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Equation of state at ultrahigh densities and the speed of sound
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We consider a system of baryons interacting through the exchange of massive neutral vector mesons at
densities of p & 10" g/cm', where they form a lattice. For densities 10' & p & 10" g/cm' we show that

&&3P and v, &1 even though the interaction energy dominates the kinetic energy. We discuss the
practicality of this model and its implications for the neutron-star mass limit. We also consider its relation

to the work of Zel'dovich and of Bludman and Ruderman.

I. INTRODUCTION

One of the unsettled problems of theoretical
physics is to find an equation of state at ultrahigh
densities. Even though the structure of matter is
pretty much understood for densities up to p-3
&& 10"g/cm', there seem to be no reliable calcula-
tions for densities above this value. ' A knowledge
of the equation of state for 10"6 p610te g/cm' is
necessary in order to find a mass limit for neutron
stars. ' This mass limit is critical in the identifi-
cation of some observed compact objects as black
holes, one of the novel predictions of general rel-
ativity. Even though the exact equation of state is
going to be rather complicated, one still can make
arguments about its asymptotic form and the limi-
tations placed on this form by the theory of rel-
ativity.

For some time it was generally accepted that the
equation of state for massive particles at high den-
sities approaches 3P =e, the equation of state for
massless particles, and satisfies 3P« for low
densities. The reason for this is that at high den-
sities the rest mass in energy density e will be
negligible compared to the kinetic energy, and
hence all the particles will behave as massless
particles. This is the case for a noninteracting
Fermi gas and remains the case even when elec-
tromagnetic interactions are considered. '

In general let & have a power-law dependence on
the number density n, so that

e =an, P = (y —1) e

and

dP
v '= =(y —1) (c =1).

dE

v, &1.
%el'dovich4 was the first to show that for a gas

of particles interacting through the exchange of
massive neutral vector mesons, the inequality
e&3P could be violated. He found that, in the con-
tinuum limit (infinite densities), P/e and the speed
of sound approach unity but never exceed it. The
interaction potential he considered was

where g is the baryonic charge and p.
' is the range

of the interaction.
The total energy density of the system can be

given as
e-Pr

C=S f/+ — + 3 a ~

In the continuum limit a' dv, where a is the inter-
particle spacing, and the summation becomes an
integral giving

with

P = -~+ n = -'a n"'+
dR LIL

(1.3)

Hence, for infinite densities the interaction energy
dominates both the rest energy and the kinetic en-
ergy allowing 3P&c. Zel'dovich also mentioned
that the continuum limit would be applicable at den-
sities p~100p „„„,

Later B?udman and Ruderman' modified Zel'do-
vich's results to first order by including correc-
tions due to finite interparticle distance. Fo'r high
densities they found an interaction energy given by

Thus 3P =c corresponds to y= 4 and dP/de = —', ,
which is the speed of low-frequency sound waves.
Of course, from causality we expect y ~2 for

V =[1—a(isa)'] V, , isa.«1
where

(1.4)
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Vs =~g'Z (2.4)

Ng e 3 N

For a simple cubic lattice n = —,', and the pressure
and the energy density expressions become

c = num + —', nv(0) [1—o, (p, a)']]. ,

P = —,
' n'v(0) [1 —-', n(p, a)'], (1.7)

II. THE INTERACTION OF THE CHARGES AND THE
EQUATION OF STATE

First we consider a linear chain of particles in-
teracting through the following two-body repulsive
interaction with interparticle separation a:

dP nd'c/dn' 1 ——,
' n(p, a)'

de de/dn 1- —', n(pa)'+{,m/4'') a(p, a)' '

(1.8)

where V, = (N'/V) v{0). From Eels. (1.6)-(1.8) they
concluded that even though for n Zel'dovich's
results are obtained; for finite n it is possible for
the speed of sound to be greater than unity.

