (q x j„„)= —4v'y. (5.35)

The R transformation can be easily constructed.
The Kdp and modified KdV equations are related

by Miura's transformation'"

u =--,'(v„+v'), (5.36)

which is a sort of Backlund transformation, and
therefore can be realized as a gauge transforma-
tion between the Lax representations. In fact, it
is easily shown that the SL(2,R) gauge matrix

(5.3'I)

takes (5.31) into (5.1), provided u and v are re-
lated by (5.36).

VI. CONCLUSION

The above method of constructing cr models from
underlying evolution equations is quite general.
The basic requirement is that the Lax represen-
tation of the evolution equation be associated with
a structure group G. The p mbdel and its R trans-
formation are constructed from the adjoint re-
presentation of the group. For example, we have
used this method to derive an SU(n)-invariant

Heisenberg spin chain" starting from a U(u —].)-
invariant nonlinear Schrodinger equation. It can
be applied also to discrete evolution equations as
long as they are associated with a structure group
6, as for example, in the discrete sine-Gordon
equation case, which results in a discrete version
of the O(3)-invariant o model. ' It may also be ap-
plicable to evolution equations in more than one
space dimension. We have not discussed the in-
finite number of nonlocal conserved charges that
characterize 0 models, since they can be de-
rived systematically from the 8 transformation
as in Refs. 22 and 11. The method has a number
of shortcomings. First, to use it one must know
the I ax representation of the evolution equation.
Second, i.f one considers the g model as the basic
theory, rather than the evolution equation, the
method is incomplete, in the sense that it gen-
erates o-model solutions, where the group in-
variants are not necessarily independent of each
other, as was the case for the KdV equation. It
may very well be possible that if the 0 model is
"reduced" directly, it might result in a larger
underlying evolution equation than the one used to
derive it.
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