However, the densities which one expects in
neutron-star mass limit calculations are not high
enough to consider nucleons to be crushed into a
continuum' (~10"g/cm'). In this paper we calcu-
late the lattice energy for a three-dimensional
simple cubic lattice for densities ~10"g/cm' and
show that c«3P. For densities higher than 10'
g/cm' we argue that we have a phase transition
from neutron matter to quark matter before we
reach the density regime where the results of
Zel'dovich and of Bludman and Ruderman would
be valid. Hence, we conclude with the suggestion
that e «3P might very. well be true even in the
presence of repulsive interactions with interac-
tion energy dominating kinetic energy. We also
discuss the implications of this result for the neu-
tron-star mass limit and its practicality.

This is true for all X, but for N-~ it eonverges
only for X&1, hence the series in (2.3) in the
thermodynamic limit, where N , I while
N/I. - constant, becomes

' Xn
=ln, (2.6)

where X =e "'. Hence the lattice energy for a lin-
ear chain can be given as

mg' 1
ln (2.6)

where X =e "'. This result can be generalized to
a three-dimensional simple cubic lattice, which is
actually an infinite number of linear chains with
different interparticle spacing and different orien-
tations.

The distance of the ith nucleon to the origin r,.
and its orientation 0; and Q, can be given as

r,. = pa [1+(m/p)'+ (n/p)'] "',
taunt~, . = [(m /p)'+ (n/p)'] "',

(2.7)

(2.8)

where X,. =e "'i and the summation is over all
possible ai Now we can give the energy density
as

cos6. =
(&/p)

'

where m, n, and p are integers. For a given
chain, 8 and iP are fixed. This fixes the ratios
(m/p) and (n/p); hence for the ith chain, from Eil.
(2.7) the interparticle distance a,. is

a,. =a[1+{m/p)'+(n/p)'] "'. (2.10)

This gives the following lattice energy for a three-
dimensional system:

(2.11)

2
Ir

iS

The potential energy of the lattice is

(2.1)
Xln +a ~+3,

v~= ~ Z &*i ~ (2.2)

(2.3)

The series in (2.3) can be summed by using the
well-known formula

v~ is also equal to Nv, , where v, is the potential
energy of one particle,

e-one
v, =g' P

a, = (4m/3)"'g',

1f i { & p)
[1 + {m /p)2 + (~/p)2] i.12 ~

In this notation we obtain for the pressure

(2.13)

where a, n'~' is the Fermi energy and we define a,
and f, (0, iP) as
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1P = —', n4" a, f,(8, p)ln 1 +a,
i

(2.14)

Since we are interested in the asymptotic form of
the equation of state at high densities, we will con-
sider the limit pa«1, which gives

4m ' 1~= nm+ g'n4" nln +P +a, n4"

comes an integral over all angles and the n' de-
pendence of the total energy becomes apparent.
Our results are valid for densities roughly ten
times nuclear densities which is not high enough
to crush nucleons to form a continuum.

For low densities, p. a»1, we only have to con-
sider the nearest-neighbor interaction, and for a
simple cubic lattice this can be given as

e-Pa
e=n yg+-,'x6g'

and

1 ~ ~3 aoP= ', n"' -a nln +P +a +n"' -'- n3 0 Ia 1

(2.15) n we take n= 1/a',

e = nm +3g'n4~'e ""-Sls

P =Sg'e ~" '(—', n+'+ —', p, n),

with

(2.22)

(2.23)

where

(2.16)
3P 3g p, e "' for p, a»1.

m
(2.24)

n = Q f, (8, Q), p = Q fq(8, p) lnf, (8, y).

(2.1V)

Evaluating SP/e and dP/de we have

SP (4v/3)"'m=1+
1 ) . (ng'/m -a), (2.16)

a, o. ln +P ~+a,
p, a

dP 1 (4v/3)"'-', m
d& 3 4 1 ag'—, a, nln +P+ ' +a'n

pa a,

Note that qg'/m is the classical baryon radius,
where g is a geometric factor depending on the
assumed baryonic charge distribution and p,

' is
the range of interaction. Since p, '&q(g'/m) and
also e "'&1, in the low-density limit we get 3P&e
as expected. For the case where the p '& rl(g'/m),
the above model is no longer correct. Note that
at low densities kinetic energy which goes as n' '
dominates interaction energy. As the density in-
creases, interaction energy takes over kinetic en-
ergy with &&3P still being true.

III. CONCLUSIONS AND THE PRACTICALITY
OF THIS MODEL

x(3 ~g'/m a). (2.19)

1
v~ = n'g'g f,(8, $)ln &,. a'. (2.20)

In the continuum limit a' dQ, the summation be-

I

For electromagnetic interactions p, =0, and SP/e
and SdP/de become unity in the high-density limit.
Note that p.a&~p, a, hence for the high-density limit
we have to consider contributions from chains,
where p, a,.«1, p, a,. -1, and p.a,.»l. Contribution
from chains with p, a,.»1 goes to zero logarithmic-
ally while the contribution from chains with p. a& -1
is proportional to n, hence does not contribute to
pressure and could be absorbed into the mass
term, leaving the expression (2.15) for the total
energy of the system.

Even though in the limit of infinite densities the
expressions SP/e and Sdp/de go to unity, 'we would
like to point out that in this limit these equations
are no longer valid since the contributions from
chains with p, a, »1 can no longer be neglected. The
proper way to achieve this limit is from Ecl. (2.10),

v~ = n+'(A, inn+ B,) . (3.1)

Here Ao and Bo are constants which could be found

by inspection from (2,15) using n =3/4va'. As ex-
pected, for large densities our lattice energy is
less than the energy found from the continuum
model

Since for densities up to -SxI ' g/cm (nucle»
densities) the structure of matter is well under-
stood and no causality violation is found, we were
concerned with the asymptotic structure of the
equation of state. %e examined the equation of
state for densities roughly ten times larger than
the nuclear densities. At these densities it has
been shown that neutron matter prefers to form a
lattice, ' hence minimizing its energy. %e found
the lattice energy for a cubic lattice exactly within
the relevant density range, aside from a numeri-
cal factor that depends on the geometry of the
crystal. The energy we found for particles inter-
acting through the exchange of neutral vector mes-
ons is
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In the relevant density range we fourid &&3P if

(3.3)

sufficient for limiting-mass calculations for neu-
tron stars. If we use the equation of state P =np
for densities above p below which a plausible
nuclear model is attached, the "core mass" of
such a star has mass'

is negative. It is mell known that the classical
radius of baryons can be given as rig'/m, where

g is a numerical factor depending on the assumed
baryonic charge distribution. In Eq. (3.3) we also
have a quantity that depends on the geometry of the
crystal. Hence, o./q can be arranged to be around
unity, and Eq. (3.3) being negative implies an in-
terparticle distance to be larger than the classical
radius of baryons.

Actually for (o.g'/m -a)&0, baryons can no
longer be treated as point particles occupying
lattice sites and the above model is no longer val-
id. Hence within the range of applicability our
model gives e ~ 3P. We also reconsidered' the
low-density limit and found that c&3P as expected. '

It is still true that for densities higher than -10"
g/cm' we will be approaching the continuum limit
where the equations of Zel'dovich and of Bludman
and Huderman are valid. However, we expect a
phase transition between neutron matter to quark
matter long before this happens and from asymp-
totic freedom, the quark equation of state always
satisfies &&3'." It is our opinion that the equa-
tion of state may very well satisfy e~3P even in
the presence of interactions with interaction energy
dominating kinetic energy.

The density range for which Eq. (3.1) is valid is

'+6 +1 m
(3.4)
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Hence, if we take P =E as our limiting equation of
state, the mass limit obtained will be 1.26 times
the value obtained by P = —,'e. In this paper we
argued in favor of the latter. Zero-point energy
and quantum corrections are considered by Zel'do-
vich' and by Bludman and Buderman' and do not
affect our conclusions.

Canuto and Lodenquai' have studied the behavior
of matter at densities higher than 10"g/cm'. This
is roughly the same region in which we think our
Eq. (3.1) is no longer valid. They use p-P col-
lisions in the GeV region and argue in favor of
I' = &. However, their results are hampered by a
lack of satisfactory knowledge of the viscosity of
hadronic matter.
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